
Trie Partitioning in Distributed PC Based Routers
Noel Athaide, Azeem Khan, D. Manjunath and A. Sahoo

IIT Bombay, Mumbai, India.
Email: athaiden,dmanju@ee.iitb.ac.in; azeem,sahoo@it.iitb.ac.in

Abstract— Recent research in PC based routers has proposed
a distributed architecture. Such an architecture poses several
challenges in the areas of scalability, robustness, efficiency of
routing, latency and other issues. We examine the issue of decrease
in throughput due to large routing tables in this architecture and
propose partitioning as a solution. Our contribution is twofold:
defining the concept of load for a node in a forwarding table
trie and to show by simulation experiments the effectiveness of
partitioning and its application to a distributed router.

I. I NTRODUCTION

Early routers were simple devices designed to support very
limited functionality. The earliest routers were general purpose
computers adapted to work as routers. Modern routers have
significantly higher functionality. These include for example,
supporting firewalls, offering encryption capabilities, QoS, per-
user forwarding rules, very deep packet inspection and more.
Changing requirements in packet processing capabilities de-
mands flexibility in the router’s architecture. This has ledto
successive generations of routers with increasing capabilities
[1]–[6].

Open hardware and open source software based approaches
offer advantages over closed hardware based designs [7]–[9].
A very interesting work used general purpose processors (DEC
Alpha CPUs) to create a router [10]. The processors held
instructions for the fast path execution code for IP header
processing, in their on-chip memory. The forwarding tables
were on two memory modules connected by a dedicated bus
to the CPU. The execution code was extensively tuned so that
the processor was pushed to its limit in processing incoming
packet headers. IP packets not on the fast path were processed
by another CPU which had a larger execution code in memory
instead of on-chip. The general CPU also processed the control
plane packets. This work showed that it is possible to create
high performance routers using commodity CPUs and suitably
tuned software.

Open source software offers diversity, quality and supportfor
continuous improvement. Some software, e.g., [11], [12] have
achieved considerable maturity. We believe that implementation
of a new idea in software on a PC is easier and often quicker
because there are many support tools available for development
and troubleshooting. This motivates the use of commodity
CPUs and open source software for building PC based routers.

The above ideas have been incorporated in recent works
which propose the use of PCs as routers [13]–[15]. Bianco
et al. [13] showed that using a Linux based system, they
could achieve more than 90% of the injected throughput in
the data plane. Using extensive experiments, Khan et al. [15]

2

S

W

I

T

C

H

S

W

I

T

C

H

FRONT − END BACK − END

LOAD
BALANCER

LOAD

BALANCER

FORWARDER

FORWARDER
1

Fig. 1. Multi-stage Distributed Router. The outermost dotted box represents
a single logical router to the outside world.

later showed that the performance of a single PC as a switching
element was limited by its inherent architecture. Specifically,
the limitation was in the I/O subsystem. The PCI bus on the
PC, which is a shared bus design, limited the maximum bit
rate. They also observed that this limitation could be overcome
by using multiple PCs to act as a single logical router. Bianco
et al. [14] also described a multistage architecture using several
PCs that offered significant performance improvements overa
single PC. Khan et al. [15] then experimented with a parallel
processing based setup using PCs in a star topology and con-
cluded that the multi-stage architecture proposed in [14] offered
several advantages over the parallel based setup. Therefore we
consider the multi-stage architecture in our work.

Fig. 1 shows the multi-stage PC architecture. Each of the
machines in the front-end and the back-end is a PC. The front-
end is connected to the back-end by a high speed switch—
switch-2. The links terminating at the router terminate at
switch-1. The direction of the arrows on the links show how
the traffic flows through the router. The front-stage PCs direct
the incoming packets to the back-stage. The front-stage may
perform processing on the packets depending on its purpose.
For example, if the front-end is a load balancer as shown in
Fig. 1, it may use a simple scheduling mechanism like round
robin to transmit the packets to the back-end. The back-stage
PCs perform the layer-3 processing on the packets and act as
forwarders of the packets.All forwarders in the back-stage have
identical forwarding tables. After processing the IP header, the
back-stage will transmit the packets to the next hop via switch-1



 0

 100

 200

 300

 400

 500

 600

 700

 800
 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

 8
00

 9
00

O
bs

er
ve

d 
P

ac
ke

t R
at

e 
in

 M
bp

s

Injected Packet Rate in Mbps

Single PC. No Flows. Varying Packet Sizes and Forwarding Table sizes

64 bytes and 1000 entries in FT
64 bytes and 167K entries in FT

576 bytes and 1000 entries in FT
576 bytes and 167K entries in FT

1470 bytes and 1000 entries in FT
1470 bytes and 167K entries in FT

Fig. 2. Throughput Drop in a PC for large forwarding table

directly.
The distributed nature of the design introduces challenges

in the data plane implementation like packet reordering [16],
handling of fragmented packets, synchronization of the for-
warding tables in the back-stage, different processor capabilities
in the back-stage and intelligent load balancing in the back-end.
The control protocol has to be designed to account for this
distributed PC architecture. A control protocol design forthis
architecture has been proposed in [17]. The management plane
also provides several interesting challenges in this architecture
but it is outside the scope of this paper.

It was observed by Khan et al. in their work that the
throughput of the individual PC acting as the forwarder in the
back stage drops significantly as forwarding table size reaches
approximately 100,000 entries [15] (Refer Fig. 2). The CPU
and memory subsystem became a bottleneck for this table
size. For small forwarding tables of 10,000 entries or less,
the PC throughput was limited only by the I/O subsystem.
Since, forwarding table sizes can only increase in the future,
performance of the PC in the back-stage may worsen. Therefore
investigate a method to have small forwarding tables on the
back-stage PCs.

Small forwarding tables on the back-end PCs should not be
achieved at the cost of losing routing information from the
large forwarding table created by the router’s routing protocol.
Therefore, we may partition the large forwarding table into
several smaller ones. For the multi-stage architecture, each of
the partitioned smaller tables would reside on one back-stage
PC. This leads us to issues such as, algorithms to be used,
parameters used for partitioning, correctness of partitioning
algorithm, application of the partitioning to the multi-stage
architecture and synchronization of the partitions acrossback-
end PCs. In this paper we address some of these issues. We have
two main contributions in our work. First, for a forwarding table
created using a trie, we define what is the load of a node and
therefore the load of the trie. Our second contribution is tooffer
a method to reduce packet processing time for a distributed
router design by applying the idea of partitioning to the IP
address lookup process.

The remainder of the paper is organized as follows. In
Section II we have an overview of data structures used in
forwarding tables, some research proposals in partitioning for-
warding tables and a preliminary definition of load which we
will use for partitioning. Section III discusses the partitioning
algorithm for a PATRICIA trie and simulation results for
the partitioning. Section IV discusses the application of this
algorithm to the PC based architecture.

The paper concludes in Section V, with a discussion on
partitioning of other commonly used data structures and future
work.

II. PRELIMINARIES

Some of the tasks that take considerable amount of time in
packet processing are IP header validation, forwarding table
lookup, and fragmentation. Of these, the forwarding table
lookup is the most expensive operation in terms of CPU usage
[18]. To forward a packet, a router searches the forwarding
table for the longest prefix match of the packet’s destination IP
address and transmits the packet through the outgoing interface
of the matched entry. This process, commonly calledIP lookup,
involves (a) a search key; the destination IP of the packet,
(b) entries in the forwarding table;prefixesand (c) the output
interface as a result of the search;next hop. This lookup is
non-trivial because there may be multiple matches and only
the longest match should be used to determine the next hop
[19]. Several efficient data-structures (for the forwarding table)
and lookup algorithms have already been proposed in literature,
to speed up the task of IP lookup, [6], [20]–[26].

In this work we seek to improve the performance of the
distributed router architecture described in the previoussection,
by suitably partitioning the forwarding table to achieve faster
IP lookups while efficiently using router resources. Partitioning
of the forwarding table in routers has been explored in [27]–
[31]. In [31], the authors separate the process of finding the
egress line-card and the egress port on the line-card. Papers
[27]–[29] discuss methods of partitioning the table so thata
single IP lookup can be done in parallel, i.e., the same packet
is simultaneously forwarded to several processors. However,
our method is different in that we partition the forwarding
table so that several processors may simultaneously process
different packets. Moreover, we make sure that the partitions
are load-balanced so that the processors share the IP lookup
load in a balanced manner. The load of a partition is defined
in Section II-B. The method used in [30] achieves the same
objective with the difference that it only attempts to make
small and equal sized partitions and does not balance the load
between the partitions.

A. Related Work on Partitioning of Forwarding Table

In [27], the authors suggest partitioning the table with respect
to output interfaces, i.e., all prefixes which share the same
output interface are grouped into a single partition. Assuming
that there is a one-to-one correspondence between a router’s
egress ports and next hop, it can be shown that the prefixes in
each partition will be non-overlapping. As a result a searchon



Lookup on T1 Lookup on T2 Result of XOR
0 0 0(Default gateway)

l(u) 0 l(u)
l(x) l(x)⊕ l(v) l(v)
0 l(x)⊕ l(w) —

TABLE I

LOOKUP CASES WHEN SPLITTING THE TRIE AS INFIG. 3

any partition will yield at most one match. So the problem of
longest prefix matching is simplified to that of finding a single
match. The partitions are searched in parallel using multiple
processors, and the longest prefix from among them is selected.
The main advantages of this method are:

• Parallel lookup architecture.
• Only one match per partition, and hence faster lookup on

each partition and simpler data structure.
• No need to store output port number, since it is the same

for all prefixes in a given partition.
On the other hand, [28] partitions the table according to the

depth of the prefixes in a binary trie, i.e., all prefixes which
are at the same depth in the binary trie are grouped into a
single partition. Here too, the prefixes in a partition will be
non-overlapping because in order for a prefix to overlap with
another, it would (a) have to share a common path with that
prefix and (b) be either above or below that prefix in the trie.
Hence it cannot overlap and simulatneously have the same
height as the other prefix. The search for the longest match
is then carried out in a manner similar to that described in the
previous method.

In [29], the prefixes are arranged in a binary trie which is then
split into two as shown in Fig. 3. The next hops are expressed
as binary numbers calledlabels, e.g., the next hop of prefixx
is given by l(x). The labels of the prefixes in the upper trie
T1 are left unchanged, while those of the prefixes in the lower
trie T2 are rewritten with the XOR of that label and the label
of the nearest parent prefix inT1. Now, both the partitions are
searched in parallel. If a match is found, the corresponding
label is returned else a0 is returned. The results from both
the partitions are then XOR-ed to give the final result. TableI
shows the different possibilities. The last case is not possible,
because if the lookup onT2 returns a result then there will
always be a parent prefix inT1 which also match the given IP,
hence the lookup onT1 cannot return a0.

This method of partitioning can be applied recursively to
split the trie into as many partitions as required. The main
advantage is that the XOR rule still applies, i.e., the results of
the lookups on the individual partitions simply need to be XOR-
ed, which is easily done in hardware, to get the correct next
hop. The approach in [30] is different from the rest because
it describes a method to partition the table for a multiple line
card (LC) architecture, where each LC processes a different
packet. Here prefixes which match at specific bit positions are
grouped together. The bit positions used for such a partitioning,
are decided by two criteria: (1) each partition should contain
as few prefixes as possible and (2) the size difference between

l(u)

l(x)

u

x

R

l(x)     l(v)

R

u

v

x

u

R T1

T2
l(v)

l(u)

l(u)

Fig. 3. Splitting the trie [29].

the largest and smallest partition should be minimum. However
this method results in an increase in the number of prefixes
because prefixes in which the specified bit position is a ‘*’
or ‘don’t care’ will occur in more than one partition. When
a packet arrives at an LC these bit positions are inspected. If
the LC does not contain the corresponding partition, then the
packet is forwarded to the correct LC over the switching fabric.
This partitioning method only attempts to make small and equal
sized partitions and does not balance the load at LCs.

Since our focus is on increasing the throughput in the data
plane, we describe in detail what kind of partitioning will
help us achieve this objective. We defer control plane issues
such as efficiently finding the best partition and dealing with
routing updates to a later paper. In this work, we will look at
partitioning of a PATRICIA trie [20], variations of which are
used in routers today.

There is existing literature on graph partitioning for tree-like
structures similar to PATRICIA tries [32]–[35]. However, as
mentioned before, in this work our focus is not on developing
an efficient algorithm for finding the partitions. Instead, we
focus on describing what constitutes a load-balanced partition.
Once this is defined, existing graph-partitioning algorithms can
be suitably modified to actually find the partitions.

B. Load of a Trie

In this section, we formally define load of a trie in terms
of IP lookup cost. When IP lookup in a router is performed
using trie structures, the location of the nodes of the trie in
memory/RAM could be arbitrary, and traversing the trie is done
using pointers. IP lookup process starts at the root node of
the trie and then continues down the trie incurring cost of an
additional memory access for each node visited along the path.
Thus, the load associated with an IP lookup is the cost incurred
in memory accesses made to find the longest prefix match. Note
that one may need to traverse the sub-trie below a node, before
concluding that that node is indeed the longest prefix match.
So, the number of memory accesses is not necessarily equal to
the depth of the node corresponding to the longest prefix match.
We do not include the computation cost of the processor in this
definition of load, since memory is typically the bottleneckin



CUT

(b)

(a)

(c)

* (ROOT)/A

0*

10*

* (ROOT)/A

0*

01* 10*

01*

00*/B

00*/B

1*/C

1*/C

Fig. 4. Cutting a trie: (a) Original trie (b) Child sub-trie (c) Parent trie.
Dark circles are used to indicate prefix nodes, while the light circles represent
non-prefix (zero weight) nodes required for building the trie.

such a scenario [36]. There are two types of nodes in a trie. A
node having a next hop entry is referred to as aprefix node,
whereas nodes having no next hop entries are callednon-prefix
nodes. We denote a trie asT (V, E), where V is the set of
nodes (both prefix and non-prefix) in the trie andE is the set
of edges. We define the weightwi of a prefix nodei in the
trie as the total load of all IP lookups for which nodei is the
longest prefix match, i.e.,

wi =
∑

k∈S

Nk (1)

whereS is the set of all IP lookups which have prefixi as the
longest match, andNk is the number of memory accesses for
the k-th IP lookup from the setS. Since IP lookup can never
result in non-prefix node as a longest prefix match, the weight
of a non-prefix node is0. The sum of the weights of all the
nodes in the trie is then defined as the load of the trie.

W =
∑

i∈V

wi (2)

whereV is the set of nodes in the trieT (V, E). Keeping this
definition of load in mind, we shall proceed to the next section
where we describe the partitioning of a PATRICIA trie.

III. PATRICIA’ S BREAKUP

We first consider the simpler case of partitioning the PA-
TRICIA trie into two. We begin by assigning weights to each
of the prefix nodes, as described in the previous section. The
trie is then partitioned into two by (in a graph-theoretic sense)
cutting it. A cut is identified by the edgeeij between two nodes
i and j. The cut splits the original trie into two tries: achild
sub-trie rooted at nodej, and aparenttrie which is still rooted
at the original root node and contains the nodei as a leaf node.
This is illustrated in Fig. 4. There are as many cuts possible
as the number of edges in the trie. Our aim is to find the cut
which will result in load-balanced partitions. We define a cut
as abalanced cutif the difference between the loads of the

* (ROOT)/A

0*

01* 10*00*/B

1*/C

CUT

1011*/C

100*/B

Fig. 5. Before partitioning, the string 10101100 will matchthe prefix 1* and
the lookup will take three memory accesses (root-1*-10*). After partitioning,
the lookup starts directly at the root of the child sub-trie (10*), and ends after
one memory access. Thus the loads of parent and child tries after partitioning
should be0 and1 respectively. However, simply adding the weights of nodes in
each partition would give the loads of parent and child as2 and0 respectively.

two resulting tries is the least among all possible cuts. The
optimization problem can be stated as:

e∗ = arg min
e∈E

|Wp − Wc| (3)

where e∗ is the edge corresponding to the balanced cut,Wp

andWc are the loads of the parent and child tries respectively.
Getting the balanced cut may not be as simple as it looks,
because after the partition, the weights of the nodes in the
new sub-tries change. Hence, while calculating the load of
the child and parent sub-tries, the new weights of the nodes
have to be considered. In fact, the computation of parent and
child trie loads is non-trivial and we show the method of
computing the new loads later in this section. To illustrate
this point, we present Fig. 5 which shows how the parent and
child load calculation can go wrong if we use equations (1)
and (2) without modifying the weights. There are two reasons
for this: (a) Lookups which start directly in the child trie
after partitioning, go through fewer hops than in the original
trie. Hence, the load of the child trie should decrease after
partitioning (as compared to the load of this sub-trie in the
original trie before partitioning). (b) Some IP lookups which
have a longest match in the parent trie, may start directly in
the root node of the child trie. This results in decrease in the
load of the parent trie and increase in load of the child sub-
trie. Thus, the formulae for load of parent and child tries must
incorporate change in load due to reasons stated above. Thisis
the reason why we are forced to do an exhautive search over all
possible edges. The algorithmic complexity of this algorithm
is thus O(E). The frequency of operation of this algorithm is
limited by the time taken to execute it on one side and the need
for new partitions due to changes in the traffic pattern and/or
changes in the routing information updates on the other side.

The nodes in the original trie need to maintain some more
information to enable us to compute the correct load of the
partitions. Each prefix nodei stores two counters, a weight



counter (wi) and a frequency counter (fi). fi is the number of
IP lookups that havei as the longest match andwi is the total
number of memory accesses required by these IP lookups. Each
non-prefix nodej stores only a single countermj, which is the
number of IP lookups for which the lookup does not continue
below the nodej. Let Ao, Ap andAc be the set of prefix nodes
in the original, parent and child tries respectively and letANP

be the set of non-prefix nodes in the child trie that do not have
any prefix node above them. Letd(i) be the depth of nodei in
the original trie anddc be the depth of the cut i.e., the depth
of the root node of the child trie. Then the loads are given by:

Wo =
∑

i∈Ao

wi (4)

Wp =
∑

i∈Ap

wi −
∑

j∈ANP

mj .d(j) (5)

Wc =
∑

i∈Ac

(wi − fi.dc) +
∑

j∈ANP

mj .(d(j) − dc) (6)

WhereWo, the load of the original trie, is calculated in the same
way as in equation (2).Wp andWc are the load of the parent
and child tries respectively after partitioning. The first term
in (5) captures the IP lookups which terminate in the parent
trie, while the second term captures the lookups which have
the longest match in the parent partition but after partitioning,
the lookup would start in the child trie. The first term in (6)
accounts for all IP lookups in the child trie that have a longest
prefix match in the child trie itself which will now have reduced
depth because they would start out from the root node of the
child trie. The second term accounts for the IP lookups which
have the longest match in the parent partition but would start
in the child trie after partitioning. These lookups would take
fewer hops than in the original trie, the difference being equal
the depth of the cut.

We can use the definition of a balanced cut to findN load-
balanced partitions by cutting the trie in an iterative manner. In
the first iteration it is divided into two partitions such that the
loads are in the ratio1 : (N − 1). Then the sub-trie with load
(N − 1) is partitioned into two such that the loads are in the
ratio 1 : (N −2). This process continues until the last partition
is obtained with loads in the ratio1 : 1. Thus, at the end of the
iterative process, the original trie gets partitioned intoN equal
load tries.

Let us assume that in an iteration, the trie is partitioned into
two tries such that the loads are in the ratio1 : α. Then either
the child or the parent can have a load ofα. Accordingly, we
define two cost functions which represent the load difference
of the two partitions.

Let Wp(T, e) and Wc(T, e) be the loads of the parent and
child tries respectively, after cutting trieT at edgee. We define
two cost functions for calculating the weighted differenceof
loads of parent and child tries.

fc(T, e, α) = Wp(T, e) − α.Wc(T, e)

fp(T, e, α) = α.Wp(T, e) − Wc(T, e)

Obviously, we should choose the partition that has the minimum
cost function. In Algorithm-1 we present a procedure for
obtainingN partitions such that the partitions are as close to
having equal loads as possible.

Algorithm 1 Procedure to findN balanced partitions

PROCEDURE find N partitions(N, T ) {N = number of
partitions required;T = original trie}
for k = 1 to N − 1 do

α = N − k

e1 = arg mine fc(T, e, α)
e2 = arg mine fp(T, e, α)
if fc(T, e1, α) < fp(T, e2, α) then {Choose child sub-trie
ask-th partition}

Tk = Tc

T = Tp

else
Tk = Tp

T = Tc

end if
end for

The iterative procedure in Algorithm-1 is illustrated in Fig. 6.
Here, after 4 iterations, the original trie is partitioned into 5
parts, each with 1/5 the load of the original trie.

Split the original trie
in the ratio 1:4

Split the heavier partition 
in the ratio 1:3

First partition
formed

1

4/5

3/5

2/5

1/5

1/5

1/5 1/5

1/5

Parent partition Child partition

Fig. 6. The figure shown an example of creating 5 partitions. Note that the
tree depicts the flow of the partitioning algorithm; it is nota trie. Each level
of the tree structure represents a single iteration of partitioning. The root node
indicates the load of the original trie normalized to 1. Eachnumber in the tree
represents the load of a trie relative to the load of the original trie. The left
and right branches indicate the loads of the parent and childtries obtained by
cutting a trie. Numbers in boldface represent the load of thefinal partitions.

The partitions thus formed are stored on different processing
elements in the distributed router. When packets arrive at the
router they need to be redirected to the appropriate partition to
ensure that the lookup is done correctly. Therefore, beforepro-
cessing a packet, processing element must do a lookup of one
more table, which we refer to as thepartition table. The lookup
of partition table involves matching the IP address againstthe
root nodes of the partitioned sub-tries. Therefore, partition table
lookup is quite simple and inexpensive. Organization of the
partition table is illustrated in Table II.

• The first column contains the binary prefixes associated
with the root nodes of each partition.

• The second column contains the partition-ID.



CUT

1*/C

10*
0*

00*/B

(a)

* (ROOT)/A

0*

01* 10*

01*

00*/B

1*/C

* (ROOT)/A

(b) (c) (d) (e)

Fig. 7. (a) Original trie. (b), (c), (d), and (e) are partitions formed after cutting
(a).

Partition rooted at Partition number Next hop
* 1 A

01* 2 A
1* 3 C
10* 4 C

TABLE II

PARTITION TABLE FOR FIG. 7

• The third column contains the next hop corresponding to
the root node. If the root node of a partition is not a prefix
node, the next hop of the nearest parent of the root node,
in the original trie, is stored in this column.

Upon receiving a packet, the processing element does a longest
prefix match search on the partition table, using the packet’s
destination IP, and forwards the packet to the correct partition.
The next hop is temporarily stored and will be used if a better
match is not found in the partition. The proofs for showing
that IP lookups on a table partitioned in this manner returns
the correct results are simple and listed in the Appendix .

At this point we must state certain implications/issues with
this method of partitioning the forwarding table:

• We have assumed that the sample traffic trace used to
assign weights to prefix nodes is representative of the
traffic flow through a router. It is to be expected that
should there be a short term traffic anomaly, where the
traffic pattern deviates from expectation, the performance
of our architecture may be worse than the round-robin load
balancing scenario as in [14]. If this anomalous behaviour
is common, then there is no such thing as a ‘traffic pattern
that is long enough to adapt to’. If that is the case, then
there should be no partitioning.

• It is not possible to balance the load exactly, because of
the granularity involved in cutting the trie.

• When a trie is cut, further path compression may be
possible. Referring to Fig.4, we can see that after cutting,
the parent trie can be compressed by removing node ’0∗’.

Thus one would expect the actual average load at the
parent trie to differ slightly from the load which was
computed during partitioning.

A. Simulation Experiment

Partitioning of forwarding table makes sense in a parallel
or distributed processing architecture. Therefore, in oursim-
ulation, we have assumed that there are two processors (i.e.
lookup units LUs) performing IP lookups in parallel as shown
in Fig. 8. Hence, we have two classifier elements (the load
balancer or LB elements in Fig. 8) that take an incoming
packet and make a decision on the processor that will do the
lookup. Then the packet is handed over to that processor for
actual IP lookup. The paths that a packet may take is shown
by arrows in the illustration. For example, a packet arrives
into the system at interface A. The LB element, based on
some criteria, sends it to the second forwarder. The packet
leaves from interface E and arrives at the second forwarder on
interface F. After processing, it leaves the system from interface
G. For our simulation experiments, we have considered two
possible configurations.

In the first configuration, the forwarding table is unparti-
tioned and each forwarder contains the entire table. No clas-
sification is done by the load balancer elements. The packets
are simply distributed between the processing elements (i.e. the
two forwarders) in a round-robin fashion. This configuration is
hereafter referred to as theparallel processingconfiguration.
The time measured here is the average oftCD and tRS ,
where tCD and tRS are the IP lookup times up for the two
processing elements (see Fig.8). The time taken by the load
balancer to decide on the forwarder is negligible (since we
used round robin) and is not a bottleneck and hence not taken
into consideration for our measurements. Thus the time through
the two forwarders gives us the time of processing packets in
parallel processingconfiguration.

In the second confuguration, the forwarding table is parti-
tioned into two. One partition resides in the first forwarder
and the second partition resides in the second forwarder. The
load balancer element performs a small table lookup to see
which partition has the necessary information. It then sends
the packet to the forwarder that contains the correct partition.
For example, a packet arrives into the system at interface A.
The load balancer element does a partition table lookup and
decides to send the packet to the second forwarder. The packet
leaves from interface E and arrives at the second forwarder on
interface F. After processing, it leaves the system from interface
G.

The time results for IP lookup using partitioning is the aver-
age of(tAB +tAE +tCD +tUV ) and(tPQ +tPT +tRS +tFG),
as shown in Fig.8, where (tAB + tAE) and(tPQ + tPT ) are the
partition table lookup times for each processing element, and
(tCD + tUV ) and(tRS + tFG) are the IP lookup times for each
processing element.

Since we are doing a relative comparison of the two configu-
rations, the time taken for packet transfers between elements are
common and hence not considered. We are interested only in



A
B C

F

Q

T

UE V

G

D

SR

P

LB

LB

FORWARDER

FORWARDER

Fig. 8. LB : Load Balancer. The figure depicts two processing elements
(dotted boxes) of a distributed router working in parallel.Each processing
element stores only a part of the entire forwarding table, asdetermined by the
partitioning algorithm.

Original Table P1 P2
No. of prefixes 41578 (1) 35959 (0.86) 5619 (0.14)
Load of Trie 1,481,729 (1) 681,690 (0.46) 719,235 (0.49)
Size of Trie 80448 (1) 69360 (0.86) 11088 (0.14)

nodes looked up 379,934 (1) 342,979 (0.9)

TABLE III

PARTITIONING RESULTS FOR TRACE SET1

reducing the computation time spent in each of the processing
elements.

In our simulations, we have not measured the actual time
taken for processing in each of the four elements. Instead,
since the forwarding tables are stored as PATRICIA tries, we
calculate the number of nodes looked up. This is done for
two reasons. First, the time taken for a lookup varies greatly
with a machine’s design and hardware configuration. Second,
our assumption has always been that each node lookup causes
one memory access. Hence, counting the number of nodes
looked up is a more accurate measure. For the partitioned table
configuration, we have measured both the number of nodes
looked up inside the partition table of the load balancers and
the partitioned forwarding tables of the forwarders as described
above.

We built the PATRICIA tries using three different trace sets.
One is publicly available FUNET routing data set [37]. The
other two sets were taken from the Lawrence Berkeley National
Laboratory’s Internet Traffic Archive [38]. The corresponding
FUNET traffic trace [39] was also downloaded. For each set of
traces and forwarding tables, we used the first half of the trace
as a training set for computing node weights, while the second
half was used for testing the effectiveness of the partitioning.
After some trace analysis, we observed that more than 93% of
the flows that existed in the first half of the trace continued
into the second half of the trace. The loads of the partitions
were computed for all possible cuts (exhaustive search) and
the partitioning which gave the minimum difference in loads
was selected as described in Section III.

For the FUNET data set, the simulation results are shown

Original Table P1 P2
No. of prefixes 100,000 (1) 56186 (0.56) 43814 (0.44)
Load of Trie 18,995,489 (1) 9,692,278 (0.51) 4,222,149 (0.22)
Size of Trie 185,114 (1) 103,382 (0.56) 81732 (0.44)

nodes looked up 1,670,305 (1) 1,454,892 (0.87)

TABLE IV

PARTITIONING RESULTS FOR TRACE SET2

Original Table P1 P2
No. of prefixes 165,463 (1) 119,835 (0.72) 45628 (0.28)
Load of Trie 5,502,546 (1) 2,842,691 (0.52) 1,187,093 (0.22)
Size of Trie 309,164(1) 224,004 (0.72) 85160 (0.28)

nodes looked up 1710637 (1) 1493441 (0.87)

TABLE V

PARTITIONING RESULTS FOR TRACE SET3

in Table III. The first three rows show the details of the
partitions formed i.e. number of prefixes, weight and size for
the tries formed out of this partitioning. Normalized values are
shown in parentheses. The last row of Table III shows the time
taken to process the same number of packets before and after
partitioning. The number of nodes looked up in ’Original Table’
indicates the average number taken by two processing elements
working in parallel, with the complete forwarding table on both
and without any partition table lookup. The number of nodes
looked up in the partition section is the average of the two
partitions’ looked up nodes.

We can see that the load of the tries is well balanced, and
that it does not necessarily translate to an equal balance inthe
number of prefixes in each partition or the number of nodes
in the trie (size of the trie). We observe that there is a savings
of about10% in terms of memory accesses over theparallel
processingconfiguration. Note that this is a relatively small
forwarding table compared to the next two cases. Also, in this
case, the training set was only 50,000 destination addresses.

In the second trace whose results are detailed in Table IV, the
forwarding table contains 100,000 routes. The training setused
for the simulation was 600,000 packets with another 600,000
used for the simulation. In this case, the we observed that
almost 82% of the flows in the first half of the trace continued
into the second half of the trace. In this scenario, the routes
were almost evenly distributed in the partitions unlike the
earlier case. However, the loads are not evenly distributedat
all. Despite this, the partitioning gives an improvement ofabout
13% over the plainparallel processingconfiguration.

In the third trace, we use a still larger forwarding table
with 165,463 routes (See Table V). We observe that this time,
the number of prefixes in each partition is heavily unbalanced
unlike the earlier case. The loads too are quite unbalanced.
Again, we observer that, despite the unbalanced partitions, there
is improvement of about13% over the parallel processing
configuration.

We conclude from the observations of our experiments that
partitioning the forwarding table in our setup results in savings
in lookup time. The reduction in lookup time happensdespite



the extra lookups that are done in the PT elements. This
reduction in IP lookup time increases the throughput of our
system. In our experiments, we observed a minimum of10%
and upto13% improvement with partitioning over theparallel
processingconfiguration.

We have analyzed partitioning of the PATRICIA trie structure
for IP lookup for a multiple element configuration. Next, we
examine partitioning in the context of a multistage distributed
PC-based router.

IV. A PPLICATION TO DISTRIBUTED PC BASED ROUTER

So far, the nature of partitioning has been independent of any
particular hardware. We assumed the type of the data structure
and the fact that memory accesses for non consecutive memory
locations usually causes a new memory read. We now turn our
attention to the PC hardware which was our motivation and
attempt to apply our methods.

In Section I, we saw an approach advocated by [14], [15]
which used a multi-stage distributed PC based router architec-
ture. A slightly modified version of the proposal made in [14]
appears in Fig. 1. There is a front-end of PCs that act as
directors of incoming packets to the back-end. The actual layer-
3 packet forwarding work i.e. IP header processing is done in
the back-end. The front-end and the back-end are connected
by a high speed switch—Switch-2 in the figure. The front-end
can direct the packets based on some configurable criteria like
load balancing at Layer-2. The back-end after processing the
packets transmits them directly to the next hop via Switch-1.

Also, in Section I, we saw that large forwarding table sizes
result in reduced throughput. Hence we use the approach in
Section III to partition the forwarding table into smaller pieces.
Each of the smaller pieces resides in one back-end PC. When a
packet arrives at the incoming interface to the router, i.e.at the
front stage, it must be directed to the correct partition. Each
front-end PC must have a partition vector for the partitions.
The front-end PC will examine the IP destination address of
the packet and perform a partition lookup. The lookup tells the
PC the location of the correct partition. The PC then directsthe
packet to the back-stage PC containing the correct partition. if
the partitioned forwarding table size is small in the back-end
PC, it should be limited only by its I/O subsystem. It should
show higher throughput than in the case where it contains
the unpartitioned forwarding table. Each back-end PC should
benefit from the partitions and overall system throughput should
increase.

There are two caveats here that are to be noted. First is,
the cost of partition lookup in the first stage. If the partitioning
method is very complex, the partition lookup process in the first
stage may be computationally expensive. Should that happen,
the first stage itself will become the bottleneck. It would then
appear as if we have shifted the bottleneck of lookup time
from the back-stage to the front-stage. Hence, a very complex
partitioning should be avoided. A very complex partition lookup
method must be avoided. The simple algorithm discussed in
Section III gives good results. There is only a small additional
complexity in the first-end PCs.

The second caveat happens if there are too many or too few
PCs in the back-stage of our router. If the number of PCs in
the back-stage are too small, few partitions are created. Then
each partition may be still be large enough to cause a drop in
throughput. It was seen in [15], the throughput drop is linear
after a certain forwarding table size. Thus, despite its size, the
large size partitions should still increase the throughputto some
extent. In the second case, there are too many PCs in the back-
stage. This will cause many small sized partitions to be created.
This will increase the partition lookup time in the front stage.
This problem can be solved using other means. For example,
more than one PC may share the same partition and the partition
lookup code in the first stage may choose any of these PCs.
The choice may be made randomly or using round robin or
some other method. The discussion of this scenario is outside
the scope of this paper.

V. D ISCUSSIONS ANDFUTURE WORK

In this paper, we have proposed a method of partitioning a
trie based forwarding table without loss of route information.
At the same time, the loads across the partitioned tables are
balanced relative to each other. We have also proposed a
method to calculate the load of a trie based forwarding table.
Smaller forwarding tables lead to overall reduction of per-
packet processing time and hence an increase in throughput.
Our simulation experiments show a clear reduction in the
number of nodes looked up in the partitioned trie configuration.
We have discussed how this method can be applied to a
distributed router architecture.

There is a possibility of larger reductions in node lookups
that was not observed by us. In our simulation experiments,
the balanced cuts happened only at depths of2, 1 and 1 for
traces one, two and three respectively. Larger reductions are
possible if the balanced cut occurs at a lower depth. In that
case, the reduced number of nodes required to reach a heavy
child subtrie would result in substantial savings in the nodes
looked up.

PATRICIA tries were used in the early days of routing. But in
the latest Linux distributions there are two approaches available.
One is a Level Compressed (LC) trie, which is a variation of
PATRICIA trie. The other one is a hash table based approach.
LC trie is a method to reduce the number of memory accesses
required for IP lookup. The idea is simple: given a binary trie,
the i highest level is replaced by a single node of degree2i.
The procedure is repeated on the sub-tries. Thus, in LC trie,
each node may have multiple children. Our partitioning method
should work directly on LC tries. However, Linux uses a space-
efficient way of storing the LC trie [22]. In this compact data
structure an IP lookup must traverse all the way to a leaf of
the trie. This makes the load computation complex and hence
our method cannot be applied directly.

In hash table based approach, Linux creates several hash
tables for different prefix lengths in the routing entries. All
routes with the same prefix lengths go into the same hash table.
Hashing value of IP address is looked up in the hash table
corresponding to the longest prefix length. If a match is found,



the search is terminated. Otherwise, the hash table of next
smaller prefix length is looked up. The process continues until a
match is found. In this approach, the prefixes are not stored in a
trie-like structure. Hence our method cannot be applied directly.
However, it may be possible to build a trie corresponding to the
hash table and apply our partitioning method to this trie. But
the load should now reflect the load of lookup in the original
hash table, which may not be easy to do.

We are currently looking at the method of partitioning
compact LC trie used by Linux. We are also looking into the
effectiveness of multiple cuts i.e. multiple partitions and the
tradeoffs thereof. We would like to compare the performance
of both the vanilla LC trie and the space-efficient version used
by Linux. We would also study how to apply our method to
hashing based implementation of Linux. The main challenge
in this case would be to compute load values corresponding to
the hash table lookup.

VI. A CKNOWLEDGEMENTS

This work was supported by Ministry of Communications
and Information Technology, Government of India under grant
number 1(1)/2004-E-Infra.

APPENDIX

In the following, we show that the forwarding table parti-
tioning described in algorithm 1 works correctly.

Lemma 1:The partitions created are disjoint.
Proof: Follows from the construction of the partitions.

Lemma 2:There are no duplicate entries in the partition
table.

Proof: Follows from the construction of the partitions.
Lemma 3:The correct next hop is always returned.
Definition 1: Adjacent Partitions. PartitionsP1 and P2 are

said to be adjacent ifhead(c) ∈ P1 andtail(c) ∈ P2, wherec

is the cut which separates the partitions. We shall refer toP1

as theparentpartition andP2 as thechild partition.
Proof: We will usei ≺ j to denote that nodei is a prefix

of nodej. Now consider a pair of adjacent partitionsP1 andP2

whereP1 is the parent partition andP2 is the child partition.
We shall consider two cases here.
Case i:Suppose the longest matching prefix in the original trie
corresponds to nodek in the child partition. Leti andj be the
root nodes of the parent and child partitions respectively.Then
we will have

i ≺ j ≺ k ≺ dest.IP

Nodesi and j will be listed in the partition table and lookup
on this table will return nodej as the longest match. Thus the
packet will be forwarded to the LC containing the child parti-
tion. Since the child sub-trie is identical to the corresponding
section in the original trie the nodek will be returned as the
longest match and hence the correct next hop is obtained.
Case ii: Suppose the longest matching prefix in the original
trie corresponds to a nodek in the parent partition. Again, let
i and j be the root nodes of the parent and child partitions
respectively. Then there are two possibilities:

(a)

i ≺ k ≺ dest. IP

k ⊀ j

Here a lookup on the partition table will result in the packet
being forwarded to the LC holding the parent partition. Subse-
quent lookup on the parent partition will returnk as the longest
match and hence the correct next hop is returned.

(b)

i ≺ k ≺ j ≺ dest. IP

Since k is the longest matching prefix in the original trie,j

must be a non-prefix node. Also, any other node in the child
partition which matches the destination IP must be a non-prefix
node, else we would be contradicting the statement thatk is the
longest matching prefix. Now, a lookup on the partition table
will result in the child partition being selected. However,since
only non-prefix nodes match the destination IP, the lookup on
the child partition will not return a result. Therefore, thenext
hop stored in the partition table will be used. This next hop is,
by construction, the same as that of the nearest parent prefixp in
the parent partition. Sincep ≺ j we must havei ≺ k ≺ p ≺ j.
We conclude thatp = k, else we would be contradicting the
fact thatk is the longest matching prefix. Thus the correct next
hop is returned in this case too.

REFERENCES

[1] V. P. Kumar, T. V. Lakshman, and D. Stiliadis, “Beyond best effort: Router
architectures for the differentiated services of tomorrow’s internet,” IEEE
Communications Magazine, vol. 36, no. 5, pp. 152–164, 1998.

[2] M. S. Blumenthal and D. D. Clark, “Rethinking the design of the internet:
the end-to-end arguments vs. the brave new world,”ACM Trans. Inter.
Tech., vol. 1, no. 1, pp. 70–109, 2001.

[3] D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J. Wetherall, and G.J.
Minden, “A survey of active network research,”IEEE Communications
Magazine, vol. 35, no. 1, pp. 80–86, 1997.

[4] A. Kumar, D. Manjunath, and J. Kuri,Comunication Netwrking: An
Analytical Approach, Elsevier, 2004.

[5] P. Gupta and N. McKeown, “Algorithms for packet classification,” IEEE
Network, vol. 15, no. 2, pp. 24–32, Mar/Apr 2001.

[6] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable high
speed IP routing lookups,” inProceedings of SIGCOMM ’97, September
1997, pp. 25–36.

[7] S. Karlin and L. Peterson, “Vera: an extensible router architecture,”
Computer Networks, vol. 38, no. 3, pp. 277–293, 2002.

[8] Y. Gottlieb and L. Peterson, “A Comparative Study of Extensible
Routers,” in2002 IEEE Open Architectures and Network Programming
Proceedings, New York, NY USA, June 2002, pp. 51–62.

[9] S. Keshav,An Engineering Approach to Computer Networking, Pearson
Education, 1997.

[10] C. Partridge et. al., “A 50-gb/s ip router,”IEEE/ACM Trans. Netw., vol.
6, no. 3, pp. 237–248, 1998.

[11] M. Handley, O. Hodson, and E. Kohler, “Xorp: An open platform for
network research,” inProc. of the 1st Workshop on Hot Topics on
Networks, 2002.

[12] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M..F. Kaashoek, “The
click modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp.
263–297, 2000.

[13] A. Bianco, J.M. Finochietto, G. Galante, M. Mellia, andF. Neri, “Open-
source pc-based software routers: A viable approach to high-performance
packet switching,” inProc. of the 3rd International Workshop on QoS in
Multiservice IP Networks, QoSIP 2005, 2005, pp. 353–366.



[14] A. Bianco, J.M. Finochietto, G. Galante, M. Mellia, D. Mazzucchi, and
F. Neri, “Scalable layer-2/layer-3 multistage switching architectures for
software routers,” inGlobecom 2006, 2006.

[15] A. Khan, R. Birke, D. Manjunath, A. Sahoo, and A. Bianco,“Distributed
PC based routers: Bottleneck analysis and architecture proposal,” in
Proceedings of High Performance Switching and Routing 2008, May
2008.

[16] I. Keslassy and N. McKeown, “Maintaining packet order in two-stage
switches,” inProceedings of Infocomm 2002, 2002, pp. 1032–1041.

[17] A. Bianco, R. Birke, J.M. Finochietto, and L. Giraudo etal., “Control
and management plane in a multi-stage software router architecture,”
in Proceedings of High Performance Switching and Routing 2008, May
2008.

[18] Y. Luo, L. N. Bhuyan, and X. Chen, “Shared memory multiprocessor
architectures for software ip routers,”IEEE Transactions on Parallel and
Distributed Systems, vol. 14, no. 12, pp. 1240–1249, 2003.

[19] V. Fuller, T. Li, J. Yu, and K. Varadhan, “Classless inter-domain routing
(CIDR): an address assignment and aggregation strategy,” 1993.

[20] D. R. Morrison, “PATRICIA—practical algorithm to retrieve information
coded in alphanumeric,”J. ACM, vol. 15, no. 4, pp. 514–534, 1968.

[21] S. Nilsson and G. Karlsson, “Fast address look-up for internet routers,”
in BC ’98: Proceedings of the IFIP TC6/WG6.2 Fourth International
Conference on Broadband Communications, London, UK, UK, 1998, pp.
11–22, Chapman & Hall, Ltd.

[22] S. Nilsson and G. Karlsson, “IP-address lookup using LC-tries,” Selected
Areas in Communications, IEEE Journal on, vol. 17, no. 6, pp. 1083–
1092, Jun 1999.

[23] V. Srinivasan and G. Varghese, “Faster IP lookups usingcontrolled prefix
expansion,” inMeasurement and Modeling of Computer Systems, 1998,
pp. 1–10.

[24] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small forwarding
tables for fast routing lookups,” inSIGCOMM, 1997, pp. 3–14.

[25] B. Lampson, V. Srinivasan, and G. Varghese, “IP lookupsusing multiway
and multicolumn search,”IEEE/ACM Trans. Netw., vol. 7, no. 3, pp. 324–
334, 1999.

[26] J. Fu, O. Hagsand, and G. Karlsson, “Improving and analyzing lc-trie
performance for ip-address lookup,”Journal of Networks, vol. 2, no. 3,
pp. 18–27, 2007.

[27] M.J. Akhbarizadeh and M. Nourani, “An ip packet forwarding technique
based on partitioned lookup table,”Communications, 2002. ICC 2002.
IEEE International Conference on, vol. 4, pp. 2263–2267 vol.4, 2002.

[28] Z. Liang, K. Xu, and J. Wu,A Scalable Parallel Lookup Framework
Avoiding Longest Prefix Match, Springer, Berlin / Heidelberg, 2004.

[29] G. Bongiovanni and P. Penna, “XOR-based schemes for fast parallel IP
lookups,” Theor. Comp. Sys., vol. 38, no. 4, pp. 481–501, 2005.

[30] N. F. Tzeng, “Routing table partitioning for speedy packet lookups in
scalable routers,”IEEE Trans. Parallel Distrib. Syst., vol. 17, no. 5, pp.
481–494, 2006.

[31] J. Fu, P. Sjodin, and G. Karlsson, “Two-stage ip-address lookup in
distributed routers,” inProceedings of the IEEE INFOCOM Computer
Communications Wokshop, Phoenix, AZ, USA, 2008, pp. 1–6.

[32] Y. Perl and S. R. Schach, “Max-min tree partitioning,”J. ACM, vol. 28,
no. 1, pp. 5–15, 1981.

[33] G. N. Frederickson, “Optimal algorithms for tree partitioning,” in
SODA ’91: Proceedings of the second annual ACM-SIAM symposium on
Discrete algorithms, Philadelphia, PA, USA, 1991, pp. 168–177, Society
for Industrial and Applied Mathematics.

[34] T. N. Bui and B. R. Moon, “Genetic algorithm and graph partitioning,”
Computers, IEEE Transactions on, vol. 45, no. 7, pp. 841–855, Jul 1996.

[35] C.H.Q. Ding, Xiaofeng He, Hongyuan Zha, Ming Gu, and H.D. Simon,
“A min-max cut algorithm for graph partitioning and data clustering,”
Data Mining, 2001. ICDM 2001, Proceedings IEEE International Con-
ference on, pp. 107–114, 2001.

[36] G. Varghese,Network Algorithmics, Elsevier, 2005.
[37] S. Nilsson, “A routing table for wordsized (32 bits) bitstrings implemented

as a static level- and pathcompressed trie.,” http://www.nada.kth.se/ snils-
son/public/code/router/Data/funet.table.gz.

[38] Lawrence Berkeley National Laboratory, “The internettraffic archive,”
http://ita.ee.lbl.gov/.

[39] S. Nilsson, “A routing table for wordsized (32 bits) bitstrings implemented
as a static level- and pathcompressed trie.,” http://www.nada.kth.se/ snils-
son/public/code/router/Data/funet.trace.gz.


