Trie Partitioning in Distributed PC Based Routers

Noel Athaide, Azeem Khan, D. Manjunath and A. Sahoo
IIT Bombay, Mumbai, India.
Email: athaiden,dmanju@ee.iitb.ac.in; azeem,sahooi@4c.in

Abstract— Recent research in PC based routers has proposed ‘ FRONT — END __BACK-END
a distributed architecture. Such an architecture poses seral ;

challenges in the areas of scalability, robustness, efficiey of ! ! !
routing, latency and other issues. We examine the issue of clease | 1 7| FORWARDER
in throughput due to large routing tables in this architecture and S : s /
propose partitioning as a solution. Our contribution is twofold: W ! LOAD !
defining the concept of load for a node in a forwarding table || BALANCER W
trie and to show by simulation experiments the effectivenes of : | !
partitioning and its application to a distributed router. T T
I (o}
C i LOAD
I. INTRODUCTION W | Jeameer [ . |
Early routers were simple devices designed to support very | b2 \ FORWARDER
limited functionality. The earliest routers were generatgose ! ! ! 1

computers adapted to work as routers. Modern routers have
significantly higher functionality. These include for exalm,
supporting firewalls, offering encryption capabilitiesp& per-
user forwarding rules, very deep packet inspection and moFé- 1. Multi-stage Distributed Router. The outermost eidtbox represents
Changing requirements in packet processing capabilites @ S"9'e logical router to the outside world.
mands flexibility in the router’'s architecture. This has fed
successive generations of routers with increasing cagaebil
[1]-[6]. later showed that the performance of a single PC as a swgchin
Open hardware and open source software based approaghiegent was limited by its inherent architecture. Spedifica
offer advantages over closed hardware based designs [7]-fbe limitation was in the 1/0O subsystem. The PCI bus on the
A very interesting work used general purpose processor&(DIPC, which is a shared bus design, limited the maximum bit
Alpha CPUs) to create a router [10]. The processors hdlate. They also observed that this limitation could be overe
instructions for the fast path execution code for IP headBy using multiple PCs to act as a single logical router. Beanc
processing, in their on-chip memory. The forwarding tabledf al. [14] also described a multistage architecture usavgisl
were on two memory modules connected by a dedicated Hefes that offered significant performance improvements aver
to the CPU. The execution code was extensively tuned so tRtgle PC. Khan et al. [15] then experimented with a parallel
the processor was pushed to its limit in processing incomimgocessing based setup using PCs in a star topology and con-
packet headers. IP packets not on the fast path were praceseded that the multi-stage architecture proposed in [##¢}ed
by another CPU which had a larger execution code in memasgveral advantages over the parallel based setup. Thenetor
instead of on-chip. The general CPU also processed theatongonsider the multi-stage architecture in our work.
plane packets. This work showed that it is possible to createFig. 1 shows the multi-stage PC architecture. Each of the
high performance routers using commodity CPUs and suitalityachines in the front-end and the back-end is a PC. The front-
tuned software. end is connected to the back-end by a high speed switch—
Open source software offers diversity, quality and supfwrt switch-2. The links terminating at the router terminate at
continuous improvement. Some software, e.g., [11], [12khaswitch-1. The direction of the arrows on the links show how
achieved considerable maturity. We believe that implemi@n the traffic flows through the router. The front-stage PCsalire
of a new idea in software on a PC is easier and often quickée incoming packets to the back-stage. The front-stage may
because there are many support tools available for devedopmperform processing on the packets depending on its purpose.
and troubleshooting. This motivates the use of commodiBor example, if the front-end is a load balancer as shown in
CPUs and open source software for building PC based routdfgy. 1, it may use a simple scheduling mechanism like round
The above ideas have been incorporated in recent worebin to transmit the packets to the back-end. The backestag
which propose the use of PCs as routers [13]-[15]. Bian®Cs perform the layer-3 processing on the packets and act as
et al. [13] showed that using a Linux based system, thégrwarders of the packetsll forwarders in the back-stage have
could achieve more than 90% of the injected throughput identical forwarding tablesAfter processing the IP header, the
the data plane. Using extensive experiments, Khan et a). [Hack-stage will transmit the packets to the next hop viacdwit




Single PC. No Flows. Varying Packet Sizes and Forv‘varding Tab‘le sizes ‘ Th e re m a.l nd er Of the paper |S O rg an |Zed a.S fol | OWS . I n

800 T T T — T
64 bytes and 1000 entries in FT —+—

Spresadon e neT Section Il we have an overview of data structures used in
B I b A L Beew ] forwarding tables, some research proposals in partitipfiam-

) S e ] warding tables and a preliminary definition of load which we

é‘ ol ‘g»é"’n‘%:”;;f | will use for partitioning. Section Il discusses the paotiing

2 e algorithm for a PATRICIA trie and simulation results for

g wor o 1 the partitioning. Section IV discusses the application taé t

% w00 1 " il algorithm to the PC based architecture.

2 o The paper concludes in Section V, with a discussion on
r partitioning of other commonly used data structures andréut
wof 1 work.

Fa
0 ‘ ‘ ‘ ‘ S ‘ ‘ ‘ Il. PRELIMINARIES

=} 1=} o
S IS) 3 =3

100
200
700
800
900

53 3
Injected Packet Rate in Mbps

Some of the tasks that take considerable amount of time in
Fig. 2. Throughput Drop in a PC for large forwarding table packet processing are IP header validation, forwardindetab
lookup, and fragmentation. Of these, the forwarding table
lookup is the most expensive operation in terms of CPU usage
directly. [18]. To forward a packet, a router searches the forwarding
The distributed nature of the design introduces challengesle for the longest prefix match of the packet’s destimati
in the data plane implementation like packet reordering,[16address and transmits the packet through the outgoinganter
handling of fragmented packets, synchronization of the fosf the matched entry. This process, commonly calfetbokup
warding tables in the back-stage, different processorluéfies involves (a) a search key; the destination IP of the packet,
in the back-stage and intelligent load balancing in the badk  (b) entries in the forwarding tablgrefixesand (c) the output
The control protocol has to be designed to account for thisterface as a result of the searaiext hop This lookup is
distributed PC architecture. A control protocol design flois non-trivial because there may be multiple matches and only
architecture has been proposed in [17]. The managemerg plgfe longest match should be used to determine the next hop
also provides several interesting challenges in this ggchire [19]. Several efficient data-structures (for the forwagitable)
but it is outside the scope of this paper. and lookup algorithms have already been proposed in litezat
It was observed by Khan et al. in their work that theéo speed up the task of IP lookup, [6], [20]-[26].
throughput of the individual PC acting as the forwarder ia th |n this work we seek to improve the performance of the
back stage drops significantly as forwarding table sizehesc distributed router architecture described in the previsertion,
approximately 100,000 entries [15] (Refer Fig. 2). The CPWy suitably partitioning the forwarding table to achievestéx
and memory subsystem became a bottleneck for this taptelookups while efficiently using router resources. Pianting
size. For small forwarding tables of 10,000 entries or lesgf the forwarding table in routers has been explored in [27]-
the PC throughput was limited only by the I/O subsystengi]. In [31], the authors separate the process of finding the
Since, forwarding table sizes can only increase in the &jtuiegress line-card and the egress port on the line-card. ®aper
performance of the PC in the back-stage may worsen. Therefgr7]—[29] discuss methods of partitioning the table so that
investigate a method to have small forwarding tables on thggle IP lookup can be done in parallel, i.e., the same gacke
back-stage PCs. is simultaneously forwarded to several processors. Howeve
Small forwarding tables on the back-end PCs should not bar method is different in that we partition the forwarding
achieved at the cost of Iosing routing information from theple so that several processors may 5imu|taneous|y [moces
large forwarding table created by the router’s routing peol.  different packets. Moreover, we make sure that the panttio
Therefore, we may partition the large forwarding table intgre load-balanced so that the processors share the IP lookup
several smaller ones. For the multi-stage architectureh @ |oad in a balanced manner. The load of a partition is defined
the partitioned smaller tables would reside on one bacgestdn Section 1I-B. The method used in [30] achieves the same
PC. This leads us to issues such as, algorithms to be usgjective with the difference that it only attempts to make

parameters used for partitioning, correctness of paniitig small and equal sized partitions and does not balance thie loa
algorithm, application of the partitioning to the multage petween the partitions.

architecture and synchronization of the partitions actuessk- o )

end PCs. In this paper we address some of these issues. We KavBelated Work on Partitioning of Forwarding Table

two main contributions in our work. First, for a forwardingte In [27], the authors suggest partitioning the table withpeses
created using a trie, we define what is the load of a node atwd output interfaces, i.e., all prefixes which share the same
therefore the load of the trie. Our second contribution isffer output interface are grouped into a single partition. Assigm

a method to reduce packet processing time for a distributdtht there is a one-to-one correspondence between a uter’
router design by applying the idea of partitioning to the IRRgress ports and next hop, it can be shown that the prefixes in
address lookup process. each partition will be non-overlapping. As a result a seach



Lookup on 77 | Lookup on T> Result of XOR
0 0 0(Default gateway)
1(u) 0 1(u)
(x) l(z) ®l(v) 1(v)
0 I(x) ® l(w) —
TABLE |

LOOKUP CASES WHEN SPLITTING THE TRIE AS INFIG. 3

any partition will yield at most one match. So the problem of

longest prefix matching is simplified to that of finding a sig|

match. The partitions are searched in parallel using maltip

processors, and the longest prefix from among them is selecte

The main advantages of this method are: Fig. 3. Splitting the trie [29].
« Parallel lookup architecture.

« Only one match per partition, and hence faster lookup on . -
each partition and simpler data structure. the largest and smallest partition should be minimum. Harev

« No need to store output port number, since it is the sarH@s method results in an increase in the number of prefixes
for all prefixes in a given partition ’ because prefixes in which the specified bit position is a ¥
" ' . or ‘don’t care’ will occur in more than one partition. When
he other h 2 h I h . . o .
On the other hand, [28] partitions the table according to t epacket arrives at an LC these bit positions are inspected. |

depth of the prefixes in a binary trie, i.e., all prefixes whic . . -

arep at the sarr)ne depth in the ginary trie are pgrouped into € LC does not contain the corresponding partition, then th
. . ! . o .. packet is forwarded to the correct LC over the switching iabr
single partition. Here too, the prefixes in a partition wik b

non-overlapping because in order for a prefix to overlap wit-!:lhIS partitioning method only attempts to make small ancaéqu

another, it would (a) have to share a common path with thaf e_d partitions and_ does_ not bqlance the load at L.CS'
Since our focus is on increasing the throughput in the data

prefix and (b) be either above or below that prefix in the trie. ne, we describe in detail what kind of partitioning wil

Hence it cannot overlap and simulatneously have the sa . . - .
p us achieve this objective. We defer control plane issue

height as the other prefix. The search for the longest ma fi - s i . .
is then carried out in a manner similar to that described @ t uch as efficiently finding the best partition and dealinghwit

previous method routing updates to a later paper. In this work, we will look at

In [29], the prefixes are arranged in a binary trie which ithhepartitioning of a PATRICIA trie [20], variations of which ar

split into two as shown in Fig. 3. The next hops are expressgaed in rputers .toda}y. L )
as binary numbers callédbels e.g., the next hop of prefix There is existing literature on graph partitioning for tlde

is given byl(x). The labels of the prefixes in the upper triestruct'ures similar t9 PA,‘TR|CIA tries [32],_[35]' Howeversg
T, are left unchanged, while those of the prefixes in the |owg?ent|oned before, in this work our focus is not on developing

trie Ty are rewritten with the XOR of that label and the labef" efficient alg_o_rithm for finding the partitions. Inste_ade w
of the nearest parent prefix ifi,. Now, both the partitions are focus on describing what constitutes a load-balancedtioati

searched in parallel. If a match is found, the correspondilﬂg1ce .this is defip_ed, existing graph-partitioni.n'g algarithcan
label is returned else & is returned. The results from bothb suitably modified to actually find the partitions.
the partitions are then XOR-ed to give the final result. Tdble .
shows the different possibilities. The last case is not iptess B. Load of a Trie
because if the lookup off, returns a result then there will In this section, we formally define load of a trie in terms
always be a parent prefix i, which also match the given IP, of IP lookup cost. When IP lookup in a router is performed
hence the lookup off’; cannot return &. using trie structures, the location of the nodes of the tnie i
This method of partitioning can be applied recursively tmemory/RAM could be arbitrary, and traversing the trie iseo
split the trie into as many partitions as required. The maimsing pointers. IP lookup process starts at the root node of
advantage is that the XOR rule still applies, i.e., the tssof the trie and then continues down the trie incurring cost of an
the lookups on the individual partitions simply need to beR«O additional memory access for each node visited along the pat
ed, which is easily done in hardware, to get the correct nekhus, the load associated with an IP lookup is the cost iecurr
hop. The approach in [30] is different from the rest because memory accesses made to find the longest prefix match. Note
it describes a method to partition the table for a multipfeeli that one may need to traverse the sub-trie below a node,éefor
card (LC) architecture, where each LC processes a differammncluding that that node is indeed the longest prefix match.
packet. Here prefixes which match at specific bit positioms ao, the number of memory accesses is not necessarily equal to
grouped together. The bit positions used for such a pantitiqy  the depth of the node corresponding to the longest prefiximatc
are decided by two criteria: (1) each partition should contaWe do not include the computation cost of the processor & thi
as few prefixes as possible and (2) the size difference betwekefinition of load, since memory is typically the bottlenénk

1) ®1(v) @




* (ROOTY/A * (ROOT)/A

* (ROOT)/A

100*/B

1011*/C

(b)

Fig. 4. Cutting a trie: (a) Original trie (b) Child sub-trie)( Parent trie. Fig. 5. Before partitioning, the string 10101100 will matite prefix 1* and
Dark circles are used to indicate prefix nodes, while thetlgjtles represent the lookup will take three memory accesses (root-1*-10*jteApartitioning,
non-prefix (zero weight) nodes required for building the tri the lookup starts directly at the root of the child sub-trl_@*(), 'and en_qls gfter
one memory access. Thus the loads of parent and child tries grtitioning
should bed and1 respectively. However, simply adding the weights of nodes i
each partition would give the loads of parent and chil@@d0 respectively.

such a scenario [36]. There are two types of nodes in a trie. A

node having a next hop entry is referred to aprafix node

whereas nodes having no next hop entries are calbedprefix two resulting tries is the least among all possible cuts. The
nodes We denote a trie ag'(V, E), where V' is the set of optimization problem can be stated as:

nodes (both prefix and non-prefix) in the trie afdis the set . _ .

of edges. We define the weight; of a prefix nodei in the © - arege%m Wy = Wel 3)

trie as the total load of all IP lookups for which nodés the

, , wheree* is the edge corresponding to the balanced &,
longest prefix match, i.e.,

andV, are the loads of the parent and child tries respectively.
w; = ZNk 1) Getting the balanced cut may not be as simple as it looks,
) ) because after the partition, the weights of the nodes in the
) ) ] new sub-tries change. Hence, while calculating the load of
where S is the set of all IP lookups which have prefbas the the child and parent sub-tries, the new weights of the nodes
longest match, andV;, is the number of memory accesses fofaye to be considered. In fact, the computation of parent and
the k-th IP lookup from the seb. Since IP lookup can neverchiid trie loads is non-trivial and we show the method of
result in non-prefix node as a longest prefix match, the weiglmputing the new loads later in this section. To illustrate
of a non-prefix node i¥). The sum of the weights of all the this point, we present Fig. 5 which shows how the parent and
nodes in the trie is then defined as the load of the trie. child load calculation can go wrong if we use equations (1)
W= Z w; @) and (2) without modifying the weights. There are two reasons
for this: (a) Lookups which start directly in the child trie
after partitioning, go through fewer hops than in the orain
whereV is the set of nodes in the tri€(V, E'). Keeping this trie. Hence, the load of the child trie should decrease after
definition of load in mind, we shall proceed to the next Se’CtiOpartitioning (as compared to the load of this sub-trie in the
where we describe the partitioning of a PATRICIA trie. original trie before partitioning). (b) Some IP lookups whi
have a longest match in the parent trie, may start directly in
Ill. PATRICIA"S BREAKUP the root no?je of the child trie.pThis results inydecrease 'myth
We first consider the simpler case of partitioning the PAead of the parent trie and increase in load of the child sub-
TRICIA trie into two. We begin by assigning weights to eaclrie. Thus, the formulae for load of parent and child triessinu
of the prefix nodes, as described in the previous section. Tineorporate change in load due to reasons stated aboveisThis
trie is then partitioned into two by (in a graph-theoretiose) the reason why we are forced to do an exhautive search over all
cutting it. A cut is identified by the edge; between two nodes possible edges. The algorithmic complexity of this aldorit
i andj. The cut splits the original trie into two tries: ghild is thus O(E). The frequency of operation of this algorithm is
sub-trie rooted at nodg, and aparenttrie which is still rooted limited by the time taken to execute it on one side and the need
at the original root node and contains the nede a leaf node. for new partitions due to changes in the traffic pattern and/o
This is illustrated in Fig. 4. There are as many cuts possibthanges in the routing information updates on the other. side
as the number of edges in the trie. Our aim is to find the cutThe nodes in the original trie need to maintain some more
which will result in load-balanced partitions. We define a cunformation to enable us to compute the correct load of the
as abalanced cutif the difference between the loads of thepartitions. Each prefix nodé stores two counters, a weight

keS

eV



counter {v;) and a frequency countel,). f; is the number of Obviously, we should choose the partition that has the minim
IP lookups that have as the longest match and is the total cost function. In Algorithm-1 we present a procedure for
number of memory accesses required by these IP lookups. Eablaining N partitions such that the partitions are as close to
non-prefix node stores only a single countet;, which is the having equal loads as possible.

number of IP lookups for which the lookup does not continue

below the nodg. Let 4,, A, and A, be the set of prefix nodes Algorithm 1 Procedure to findV balanced partitions

in the original, parent and child tries respectively andAgtp PROCEDURE find_N _partitions(N,T) {N = number of
be the set of non-prefix nodes in the child trie that do not havepartitions required?” = original trie}

any prefix node above them. Lé(i) be the depth of nodein fork=1to N —1do

the original trie andi. be the depth of the cut i.e., the depth = N — &

of the root node of the child trie. Then the loads are given by: ¢, = arg min,, f.(T, e, )

e = argmin, fp(T, e, o)

W, = Z w; (4) if fo(T,e1,0) < fp(T, e, ) then {Choose child sub-trie
i€A, as k-th partition}
Wp=3 wi— Y mjd) (5) T =T.
i€Ap JEANP T=T1,
We = Z (wi — fide) + Z m;.(d(j) —dc)  (6) eIS; =T
i€A. JEANP Tk__Tp

WherelV,, the load of the original trie, is calculated in the same  end if
way as in equation (2)l/, and W, are the load of the parent end for
and child tries respectively after partitioning. The firsrmh
in (5) captures the IP lookups which terminate in the parentThe jterative procedure in Algorithm-1 is illustrated irgFB.

trie, while the second term captures the lookups which haygyre, after 4 iterations, the original trie is partitionettd 5

the longest match in the parent partition but after paniitig, parts, each with 1/5 the load of the original trie.
the lookup would start in the child trie. The first term in (6)

accounts for all IP lookups in the child trie that have a Iestge . Spiit the original trie

prefix match in the child trie itself which will now have receat Fistpartiion " A% in the ratio 1:4

depth because they would start out from the root node of the jommeq¢ ——= 15 ¢ 4/5 < Split the heavier partition
child trie. The second term accounts for the IP lookups which et T e INtherato 13

have the longest match in the parent partition but would star A S

in the child trie after partitioning. These lookups woulkea s 55

fewer hops than in the original trie, the difference beingaq e TN

the depth of the cut. 1/5_} L s

We can use the definition of a balanced cut to fiidoad-
balanced partitions by cutting the trie in an iterative mamm
the first iteration it is divided into two partitions such ththe Fig. 6. The figure shown an example of creating 5 partitionsteNthat the

; ia _ tpi ; tree depicts the flow of the partitioning algorithm; it is rettrie. Each level
loads are_ in the_ratld " (N 1>' Then the sub-trie with Ipad of the tree structure represents a single iteration of g@mtng. The root node
(N — 1) is partitioned into two such that the loads are in th@gicates the load of the original trie normalized to 1. Eadmber in the tree
ratio 1 : (N —2). This process continues until the last partitiomepresents the load of a trie relative to the load of the palirie. The left
is obtained with loads in the ratib: 1. Thus. at the end of the and right branches indicate the loads of the parent and ttidel obtained by

. . .. . -, . cutting a trie. Numbers in boldface represent the load offit& partitions.
iterative process, the original trie gets partitioned infcequal

load tries. The partitions thus formed are stored on different procegsi
Let us assume that in an iteration, the trie is partitioned inglements in the distributed router. When packets arrivenat t
two tries such that the loads are in the ratioa. Then either 5 ter they need to be redirected to the appropriate pantit
the child or the parent can have a loadcofAccordingly, we  gngyre that the lookup is done correctly. Therefore, befooe
define two cos_t.functlons which represent the load dlffeeen%essing a packet, processing element must do a lookup of one
of the two partitions. more table, which we refer to as tpartition table The lookup
Let W,,(T',e) and W.(T\ e) be the loads of the parent andyf partition table involves matching the IP address agaimst
child tries respectively, after cutting trig at edgee. We define oot nodes of the partitioned sub-tries. Therefore, fartitable
two cost functions for calculating the weighted differerafe |ookup is quite simple and inexpensive. Organization of the
loads of parent and child tries. partition table is illustrated in Table II.
. « The first column contains the binary prefixes associated
fe(T;e,0) = Wp(T' €) — a.We(T' €) with the root nodes of each partition.
fo(T,e,a) = Wy (T,e) — We(T €) « The second column contains the partition-ID.

Parent partition Child partition



* (ROOT)/A

Thus one would expect the actual average load at the
parent trie to differ slightly from the load which was
computed during partitioning.

A. Simulation Experiment

Partitioning of forwarding table makes sense in a parallel
or distributed processing architecture. Therefore, in sion-
ulation, we have assumed that there are two processors (i.e.

* (ROOT)IA 1C lookup units LUs) performing IP lookups in parallel as shown
o 01 107 in Fig. 8. Hence, we have two classifier elements (the load
balancer or LB elements in Fig. 8) that take an incoming
0078 packet and make a decision on the processor that will do the
lookup. Then the packet is handed over to that processor for
actual IP lookup. The paths that a packet may take is shown
® © C) ®© by arrows in the illustration. For example, a packet arrives
Fig. 7. (a) Original trie. (b), (c), (d), and (e) are partittoformed after cutting into_the .Sy.Stem at m.terface A. The LB element, based on
@. I some criteria, sends it to the second forwarder. The packet
leaves from interface E and arrives at the second forwarder o
Partition rooted at | Partition number | Next hop interface F. After processing, it leaves the system frorarfatce
* 1 A G. For our simulation experiments, we have considered two
o1 2 A possible configurations.
T 3 C . . . . . .
0¥ i C In the first configuration, the forwarding table is unparti-

tioned and each forwarder contains the entire table. No- clas
sification is done by the load balancer elements. The packets
are simply distributed between the processing elemeretstfie

two forwarders) in a round-robin fashion. This configuratie
hereafter referred to as thgarallel processingconfiguration.

« The third column contains the next hop corresponding '€ time measured here is the averageteb and trs;,
the root node. If the root node of a partition is not a prefi?Nerétcp andtgs are the IP lookup times up for the two

node, the next hop of the nearest parent of the root no(pégcessing elements (see Fig.8). The time taken by the load
in the original trie, is stored in this column. balancer to decide on the forwarder is negligible (since we

- . used round robin) and is not a bottleneck and hence not taken
Upon receiving a packet, the processing element does aSanﬁto consideration for our measurements. Thus the timeautjino

grefl_x match seardcrf] on tt;e phartltlonktable,husmg the paskefo 1o forwarders gives us the time of processing packets in
estination IP, and forwards the packet to the correct fpamti parallel processingzonfiguration.

The next hop is temporarily stored and will be used if a better In the second confuguration, the forwarding table is parti-

match is not found in the partition. The proofs for showing, e into two. One partition resides in the first forwarder
that IP lookups on a table partitioned in this manner returig,j yhe second partition resides in the second forwardes. Th
the correct results are simple and listed in the Appendix . 554 pajancer element performs a small table lookup to see
At this point we must state certain implications/issueshwityhich partition has the necessary information. It then send
this method of partitioning the forwarding table: the packet to the forwarder that contains the correct patit
« We have assumed that the sample traffic trace usedFRor example, a packet arrives into the system at interface A.
assign weights to prefix nodes is representative of tfigne load balancer element does a partition table lookup and
traffic flow through a router. It is to be expected thatlecides to send the packet to the second forwarder. The fpacke
should there be a short term traffic anomaly, where theaves from interface E and arrives at the second forwarder o
traffic pattern deviates from expectation, the performanaeterface F. After processing, it leaves the system frorerface
of our architecture may be worse than the round-robin lodal.
balancing scenario as in [14]. If this anomalous behaviour The time results for IP lookup using partitioning is the aver
is common, then there is no such thing as a ‘traffic patteawe of(tap +tar+tcp+tuy) and(tpg +tpr+trs +tra),
that is long enough to adapt to’. If that is the case, theas shown in Fig.8, wheré {z +t4r) and(tpg +tpr) are the

TABLE Il
PARTITION TABLE FORFIG. 7

there should be no partitioning. partition table lookup times for each processing elemend, a
« It is not possible to balance the load exactly, because @fp +tyv) and(trs +trg) are the IP lookup times for each
the granularity involved in cutting the trie. processing element.

« When a trie is cut, further path compression may be Since we are doing a relative comparison of the two configu-
possible. Referring to Fig.4, we can see that after cuttinggtions, the time taken for packet transfers between elé&sraga
the parent trie can be compressed by removing n6de ' common and hence not considered. We are interested only in



o Original Table P1 P2
LB B cFTORWARDER No. of prefixes | 100,000 (1) 56186 (0.56) 43814 (0.44)
A L o | . Load of Trie 18,995,489 (1) | 9,692,278 (0.51)| 4,222,149 (0.22)
L=oo ; Size of Trie 185,114 (1) | 103,382 (0.56) | 81732 (0.44)
- nodes looked up| 1,670,305 (1) 1,454,892 (0.87)
TABLE IV
PARTITIONING RESULTS FOR TRACE SER
LB
L p L Original Table P1 P2
e No. of prefixes | 165,463 (1) | 119,835 (0.72) | 45628 (0.28)
‘ - Load of Trie | 5,502,546 (1) | 2,842,691 (0.52) 1,187,093 (0.22)
: Size of Trie 300,164(1) | 224,004 (0.72) | 85160 (0.28)
- FORWARDER nodes looked up| 1710637 (1) 1493441 (0.87)
TABLE V

Fig. 8. LB: Load Balancer. The figure depicts two processing elements
(dotted boxes) of a distributed router working in parallBlach processing
element stores only a part of the entire forwarding tabledetermined by the
partitioning algorithm.

PARTITIONING RESULTS FOR TRACE SE®B

Original Table P1 P2
41578 (1) 35959 (0.86) 5619 (0.14)

in Table Ill. The first three rows show the details of the
partitions formed i.e. number of prefixes, weight and size fo

No. of prefixes

Load of Trie 1,481,729 (1) | 681,690 (0.46)| 719,235 (0.49) _ \ IS i
Size of Trie 80448 (1) 69360 (0.86) | 11088 (0.14) the tries formed out of this partitioning. Normalized vadusre
nodes looked up 379,934 (1) 342,979 (0.9) shown in parentheses. The last row of Table Ill shows the time
TABLE Il taken to process the same number of packets before and after

partitioning. The number of nodes looked up in 'Original Teb
indicates the average number taken by two processing etsmen
working in parallel, with the complete forwarding table ooty
and without any partition table lookup. The number of nodes
reducing the computation time spent in each of the procgssinoked up in the partition section is the average of the two
elements. partitions’ looked up nodes.

In our simulations, we have not measured the actual timeWe can see that the load of the tries is well balanced, and
taken for processing in each of the four elements. Instedbdat it does not necessarily translate to an equal balanteein
since the forwarding tables are stored as PATRICIA tries, waeimber of prefixes in each partition or the number of nodes
calculate the number of nodes looked up. This is done for the trie (size of the trie). We observe that there is a sgin
two reasons. First, the time taken for a lookup varies gyeaif about10% in terms of memory accesses over {harallel
with a machine’s design and hardware configuration. Seconpcessingconfiguration. Note that this is a relatively small
our assumption has always been that each node lookup cadeesarding table compared to the next two cases. Also, ia thi
one memory access. Hence, counting the number of nodese, the training set was only 50,000 destination addsesse
looked up is a more accurate measure. For the partitiondé tab In the second trace whose results are detailed in Table &/, th
configuration, we have measured both the number of nodeswarding table contains 100,000 routes. The traininguset
looked up inside the partition table of the load balancers affor the simulation was 600,000 packets with another 600,000
the partitioned forwarding tables of the forwarders as dbed used for the simulation. In this case, the we observed that
above. almost 82% of the flows in the first half of the trace continued

We built the PATRICIA tries using three different trace setsnto the second half of the trace. In this scenario, the ®ute
One is publicly available FUNET routing data set [37]. Thavere almost evenly distributed in the partitions unlike the
other two sets were taken from the Lawrence Berkeley Nakiorearlier case. However, the loads are not evenly distribated
Laboratory’s Internet Traffic Archive [38]. The correspamg all. Despite this, the partitioning gives an improvemenabbdut
FUNET traffic trace [39] was also downloaded. For each set 3% over the plainparallel processingconfiguration.
traces and forwarding tables, we used the first half of theetra In the third trace, we use a still larger forwarding table
as a training set for computing node weights, while the sécowith 165,463 routes (See Table V). We observe that this time,
half was used for testing the effectiveness of the partitign the number of prefixes in each partition is heavily unbaldnce
After some trace analysis, we observed that more than 93%urilike the earlier case. The loads too are quite unbalanced.
the flows that existed in the first half of the trace continuedligain, we observer that, despite the unbalanced partitibese
into the second half of the trace. The loads of the partitios improvement of about 3% over the parallel processing
were computed for all possible cuts (exhaustive search) acehfiguration.
the partitioning which gave the minimum difference in loads We conclude from the observations of our experiments that
was selected as described in Section 1l partitioning the forwarding table in our setup results iniegs

For the FUNET data set, the simulation results are shovimlookup time. The reduction in lookup time happedespite

PARTITIONING RESULTS FOR TRACE SETL



the extra lookups that are done in the PT elemeritBis The second caveat happens if there are too many or too few
reduction in IP lookup time increases the throughput of ofCs in the back-stage of our router. If the number of PCs in
system. In our experiments, we observed a minimum@% the back-stage are too small, few partitions are creatednTh
and uptol13% improvement with partitioning over thparallel each partition may be still be large enough to cause a drop in
processingconfiguration. throughput. It was seen in [15], the throughput drop is Imea
We have analyzed partitioning of the PATRICIA trie strueturafter a certain forwarding table size. Thus, despite itg,size
for IP lookup for a multiple element configuration. Next, wedarge size partitions should still increase the throughpsome
examine partitioning in the context of a multistage disttddl extent. In the second case, there are too many PCs in the back-
PC-based router. stage. This will cause many small sized partitions to beterka
This will increase the partition lookup time in the front géa
_ This problem can be solved using other means. For example,
So far, the nature of partitioning has been independentpf agore than one PC may share the same partition and the partitio
particular hardware. We assumed the type of the data stmc%okup code in the first stage may choose any of these PCs.
and the fact that memory accesses for non consecutive memeRa choice may be made randomly or using round robin or

locations usually causes a new memory read. We now tum @i§fime other method. The discussion of this scenario is autsid
attention to the PC hardware which was our motivation ange scope of this paper.

attempt to apply our methods.

In Section I, we saw an approach advocated by [14], [15] V. DISCUSSIONS ANDFUTURE WORK
which used a multi-stage distributed PC based router &chit In this paper, we have proposed a method of partitioning a
ture. A slightly modified version of the proposal made in [14frie based forwarding table without loss of route inforroati
appears in Fig. 1. There is a front-end of PCs that act A$ the same time, the loads across the partitioned tables are
directors of incoming packets to the back-end. The actyalla balanced relative to each other. We have also proposed a
3 packet forwarding work i.e. IP header processing is done imethod to calculate the load of a trie based forwarding table
the back-end. The front-end and the back-end are connec®&daller forwarding tables lead to overall reduction of per-
by a high speed switch—Switch-2 in the figure. The front-engacket processing time and hence an increase in throughput.
can direct the packets based on some configurable critkga [Our simulation experiments show a clear reduction in the
load balancing at Layer-2. The back-end after processieg thumber of nodes looked up in the partitioned trie configorati
packets transmits them directly to the next hop via Switch-1We have discussed how this method can be applied to a

Also, in Section I, we saw that large forwarding table sizedistributed router architecture.
result in reduced throughput. Hence we use the approach ifThere is a possibility of larger reductions in node lookups
Section Il to partition the forwarding table into smalléepes. that was not observed by us. In our simulation experiments,
Each of the smaller pieces resides in one back-end PC. Whethe balanced cuts happened only at depthg,of and 1 for
packet arrives at the incoming interface to the router,atehe traces one, two and three respectively. Larger reductioas a
front stage, it must be directed to the correct partitionclEa possible if the balanced cut occurs at a lower depth. In that
front-end PC must have a partition vector for the partitionsase, the reduced number of nodes required to reach a heavy
The front-end PC will examine the IP destination address ohild subtrie would result in substantial savings in the esd
the packet and perform a partition lookup. The lookup teiks t looked up.
PC the location of the correct partition. The PC then dirtoeés ~ PATRICIA tries were used in the early days of routing. But in
packet to the back-stage PC containing the correct partitfo the latest Linux distributions there are two approachegava.
the partitioned forwarding table size is small in the baokle One is a Level Compressed (LC) trie, which is a variation of
PC, it should be limited only by its I/O subsystem. It shoul®ATRICIA trie. The other one is a hash table based approach.
show higher throughput than in the case where it contaib€ trie is a method to reduce the number of memory accesses
the unpartitioned forwarding table. Each back-end PC shoukquired for IP lookup. The idea is simple: given a binare,tri
benefit from the partitions and overall system throughpaotsth the i highest level is replaced by a single node of dedgtee
increase. The procedure is repeated on the sub-tries. Thus, in LC trie,

There are two caveats here that are to be noted. First éach node may have multiple children. Our partitioning rodth
the cost of partition lookup in the first stage. If the paotiing should work directly on LC tries. However, Linux uses a space
method is very complex, the partition lookup process in trst fi efficient way of storing the LC trie [22]. In this compact data
stage may be computationally expensive. Should that happstnucture an IP lookup must traverse all the way to a leaf of
the first stage itself will become the bottleneck. It woul@rih the trie. This makes the load computation complex and hence
appear as if we have shifted the bottleneck of lookup tinmur method cannot be applied directly.
from the back-stage to the front-stage. Hence, a very comple In hash table based approach, Linux creates several hash
partitioning should be avoided. A very complex partitiookop tables for different prefix lengths in the routing entriedl A
method must be avoided. The simple algorithm discussed routes with the same prefix lengths go into the same hash table
Section 11l gives good results. There is only a small addiéio Hashing value of IP address is looked up in the hash table
complexity in the first-end PCs. corresponding to the longest prefix length. If a match is thun

IV. APPLICATION TODISTRIBUTED PC BASED ROUTER



the search is terminated. Otherwise, the hash table of nex{a)
smaller prefix length is looked up. The process continueit aint
match is found. In this approach, the prefixes are not stored i
trie-like structure. Hence our method cannot be applieeladliy. k£j
However, it may be possible to build a trie correspondindte t
hash table and apply our partitioning method to this triet Bu
the load should now reflect the load of lookup in the origindi€re & lookup on the partition table will result in the packet
hash table, which may not be easy to do. being forwarded to the LC holding the parent partition. Sbs
We are currently looking at the method of partitioninluent lookup on the parent partition will retuknas the longest
compact LC trie used by Linux. We are also looking into thEatch and hence the correct next hop is returned.
effectiveness of multiple cuts i.e. multiple partitionsdathe
tradeoffs thereof. We would like to compare the performance
of both the vanilla LC trie and the space-efficient versioadus
by Linux. We would also study how to apply our method t&ince k is the longest matching prefix in the original trig,
hashing based implementation of Linux. The main challengeust be a non-prefix node. Also, any other node in the child
in this case would be to compute load values correspondinggdartition which matches the destination IP must be a nofixpre
the hash table lookup. node, else we would be contradicting the statementihsithe
longest matching prefix. Now, a lookup on the partition table
will result in the child partition being selected. Howevsince
This work was supported by Ministry of Communicationsnly non-prefix nodes match the destination IP, the lookup on
and Information Technology, Government of India under grathe child partition will not return a result. Therefore, thext
number 1(1)/2004-E-Infra. hop stored in the partition table will be used. This next h|p i
by construction, the same as that of the nearest parent priefix
the parent partition. Since < j we must have < k < p < j.
In the following, we show that the forwarding table parti\We conclude thap = k, else we would be contradicting the

1 < k < dest. IP

i<k <j<dest IP

VI. ACKNOWLEDGEMENTS

APPENDIX

tioning described in algorithm 1 works correctly. fact thatk is the longest matching prefix. Thus the correct next
Lemma 1:The partitions created are disjoint. hop is returned in this case too. u
Proof: Follows from the construction of the partitions
Lemma 2:There are no duplicate entries in the partition REFERENCES
table. [1] V.P.Kumar, T.V. Lakshman, and D. Stiliadis, “Beyond beffort: Router
Proof: Follows from the construction of the partitionm architectures for the differentiated services of tomorsointernet,” IEEE

. ; Communications Magazineol. 36, no. 5, pp. 152-164, 1998.
Lemma 3:The correct next hop is always returned. 2] M. S. Blumenthal and D. D. Clark, “Rethinking the desigditite internet:

Definition 1: Adjacent PartitionsPartitions P, and P, are the end-to-end arguments vs. the brave new worliCM Trans. Inter.
said to be adjacent ifead(c) € P, andtail(c) € P2, wherec - gefh’TVOI' 1,hn0- 1, BPM72—1_3?1V%0§1-S_ e D.J. Weth and G
: : o .L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J. , and G.J.
is the cut which separates the partitions. We shall refePito Minden, “A survey of active network researchEEE Communications

as theparentpartition andP, as thechild partition. Magazing vol. 35, no. 1, pp. 80-86, 1997.
Proof: We will usei < j to denote that nodeis a prefix [4] A. Kumar, D. Manjunath, and J. Kuri,Comunication Netwrking: An

. . . . . Analytical Approach Elsevier, 2004.
of node;. Now consider a pair of adjacent partitiof’s and 1 5] P. Gupta and N. McKeown, “Algorithms for packet classifion,” IEEE

where P; is the parent partition ands is the child partition. Network vol. 15, no. 2, pp. 24-32, Mar/Apr 2001.
We shall consider two cases here. [6] M. Waldvogel, G. Varghese, J. Turner, and B. Plattnercai8ble high
Case i:Suppose the longest matching prefix in the original trie igg‘;d F')'; rggﬂgg lookups,” iRroceedings of SIGCOMM "9%eptember
corresponds to node in the child partition. Leti andj be the [7] s. Karlin and L. Peterson, *“Vera: an extensible routechitecture,”
root nodes of the parent and child partitions respectivEien Computer Networksvol. 38, no. 3, pp. 277-293, 2002. _
we will have [8] Y. Gottlieb and L. Peterson, “A Comparative Study of Edible
) ) Routers,” in2002 IEEE Open Architectures and Network Programming
1 <7 <k<destIP ProceedingsNew York, NY USA, June 2002, pp. 51-62.
] ] ] - [9] S. Keshav,An Engineering Approach to Computer NetworkirRearson
Nodes: andj will be listed in the partition table and lookup Education, 1997. _
on this table will return nodeg as the longest match. Thus thd10l C. Partridge et. al., “A 50-gb/s ip routerfEEE/ACM Trans. Netwvol.

. . . . 6,no. 3, pp. 237-248, 1998.
packet will be forwarded to the LC containing the child partij;1; u. Hand@a O. Hodson, and E. Kohler, “Xorp: An open fdam for

tion. Since the child sub-trie is identical to the corresgiog network research,” inProc. of the 1st Workshop on Hot Topics on
section in the original trie the node will be returned as the Networks 2002.

| h % h h h . btained [12] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M..F. Klaaek, “The
ongest match an ence the correct next hop Is obtained. click modular router,” ACM Trans. Comput. Systvol. 18, no. 3, pp.

Case ii: Suppose the longest matching prefix in the original 263-297, 2000.

trie corresponds to a nodein the parent partition. Again, let [13] A. Bianco, J.M. Finochietto, G. Galante, M. Mellia, afdNeri, *Open-

i and j be the root nodes of the parent and child partitions Somoe pe-based software routers: A viable approach to pégformance.
v J p p packet switching,” inProc. of the 3rd International Workshop on QoS in
respectively. Then there are two possibilities: Multiservice IP Networks, QoSIP 2008005, pp. 353-366.



[14] A. Bianco, J.M. Finochietto, G. Galante, M. Mellia, D.adzucchi, and
F. Neri, “Scalable layer-2/layer-3 multistage switchingtatectures for
software routers,” inGlobecom 20062006.

[15] A. Khan, R. Birke, D. Manjunath, A. Sahoo, and A. BiantDjstributed
PC based routers: Bottleneck analysis and architecturgoped,” in
Proceedings of High Performance Switching and Routing 2008y
2008.

[16] I. Keslassy and N. McKeown, “Maintaining packet ordartivo-stage
switches,” inProceedings of Infocomm 2002002, pp. 1032-1041.

[17] A. Bianco, R. Birke, J.M. Finochietto, and L. Giraudo at, “Control
and management plane in a multi-stage software router taothie,”
in Proceedings of High Performance Switching and Routing 2008y
2008.

[18] Y. Luo, L. N. Bhuyan, and X. Chen, “Shared memory muligessor
architectures for software ip routerdEEE Transactions on Parallel and
Distributed Systemssol. 14, no. 12, pp. 1240-1249, 2003.

[19] V. Fuller, T. Li, J. Yu, and K. Varadhan, “Classless inttomain routing
(CIDR): an address assignment and aggregation strate§93.1

[20] D. R. Morrison, “PATRICIA—practical algorithm to regve information
coded in alphanumeric,J. ACM vol. 15, no. 4, pp. 514-534, 1968.

[21] S. Nilsson and G. Karlsson, “Fast address look-up fterimet routers,”
in BC '98: Proceedings of the IFIP TC6/WG6.2 Fourth Internatb
Conference on Broadband Communicatiobhendon, UK, UK, 1998, pp.
11-22, Chapman & Hall, Ltd.

[22] S. Nilsson and G. Karlsson, “IP-address lookup usingtti€s,” Selected
Areas in Communications, IEEE Journal ,ovol. 17, no. 6, pp. 1083—
1092, Jun 1999.

[23] V. Srinivasan and G. Varghese, “Faster IP lookups usimgfrolled prefix
expansion,” inMeasurement and Modeling of Computer Systet898,
pp. 1-10.

[24] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “S8rf@awarding
tables for fast routing lookups,” iISIGCOMM 1997, pp. 3-14.

[25] B. Lampson, V. Srinivasan, and G. Varghese, “IP lookugsig multiway
and multicolumn searchJEEE/ACM Trans. Netwvol. 7, no. 3, pp. 324—
334, 1999.

[26] J. Fu, O. Hagsand, and G. Karlsson, “Improving and aiady Ic-trie
performance for ip-address lookupJournal of Networksvol. 2, no. 3,
pp. 18-27, 2007.

[27] M.J. Akhbarizadeh and M. Nourani, “An ip packet forwarg technique
based on partitioned lookup tableCommunications, 2002. ICC 2002.
IEEE International Conference owol. 4, pp. 2263-2267 vol.4, 2002.

[28] Z. Liang, K. Xu, and J. Wu,A Scalable Parallel Lookup Framework
Avoiding Longest Prefix MatchSpringer, Berlin / Heidelberg, 2004.

[29] G. Bongiovanni and P. Penna, “XOR-based schemes fomptasllel IP
lookups,” Theor. Comp. Sysvol. 38, no. 4, pp. 481-501, 2005.

[30] N. F. Tzeng, “Routing table partitioning for speedy keiclookups in
scalable routers,IEEE Trans. Parallel Distrib. Systvol. 17, no. 5, pp.
481-494, 2006.

[31] J. Fu, P. Sjodin, and G. Karlsson, “Two-stage ip-adsiresokup in
distributed routers,” inProceedings of the IEEE INFOCOM Computer
Communications Wokshpphoenix, AZ, USA, 2008, pp. 1-6.

[32] Y. Perl and S. R. Schach, “Max-min tree partitioning,” ACM vol. 28,
no. 1, pp. 5-15, 1981.

[33] G. N. Frederickson, “Optimal algorithms for tree padning,” in
SODA '91: Proceedings of the second annual ACM-SIAM symaposin
Discrete algorithmsPhiladelphia, PA, USA, 1991, pp. 168-177, Society
for Industrial and Applied Mathematics.

[34] T. N. Bui and B. R. Moon, “Genetic algorithm and graph tjiaming,”
Computers, IEEE Transactions ,ovol. 45, no. 7, pp. 841-855, Jul 1996.

[35] C.H.Q. Ding, Xiaofeng He, Hongyuan Zha, Ming Gu, and HZimon,
“A min-max cut algorithm for graph partitioning and data sfering,”
Data Mining, 2001. ICDM 2001, Proceedings IEEE Internatibi©on-
ference onpp. 107-114, 2001.

[36] G. VargheseNetwork Algorithmics Elsevier, 2005.

[37] S. Nilsson, “A routing table for wordsized (32 bits) &titings implemented
as a static level- and pathcompressed trie.,” http://wwadenkth.se/ snils-
son/public/code/router/Data/funet.table.gz.

[38] Lawrence Berkeley National Laboratory, “The interniffic archive,”
http://ita.ee.lbl.gov/.

[39] S. Nilsson, “A routing table for wordsized (32 bits) #titings implemented
as a static level- and pathcompressed trie.,” http://wwadenkth.se/ snils-
son/public/code/router/Data/funet.trace.gz.



