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Abstract— The IEEE 802.16 standard (commonly known as
WiMax) has emerged as a broadband wireless technology cov-
ering large geographical area while providing high speed data
rates with native Quality of Service (QoS) support. In this paper,
we study mesh mode of operation of WiMax with centralized
scheduling for UGS and RTPS service classes. We briefly discuss
two known routing algorithms (to find the path of a request)
and propose two new routing algorithms. We present a novel
scheduling and Call Admission Control (CAC) algorithm for UGS
and RTPS service class. The scheduling and CAC algorithm make
sure that each and every packet of admitted request strictly meets
its delay and jitter constraints. Since an RTPS request can change
its data rate requirement, we propose an efficient algorithm for
computing extra bandwidth request for RTPS service class which
perform much better in terms of average packet delay and packet
drop percentage compared to some simple algorithms. We present
simulation results comparing our scheduling algorithm with two
other algorithms proposed in the literature. We also present
results which show that our scheduling does provide strict QoS
guarantee for every packet.

I. INTRODUCTION

The IEEE 802.16 standard, Air Interface for Fixed Broad-
band Wireless Access Systems [1], has been ratified by IEEE as
a Wireless Metropolitan Area Network (WMAN) technology.
This technology is designed for broadband wireless /ast-
mile access in a Metropolitan Area Network (MAN), with
performance comparable to traditional cable, DSL, or T1
services. Although IEEE 802.11 technology is very widely
used, it is limited to LAN environment, because of its limited
transmission range. WiMax has a transmission range of few
kilometers with high bandwidth and it also supports Quality
of Service (QoS) by providing various service classes. The
service classes in WiMax have been carefully designed to
support real time applications like voice and video and non-
realtime application like large file transfer. Thus, WiMax is a
very attractive technology for providing integrated voice, video
and data services in the last mile.

WiMax supports point-to-point, point-to-multipoint and
mesh topology. In point-to-point mode two nodes, called
subscriber station (SS), communicate with each other like
peers without any control from any other node. In point-to-
multipoint mode, it operates in a star topology where the base
station (BS) remains at the root and makes the scheduling
decision for all the SSs. In this mode, all the communication
has to pass through the BS. In mesh mode, the SSs can
communicate with each other in a multi-hop fashion and
the data path may not pass through the mesh BS (MBS).
Unlike PMP mode, there are no separate uplink and downlink
subframes in the mesh mode. The mesh mode only supports
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Time Division Multiple Access (TDMA) for channel access
among the MBS and SSs.

The mesh mode MAC supports both centralized and dis-
tributed scheduling [1]. In this study, we consider a centralized
scheduling scheme. In mesh centralized scheduling, the MBS
performs very basic function similar to a BS in PMP mode.
The scheduling of all the nodes in the network is determined
by the MBS. When an SS wants to set up a new connection to
another SS, it sends the request to the MBS. The MBS runs a
routing algorithm to find the path of the request (from source
SS to the destination SS) and runs a scheduling algorithm
to allocate slots along the path of the request. The MBS
sends out scheduling information to all the SSs in the network
periodically (known as scheduling period). SSs upon receiving
the schedule, send data packets accordingly.

WiMax network supports four different service classes of
traffic: (1) Unsolicited Grant Service (UGS) (2) Real-time
Polling Service (RTPS) (3) Non-Real-time Polling Service and
(4) Best Effort Service. The standard provides specification for
these different services, but does not specify any scheduling
algorithm. But WiMax system supports QoS guarantee in
terms of bandwidth, delay and jitter. Hence scheduling and
call admission control (CAC) play an important role in such
a system. When a new request arrives, the CAC module
makes sure that the new request as well as all the existing
requests can be scheduled such that all of them meet their QoS
requirements. Hence, the CAC module works closely with the
scheduling module while admitting a new request.

In this paper, we present a load balanced centralized
scheduling and call admission control algorithm for IEEE
802.16 mesh networks which provide strict delay and jitter
guarantee to realtime applications. We discuss two routing
algorithms known in the literature to find the path between
source and destination SSs and propose two new algorithms
which provides better performance over the known algorithms.
Although there are many scheduling algorithms proposed in
the literature for WiMax mesh networks (see Section II), to
the best of our knowledge, none of them provide packet level
strict QoS guarantee. We present a scheduling algorithm which
ensures that the TDMA slots are allocated to the requests
such that every packet of admitted requests strictly meets its
bandwidth, delay and jitter requirements. Thus, our scheduling
algorithm can be used for hard real-time applications. The
scheduling algorithm uses a novel idea of logically partitioning
a request into two parts. The first part spans from source node
to the penultimate node and second part is from penultimate
node to the destination node. The delay constraints of the par-
titioned requests are appropriately computed from the original
delay constraint. The advantage of this partition is that the



first part of the connection does not need to worry about jitter
constraint, it only needs to meet its part of the delay constraint.
The second part of the partitioned connection is responsible
for meeting the jitter constraint. Decoupling the delay and
jitter constraint by partitioning the request provides more
flexibility to our scheduling algorithm. We propose a CAC
algorithm which works closely with our scheduling module to
ensure that QoS requirements of all the requests are fulfilled
while admitting a new request. We present simulation results
of our scheduling algorithm and compare it with two other
algorithms proposed in the literature. Using simulation, we
also show that our CAC does ensure that all the requests meet
their respective QoS constraints at the packet level. Then we
discuss bandwidth allocation of RTPS requests. Unlike UGS
service class, RTPS service class has a variable bandwidth
requirement. So, we present an efficient algorithm for RTPS
requests to make extra bandwidth request and compare its
performance with some simple algorithms.

II. RELATED WORK

Algorithms for wireless mesh networks have been proposed
in [2]-[4]. While these results are not specifically within
802.16 framework, the insights they provide are helpful. Many
researchers have proposed centralized scheduling algorithms
for WiMax mesh networks. In [5], the authors have pro-
posed centralized scheduling and routing tree construction
algorithms. In this paper, routing tree rooted at the BS is
used while finding path from source to destination. They form
the routing tree from the network graph by choosing paths
which have minimum interfering links. In [6], routing tree
is constructed using metric called blocking metric B(k). The
blocking metric B(k) of a multi-hop route indicates the number
of blocked nodes by all the intermediate nodes along the
route from BS to the destination node k. They also define
blocking value for node ¢ which is the number of nodes
blocked when node ¢ is transmitting. Blocking metric for any
routing path is taken as summation of blocking values of all
the nodes along the path. Thus, it uses a interference aware
route construction algorithm and an enhanced centralized mesh
scheduling scheme, which considers node level interference
conditions. [7] is as an extension of the algorithm described
in [5]. This paper uses multiple metrics while constructing the
routing tree. The metrics considered are interference factor,
load balancing of the links and priorities assigned to different
QoS classes. All these three methods assumes that traffic is
from SS to BS or from BS to SS only. But Mesh Networks
allow transmission between any two SSs which may or may
not involve the MBS. In [8] also the authors assume that traffic
is between SS to BS but they admit the flow only if its end to
end QoS requirement is guaranteed. The main problem with
this algorithm described in [8] is that load is not balanced on
the nodes. Hence there could be some heavily loaded nodes
which may become bottlenecks in the network.

In [9], authors describe both centralized and distributed
broadcast scheduling algorithms. Both distributed and central-
ized algorithms are implemented in two stages. In the first
stage, each node is assigned exactly one slot in the frame. In
the second stage, each slot is filled with extra nodes such that
each slot has a maximal broadcasting set. This works well
if the traffic is not bursty, but it becomes difficult to handle
bursty traffic using this algorithm. In [10], authors describe
interference free distributed broadcast scheduling algorithm.
They do not provide details of the algorithm. The frame length

is always equal to the number of nodes in the network topology
graph. If the number of nodes are very large then frame
length becomes a problem. This algorithm also produces a
non-uniform schedule and thus results in unfairness.

In [11], authors have presented an efficient fair scheduling
algorithm for IEEE 802.16 multi hop mesh networks according
to a new fairness model in which the bandwidth allocation is
contingent on the actual traffic demands in such a way that the
capacity region is not sacrificed by imposing the fairness con-
straints. They formulated the scheduling problem to maximize
the system throughput subject to the fairness condition. By
exploiting the characteristics of WiMax mesh networks, they
developed an efficient algorithm to find the optimal schedule.
[12] presents a scheduling algorithm which provides per flow
QoS guarantees to real and interactive data applications by
utilizing the network resources efficiently. Authors propose
scheduling algorithm for real-time and non-real-time (data)
traffic. Real time application uses UDP whereas data traffic
uses TCP. UDP traffic is considered as high priority traffic
over TCP traffic since it deals with real time applications such
as VoIP, video conferencing etc.

III. NETWORK MODEL

We represent a WiMax mesh network as a Graph G having
N nodes and E links. The nodes are numbered 1 to N. A link
between two nodes ¢ and j, denoted as [;;, is said to exist if
node ¢ can communicate with node j. We assume that a link
is bidirectional, i.e., when link [;; exists, link [;; also exists.

A link I, is said to be blocking link [;;, iff any one of the
following conditions hold:

o Node x € {i,7, Nbor(j)}

o Node y € {i,j, Nbr(i)}

where Nbr(i) represents neighbors of node i. Note that the
above definition considers a link to block another link if there
is a common node between the two links. This means there
cannot be simultaneous communication over the two links
either because there is only one transceiver (hence the common
node cannot transmit and receive at the same time) or the
common node cannot communicate with two neighbors at the
same time. The other scenario of one link blocking another is
the classical interference of a link with another due to hidden
node.

We consider a Time Division Duplex (TDD) WiMax sys-
tem [1]. We assume all the links to be of same capacity and
that the channel conditions do not change. Although these
assumptions may not be valid in practice, we want to first solve
the CAC and scheduling problem under these assumptions (the
problem is quite difficult even with this assumption) and relax
the restriction as part of our future work.

IV. ROUTING IN WIMAX MESH NETWORK

In a mesh network, the routing protocol has to determine
the path between source and destination. Once the path is
determined, then the scheduling module needs to make sure
that a request is schedulable on each link along the path. There
are different approaches by which the path can be determined.
We outline some of the approaches used in the literature and
some we propose in this paper.

A. Routing Tree Rooted at the BS (RTRB)

A routing tree rooted at the mesh base station is generated
by having subscriber station join the tree by choosing its



neighbor based on some metric like minimum hop count or
some other metric described in [S]-[7], [13]. For any request,
the path from source to destination is found using this routing
tree. The major drawback of this method is that because of
tree structure, some links which are physically present in the
network do not participate in communication. This may lead
to traversal of longer path even though shorter paths may be
available. Also, the missing links in the routing tree do not
share any load, leading to reduced capacity of the network.

B. Simple Weighted Shortest Path (SWSP)

This is the traditional algorithm used to find the shortest
path from the source to the destination. The weight metric
for the links could be hop count or any other suitable metrics
like minimum interference path etc. This method solves the
problem of longer path being selected.

In this method, only single shortest path is taken into
consideration while scheduling a request. Hence, if there is no
schedule available along that path then the request is simply
rejected. But there may exist some other path along which the
request may be schedulable. Thus performance of this method
may be affected due to this constraint.

C. Weighted Shortest Path with Retry (WSPR)

The above two methods were proposed in the literature.
Now we propose this method in which shortest path algorithm
is used to find the path between the source and destination.
But if the request is not schedulable along the path, then the
bottleneck link is removed from the topology and shortest
path is recalculated. This process continues until a schedulable
shortest path is found or the source and destination are not
connected anymore. Bottleneck link is the link with maxi-
mum number of interfering links. This algorithm is shown in
Algorithm 1.

Algorithm 1 Weighted Shortest Path with Retry

1: while source node and destination node is connected do

2:  find the shortest path from source to destination for the new
request.

3 if CAC accepts the request then exit

4:  else remove the bottleneck link

5

6

: end while
. reject the request

D. Load Balanced Weighted Shortest Path with Retry (LB-
WSPR)

This method, proposed by us, is similar to the Weighted
Shortest Path with Retry algorithm. But the link weights are
dynamically changed to account for the change in load on the
links. Weight of a link [;; is given by

wij = Lij * By (1)
where L;; is the load on link I;; and B;; is the number of links
which block simultaneous communication of link [;;. Load
on a link is defined as the fraction of slots in a TDD frame
used in transmission over the link. We provide an example
to compute B;; using Figure 1. Let us find out By, i.e., the
number of blocking links for /;5. Links interfering with [y
are la1, 118, 117, l81, 171, les, I24, la2, l23, [32, l45. So, B12 = 11.

Fig. 1. Example Illustrating Interference
V. SYSTEM MODEL FOR UGS AND RTPS REQUESTS

WiMax supports four types of service classes [1]. Out of
them two are most important for QoS-based applications. We
study these two service classes and present details of these
two service classes. For details of other service classes please
refer to [1].

1) Unsolicited Grant Service (UGS) : The UGS is designed
to support real-time data streams consisting of fixed-
size data packets sent at periodic intervals, such as
T1/El and Voice over IP without silence suppression. It
has the following four QoS parameters: Nominal Grant
Interval (NGI), Tolerated Grant Jitter (TGJ), Maximum
rate, Maximum Latency.

2) Real-time Polling Service (RTPS) : The RTPS is de-
signed to support real-time data streams consisting of
variable-sized data packets that are sent at periodic inter-
vals, such as MPEG video. It has the following QoS pa-
rameters: Nominal Polling Interval (NPI), Tolerated poll
Jitter (TPJ), Maximum rate, Minimum rate, Maximum
Latency.

A request specifies a source and destination node along
with its QoS requirements. The k" UGS request is denoted
as C;'9° and its source node is ¢ and destination node is j.
The path it takes is represented by Pj;,. P is an ordered
list of nodes starting with ¢ and ending with j. Any two
consecutive nodes in the list represent the link (joining the
two nodes) which is part of the path. Thus, the path is defined
by the ordered list of links represented by taking pair of
consecutive nodes in the list. Note that path F;;;, is determined
by the routing algorithm used in the network (described in
Section IV). Corresponding QoS parameters of the request,
nominal grant interval, tolerated grant jitter, maximum rate and
maximum latency are denoted as ngi; ", tgj,?°, R.max;’*
and d_max, " respectively.

Similarly, we denote k** RTPS request as Cg,f ® which takes
a path P;;; where its source and destination nodes are ¢ and
7 respectively. Corresponding QoS parameters of the request,
nominal polling interval, tolerated poll jitter, maximum rate,
minimum rate and maximum latency are denoted as npi}, **,
tpin?*, Romaz;P®, Romin}P® and d_omax|"® respectively.
The total number of ongoing UGS and RTPS requests are
denoted as N*9% and N"P$ respectively.

Much of the analysis of UGS and RTPS requests are
same. Hence, we will sometimes denote parameters without
having ugs or rtps superscript, which would indicate that the
treatment is same for both the type of requests.

VI. SCHEDULING OF REQUESTS

Since requests in WiMax have stringent QoS requirement,
they have to be carefully scheduled. In this work, we concen-
trate on TDD based WiMax system and hence the resource to
be allocated by the scheduling module is time slots in a WiMax
frame. Finding an optimal feasible centralized scheduling in a
mesh network is an NP-hard problem. Hence, in this section
we describe an efficient scheduling algorithm. Before we go
into the details of the slot allocation procedure, we present
some preliminary concepts behind the slot allotment process.



A. Preliminaries

First, we need to define few terms used in our analysis.

HyperInterval : HyperInterval of UGS (RTPS) requests is
the LCM of ng: (npi) of all UGS (RTPS) requests in the
network. That is,

lugs —

LCM(ngi?®) 1<k < N"" (2)
HyperInterva LCM (npi;?*) 1<k < N (3)
b HyperlInterval of all the requests (Ué}S and RTPS) is given
g H = LCM(HyperInterval*®® HyperInterval™'"®) (4)
Since different UGS requests will have different ng: and
the scheduling algorithm has to make sure that the packets
arriving in every ngt meet their QoS constraints, HyperInterval
is used while computing the schedule. Essentially, if the QoS
requirement of a request is satisfied in every ng: within a
HyperInterval, then QoS constraint of every packet belonging
to any ngt can be guaranteed.
Offset : A subscriber station should transmit a packet of
a request at the the beginning of ngi to minimize its delay.
But the initial slots in a ngi may not always be available for
the request because it may have been allotted to some other
request. Thus, the packet of the request is scheduled in the
first time slots available from the start of ngi which satisfies
some scheduling constraints (described later). The distance
(measured in slots) between its first scheduled timeslot and
the beginning of ng: (when a packet arrived) is referred to as
offset. In each ngi we leave tgj number of slots (from end
of ngi going backwards) so that there is room for changing
the slot allocation within the allowable jitter of the request'.
As we will describe later, offset is only applicable to the
penultimate node along the path of the request. Offset of
request Cy; is denoted by of fsety. Figure 2 illustrates a
typical frame structure in which a request has offset 2, ngi 10
and tgj 5. Maximum value of offset allowed for request Cj;y,
is of fset"** = ngir — tgjk.

HyperInterva
l'rtps _

Hypetinteral

G|

1[2[s[4[s[e[7[6[aMo[1[2]3]4[5[6[7[a[a[i0[1[2[3[4[5][6][7[8]9 10

TG TG TGJ
offsst offsst offsat

Fig. 2. Typical UGS request

When a new request C;;y, arrives, its path P, is determined
by the routing algorithm. We divide the path into two parts:
path from source node ¢ to penultimate node p (denoted as
P;p), and path from penultimate node p to the destination
node j (denoted as P, ). If 7 is also the penultimate node (j
is the immediate neighbor of 7 in P;j;), then the request is
handled little differently. When link I, is in the path of the
request C;;; and when we deal with scheduling on link [,
for the request, then the request is denoted as C;;x{zy}.

Partitioning of the path implies that the original request
Cijk is also logically partitioned into two parts, Cjpi, (request
from source ¢ to penultimate node p) and C;;, (request from
penultimate node p to destination j). The advantage of this
partition is that the first part of the request does not need to
worry about jitter constraint, it only needs to meet its part of
delay constraint (partitioning of delay constraint is explained
in the next paragraph). The second part of the partitioned

Islot allocation for existing requests may need to be changed so that new
requests can be admitted.

connection is responsible for meeting the jitter constraint.
Thus, dividing the request into two parts, it is easy to take care
of the QoS constraints: intermediate nodes only need to fulfill
the delay requirement whereas the penultimate node needs to
only make sure that the jitter at the receiver is within the
required limit. This decoupling of delay and jitter constraint
by partitioning the request provides more flexibility to our
scheduling algorithm.

Both UGS and RTPS requests have maximum latency
constraint (d_max), which means end-to-end delay should be
less than d_max. Let us denote d;pr to be the delay from
source node ¢ to penultimate node p and d, i, to be the delay
from penultimate node p to destination j. Let d_maxy, be the
maximum latency of request Cjj;. Then the maximum latency
constraint can be expressed as

dipr, + dpjr. < d-maxy, if iF#p 5)
dijk < d-maxyp if i=p (6)

Since end-to-end delay bound is divided into two parts, one
for the path from source to penultimate node and the other
from the penultimate node to the destination node, we need
to find the maximum delay that a request can incur in each
part so that the resultant end-to-end delay and jitter satisfies
the QoS constraints of the original request.

For request C;;,, If source node is also the penultimate node
(i.e., ¢ = p), then

i =d-mazy if i=p @)

But for request Cj;;, if source node is not the penultimate
node (i # p), then
d_mazxy —tgjr if (d-maxp%ngiy) > tgjbg)
n *xngip — tgjr otherwise
max

pik = t9Jk )
where n = |d_maxy/ngiy|.

Note that the maximum delay above is based on the fact
that the jitter at the destination has to be less than tgjj. Thus,
it leaves a slack of duration tgj, for the penultimate node
within which it can choose the required number of slots for
the request without violating jitter constraint.

Knowing the delay requirement of each partitioned part of
the request C;;, we now look at the limits in slot allotment.
Specifically, we look at what is the allowable start slot and
end slot so that the request satisfies its QoS requirements. For
the path P;,, let the allowable start and end slot be denoted
as Sipr and Ejpy respectively. This means that the required
number of slots have to be allocated to this part of the request
along each link of path P, between S;,; and Ejyj. Note that
the slot allocation has to happen for every ng: (since packets
arrive in every ngi). For the m?" ngi,

max
ipk

ipk m* ngiy (10)

Note that in the above equation we have used d;p, which
indicate the value of actual delay (not the maximum delay) af-
ter slot allocations are done. In the CAC algorithm, d;y,, is set
to d"i" at the beginning and changed in every iteration until
a schedule is obtained (see CAC algorithm in Algorithm 2).
Once d; is set then its value cannot be changed throughout
the lifetime of the request. Otherwise it may lead to violation
of delay jitter constraint.

The corresponding limits at the penultimate node is given
by

ik m *xngir + of fsety (12)
pik = Spik +t9jk (13)



B. Details of Slot Allotment

In this section, we present our slot allocation procedure
which will find a feasible slot assignment for the requests
and will also satisfy their respective delay and delay jitter
requirements.

When a new request arrives and the CAC algorithm is
executed, then all the existing requests along with the new
request have to go through the slot allocation procedure. For
existing requests there is already a slot assignment which
was used in the last scheduling interval and we refer to it
as previous slot allotment®.

While determining scheduling of a WiMax frame on a
particular link, a slot is assigned to a particular request for
which the link is in the path of the request. A slot can be
assigned to multiple links (belonging to the same request
or different requests) as long as links are non-blocking with
respect to each other. Thus, the transmitter nodes of the links
would transmit at the same time (in the same slot) and the
data would be received correctly by the receiver nodes of the
links. We will refer to the slot as eligible slot for the links.

We illustrate this by an example. Consider the mesh network
shown in Figure 3. Table I shows slot assignment at some
instant. Now, consider a new request Cys4 arrives. So we have
to find slot for Cy54{45}. For this request, Slot 1 is ineligible
slot but Slot 2 and Slot 3 are eligible slots. Because in Slot 1
link /15 is active which blocks link l45. Note that any empty
slot is trivially an eligible slot. So, Slot 4 and Slot 5 are also
eligible for Cy54{45}.

Fig. 3. Example Illustrating Eligible Slot
Slot 1 Slot 2 Slot 3 Slot 4 | Slot5
Ci31{12} [ Ci31{23},Cs62{86} | Cr13{71}
TABLE T

AN EXAMPLE SLOT ASSIGNMENT

Our slot allocation procedure is a four step process as
described below.
1) Calculate the Hyperinterval (H) of existing and the new
request H.
2) Every request C;jy, is logically split into Cy,p, and Cpji.

For all m = 1 to (H/ngiy), compute S77, E, and
Spik Epji

3) For all request k sort all the Ej7,
decreasing order.

4) Starting from the request having smallest £™, allocate
required number of slots to the corresponding request.

Note that if £;7, is being considered, then slot allocation

is done for the request for the m'" ngi on all the links
from source i to the penultimate node p starting at slot
location Sj7, . Allocation over all the links on the paths
should be done before E7”, , otherwise the request is not
schedulable. Similarly, if "} i 1s considered, then the slot
allocation on link /,; should start from Sy, and should
end before %, . ‘

o
and Epj i in the non

2Slots belonging to the requests which left the system are marked free in
previous slot allotment.

Step 4 discussed above is actually a complex step and needs
to follow certain constraints. The allocation for request C;j,
starts from S, and each slot from the starting point is looked
at and is either allocated to the request or left out depending
on the following constraints.

o If the request under consideration is a new request, then
slot is allocated to the request if this slot is an eligible
slot for the new request.

o If a slot under consideration was allocated to the current
request in the previous slot allotment and this slot is
eligible slot for this request, then the slot is allotted to
the request.

o Ifin the previous slot allotment this slot was not allocated
to this request, but the total number of slots allocated
to this request until this slot in the current allotment is
more than (or equal to) that in the previous allotment,
then the slot will be allocated to this request if this is
an eligible slot in the current as well as in the previous
slot allotment. This is so because it is known that the
number of remaining alloted slots in the previous slot
allotment is more (or equal) than current deficiency of
the request. Hence this request will at least be able to
grab those slots from previous allocation to satisfy its
slot requirement. So, this slot will be alloted to a request
only if it does not adversely affect the slot allotment of
any other request.

o If in the previous slot allotment this slot is not allotted
to this request but the total number of slots allocated
to this request until this slot in the current allotment is
less than that in the previous allotment, then the slot will
be allocated to this request if it is an eligible slot in
current allocation®. The number of alloted slots is less
because some of the slots assigned to this request in
previous allotment are taken away by new request directly
or indirectly, so this request should be allowed to fulfill
its requirement as early as possible.

The reason for these constraints is to ensure that all the
admitted requests get minimum number of required slots in
every round of slot allotment. By these conditions, every
request is guaranteed to get slots which was allotted to the
same request in previous slot allotment round until a new
request takes away its slot directly or indirectly®.

Above constraints are considered while allocating slots for
both the parts (Cjpr, and Cyj1) of the request Cjj. But there
are some more conditions which are specific to the first part
of the request (Cjpy) as described below.

o The path of Cj,; may have more than one link. So,

demand for all the links along the path has to be satisfied.
Let us assume that the path of Cj, is ¢ — x — p. First,
slot is allotted for link /;, (starting from S{;k). When its
demand is fulfilled then we move on to next link ;. For
this link, slots after the last slot allocated to link [;, are
considered for link /.

o Delay of Cj,, as given by (8), for some cases may extend
beyond the limit of Hyperlnterval. Especially, packets
which arrive towards the later part of Hyperinterval (note
that there will be multiple ngi’s in one HyperInterval)
may have their delay bound beyond the HyperInterval.
Allocation of slots to such packets may happen in the

3Slot which was ineligible in the previous slot allotment becomes eligible
now because some requests may have left the system.

4A new request can take away a slot of an existing request Cijk and the
request C';j; can take away a slot from another existing request Cqy .



subsequent line of the HyperInterval as shown in Table II
and III. A slot which is allocated to a request in the sec-
ond line indicates that the packet being transmitted in that
slot was actually generated in the previous HyperInterval.

o When slots are allotted across multiple lines then there
are certain conditions which need to be satisfied. Table II
and III show two slot allotment for a request along the
links 1 — 2 — 3. In the tables, an X means the slot cannot
be allocated to this request. In the previous slot allotment
shown in Table II, node 1 sends data in slots 5 and 6 and
then node 2 sends the packets in next Hyperinterval in
slots 1 and 2. Thus, maximum delay observed by packets
is equal to 8 slots. Let us assume maximum allowed
delay for the request is 10 slots. Now, in the current
slot allotment shown in Table III, some of the busy slots
(marked as X in the previous allotment) are no longer
busy. Hence, node 1 is allocated slots 3 and 4 and node 2
is allocated slots 5 and 6. Both the slot allotments might
look fine separately. But when viewed together, one can
observe violation of delay constraint. Consider a packet
generated in the previous slot allotment (Table II) is at
node 2 at the end of the Hyperinterval. Now in the next
Hyperinterval, this packet will get slot 5 and 6 to be
transmitted to node 3. This lead to a total delay of 12 slots
which is more than the maximum allowed delay. So, we
cannot allow such allotment, i.e., when a slot is allotted
to a link of a request at i'" line of the HyperInterval,
in the new allotment it cannot take up slots in the lines
above the i*" line.

Slot 1 Slot 2 Slot 3 | Slot 4 Slot 5 Slot 6
X X X X[ Cisi(12) | Ousi{i2)
C131{23} C131{23} X X
TABLE II
AN EXAMPLE OF PREVIOUS SLOT ALLOTMENT
Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6
X X C131{12} | C131{12} | C131{23} | C131{23}
TABLE III

AN EXAMPLE OF CURRENT SLOT ALLOTMENT

VII. CALL ADMISSION CONTROL (CAC)

In WiMax mesh network the CAC module needs to make
sure that a request gets enough number of slots at each
link along the path from source to destination so that QoS
requirements of the request is satisfied. One of the algorithms
described in Section IV is used to determine the path from
source node to the destination node. Thus, CAC and schedul-
ing modules work closely with each other to meet the above
requirement.

A. CAC Module

In this section, we present our CAC algorithm shown in
Algorithm 2 which is executed when a new request Cjjj
arrives. The CAC module runs on all previously accepted
requests and the new request.

First the CAC module finds the path for Cj;;. Then, as
discussed earlier, the new request is split into two parts, Cjpp,

Algorithm 2 Call_Admission_Control Algorithm

1: while source node ¢ and destination node j is connected do

2:  find the path from source to destination for the new request (using a
routing algorithm)

3 Let p = penultimate node in the path of Cj

4 if ¢ # p then

5 Divide Cjjx into two parts Cjpy and Cp g

6 Set dipp = d;’;}ﬁ" /* as per Eqn (14) */

7 while d;,;, < d70 do

8: Find Slot Allotment for all existing request and Cfx

9

10

11

12

if all the requests are schedulable then
Store the current values of d;p;, and exit while Loop

else
/* at least one request had a shortage of slots, so it could not
be scheduled */

13: max_shortage = maximum of all the shortages (of different
requests)

14: dipk, += max_shortage

15: end if

16: end while

17:  else

18: dipr, =0

19: d%zz =0

20:  end if

21: if dipp < dgzx then

22: dpjk = tgjk

23: of fsety = dipr, % ngiy ; flag = 0

24: while ((of fsety + flag * mngik) < (ngix +

dlpk%ngzk)) AND (dzpk + dpjk S d_mamk) do

25: Find the Slot Allotment for all existing requests and
Cipk and ij k

26: if all the requests are schedulable then

27: Store the values of d;p, & of fsety,.

28: /* These parameters will not change in future for this request®/

29: Accept the new request and exit

30: else if ¢ # p then

31: increment of fsety by one

32: if of fsety > (ngix — tgjx) then

33: Set of fsety, = 0; flagy = 1

34: end if

35: end if

36: if ¢ # p then

37: dipk = |dipk /ngir] * ngiy + of fsety, + flag * ngiy,

38: end if

39: end while

40:  end if

41:  Remove the edge corresponding to the bottleneck link from the graph
42: end while
43: Reject the request

and Cpjx. The CAC module first deals with the partitioned
request C;pr. Then d;py, is initialized to ;Z}C" which is given
by

. inslot
ok = Roming™" % Nipp (14)

where R_min};ml"ts denotes the minimum number of slots
required by the request Cjj; along each link (which is
R_maz}?® if the new request is an UGS request or R_min], "
if it is an RTPS request), and N;;,;, denotes the number of links
in the path from node i to p (Pjp).

Now CAC module finds a feasible schedule for all existing
requests as well as for the partitioned new request C',j, using
the slot allotment procedures discussed in the previous section.
If CAC module does not find the feasible schedule then it
means that at least one request had a shortage of slots. Hence,
it increases the value of d;pr by an amount equal to the
maximum of these shortages. Then it repeats the process
of slot allotment again. If dipr > djpp®, then CAC module
removes edge corresponding to the bottleneck link from the
graph and repeats the whole process.

If a feasible schedule is found for Cj,k, then the CAC
module tries to find feasible slot allotment for Cp ;1. Recall



that offset is used for scheduling at the penultimate node only.
First, of fset), is initialized to d;,;%mngix. This is because
data would arrive at the node p only at d;,, and hence the
transmission of data cannot begin before that. Thus, the initial
offset value is set to the point at which d;,; ends. This is
depicted in Figure 4. But the offset value can only go up to
ngi — tgj as discussed earlier and hence the allowable offset
value is between A and B.

After initializing of fsety, CAC module tries to find the
feasible schedule considering all the existing requests and the
two components of the new request, C;pr, and Cpj. If it finds
the schedule then CAC module accepts the request. Otherwise,
it increments the value of offset by one and repeats the slot
allotment process again. If a feasible allocation is not found
(until offset takes the maximum possible value), then offset is
initialized to zero (Step 33) and incremented until d;,i,%ngix
(this is between C' and D in Figure 4). Since this interval was
not explored in the previous iteration, the CAC tries to find
if this interval would result in a feasible slot allocation. In
this case, the data transmission starts in the next ng: and this
fact is captured by setting flag to 1 (Step 33). Finally, d;,s
is extended to the end of of fset) (as depicted in Figure 5),
since data transmission does not start until end of of fset.
This increases the delay bound for Cjy,;, and hence provides
more flexibility for slot allocation of Cjpy.

VIII. METHODS FOR ALLOCATING EXTRA BANDWIDTH TO
RTPS REQUESTS

Any RTPS request C]'?* has two bandwidth parameters

Romin;'P* and R_max**. When an RTPS request is ad-
mitted, the CAC algorithm (presented in the previous section)
makes sure that the new request is considered for admission
"'P% and all the existing requests are schedulable.

with R_min,,
But the request C!/”* can change its bandwidth requirement
rips

tz]k
w77 and R_max),

between R_min,, during its lifetime.

A. Bandwidth Estimator

We propose a Bandwidth Estimator module in the WiMax
system which can monitor the RTPS request queues and based
on the queue length can predict the bandwidth requirement of
the requests and then the SS can send extra bandwidth request
to the BS. It calculates the number of packets generated in a
particular npt by a request. If number of packets generated is
more than what the currently granted rate, then then it calcu-
lates the extra bandwidth required to meet the current packet
generation rate. This newly calculated bandwidth request is
then sent to the BS. If the request is granted then the extra
bandwidth (extra slots) are allocated to the request in the next
scheduling period.

Now, we describe some of the methods to fulfill extra
bandwidth requirement of RTPS requests.

e Grant Request Only R_min (GRMin): In this method,
RTPS requests are eligible to get bandwidth equivalent
to its R-min only even if they demand for higher
bandwidth. This would enable the system to admit more
number of requests, but at the cost of higher latency and
packet loss of the RTPS requests.

o Grant Request at R_max (GRMax):In this method RTPS
requests are admitted at R_max. So, this method will
result in lesser number of requests getting admitted, but
RTPS requests will have lower latency and no packet loss.

e Grant only Extra Required Bandwidth (GERB): In this
method, SS sends bandwidth request which exactly meets
the extra requirement computed by the bandwidth estima-
tor. Initially, the requests are admitted at R_man and later
when bandwidth estimator detects a higher packet arrival,
SS sends bandwidth request corresponding to the higher
packet arrival rate. But the problem with this method is
that the queue can build up by the time the request is
granted by the BS. Hence, the packets may experience
high delay.

o Grant Extra Bandwidth and Reduce Latency (GEBRL):
In this method, the extra bandwidth requested by SS
is calculated based on the extra demand due to higher
packet arrival rate and considering reduction of data
queue size of the request which builds up due to the
lag in sending the extra bandwidth request and getting
the corresponding bandwidth grant. So, basically the
bandwidth request sent out to the BS is more than what
would be required to meet the increase in packet arrival
to account for flushing of data queue of the request. The
algorithm for this method is shown in Algorithm 3. In
this algorithm we denote extra_demand as the demand
over and above the R_min required by the request.
Currently granted rate is denoted as current_rate and the
extra demand request which should be made to satisfy
the extra_demand is represented as extra_demand_req.
There are two tunable parameters A and B which are
used to increase or decrease the extra bandwidth request
respectively. Both the parameters have value between
0 and 1. g_size represents the number of packets in
the queue of a particular request and demand_grant is
boolean variable which tells whether extra_demand_req
is granted last time or not.

Obviously GEBRL is the most complex method but would
provide better performance. This method is implemented using
Algorithm 3. Whenever incoming packet rate increases, the
algorithm sends a bandwidth request for the extra bandwidth,
which if granted, makes the current rate equal to the packet
arrival rate (Step 5). But, in the next round if the queue
builds up and if the previous request was granted, then it
asks for more bandwidth, which is a fraction of R_main. This
is controlled by a tunable parameter A (Step 19). But if the
previous request was not granted, then it means that the system
is running at high utilization and hence it actually reduces the
extra bandwidth request (Step 15). Here a tunable parameter
B is used to reduce it by a fraction of R_min. Notice that as
soon as the queue length becomes zero, the algorithm produces
a negative extra_demand_req which means the SS asks for
a reduction in its bandwidth allocation (Step 9).

IX. SIMULATION EXPERIMENTS
A. Simulation Parameters

We have developed a simulator using Java sdk 1.5 to
evaluate the performance of various algorithms and methods
presented in this paper. We created a mesh network of 25
nodes by choosing the nodes randomly. Links are placed
in the network in a random manner until all the nodes are
connected. We assume that we have 200 slots in a data sub-
frame and duration of each frame is 30 msec. Arrival of
requests is Poisson distributed with mean arrival rate of .
Lifetime of requests is exponentially distributed with mean
lifetime of y. For RTPS requests, the extra demand bandwidth
is uniformly distributed between R_min and R_max. The new



Algorithm 3 Grant_Extra_Bandwidth_and_Reduce_Latency

1: /* bw_to_flush_queue, current_rate and demand_grant are global
variables, initialized to 0, R_min and F ALSE respectively */

2: /* extra_-demand is the extra bandwidth over R_min required by the
request (computed by the bandwidth estimator) */

3: /* SS should set demand_grant to TRUE or FALSE depending on
whether the previous bandwidth request was granted or rejected by the

BS */

4. if demand_grant == T RUE then

5: current_rate = current_rate + extra.demand_req

6: end if

7: if (current_rate > R_min+ extra_-demand) AND (g_size = 0)
then

8:  /* Send Request to decrease the current_rate. extra_demand_req
would be negative in this case */

9: extra-demand_-req = R_min + extra_-demand — current_rate
10: else if current_rate < R_min + extra_-demand then

11:  extra.demand_req = R_min + extra_demand — current_rate
12: end if

13: if demand_grant == FALSE AND q_size # 0 then

14:  /* since previous request was not granted, reduce the additional
bandwidth being asked to flush the queue */
15:  bw_to_flush_queue = maz(0, bw_to_flush_queue— B*R_min)

16: extra-demand_req = bw_to_flush_queue

17: else if gq_size # O then

18:  /*demand request was granted in the previous scheduling interval, so
we can increase the request for additional bandwidth to flush the queue
*/

19:  bw_to-flush_queue = min(R-max —
currentrate, bw_to_flush_queue + A x R_min)

20:  extra.demand_req = bw_to_flush_queue

21: end if

22: if extra_demand_req > 0 then

23:  send a bandwidth request of amount extra_-demand_req to BS
24: else

25: demand_grant = TRUE

26: end if

extra bandwidth demand stays in effect for a random duration.
This duration is exponentially distributed with mean ~. Both
the parameters A and B used in Algorithm 3 are set to 0.1.
Simulation period for each simulation run is 500 sec. The
parameters used for UGS and RTPS requests are shown in
Table IV and Table V respectively.

ngi tgg R_mazx d_mazx
(in msec) (in msec) (in slots) (in mins) (in sec)
20 10 10 3 100
30 15 10 3 150
40 20 10 3 150
ABLE IV

PARAMETERS USED FOR UGS REQUESTS

npi tpj R_min R_max d-max
(in msec) (in msec) (in slots) (in slots) (in mins) (in sec) (in sec)
20 10 10 20 3 100 10
30 15 10 20 3 150 20
40 20 10 40 3 200 10
TABLE V

PARAMETERS USED FOR RTPS REQUESTS

B. Study of Different Routing Methods

We ran simulation to compare the performance of dif-
ferent methods for computing routing paths (discussed in
Section IV). The performance metric used for comparison is
acceptance ratio, defined as the ratio of number of requests
admitted by the CAC to total number of requests. Figure 6
plots acceptance ratio versus request arrival rate for these

ngi, ——
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different methods. Load Balanced Weighted Shortest Path
with Retry (LBWSPR) method performs the best, whereas
Routing Tree Rooted at BS (RTRB) method performs the
worst. In LBWSPR method, paths are chosen such that links
are balanced with respect to load. Hence, it leads to much
better performance than other methods. In RTRB method, even
if there may be shorter paths available, it has to choose a longer
path passing through the BS. Thus, this method performs the
worst.

C. Comparison between different Scheduling Algorithms

In this section, we present comparison between different
scheduling algorithms. Scheduling algorithms proposed in [6],
[7] assume data is transmitted only from SS to BS station. So,
for a fair comparison, we simulated our scheduling algorithm
with traffic flowing from SS to BS. We label our schedul-
ing algorithm as Load Balanced Multipath Scheduling. The
scheduling algorithm proposed in [7] is labeled as Interference
Aware Routing and that in [6] as Multipath Scheduling.

In Figure 7, acceptance ratios of different scheduling al-
gorithms as arrival rate of requests increases, are compared.
Our algorithm shows lower performance based on this metric
compared to algorithms described in [6] and [7]. However,
we found that requests meet all their QoS constraints when
scheduled using our algorithm whereas many request fail to
meet their QoS constraints using the other two algorithms.
Hence acceptance ratio is not a fair metric for comparison.
So, we define a metric, compliance ratio, as given below.

Compliance Ratio = R4/ R (15)

Here, Ry is the number of requests that meet all the
constraints of the respective requests. R is the total number of
requests arriving to the system. Constraints of an UGS request
are rate, latency and jitter, whereas an RTPS request has the
constraint of meeting rate of R_min along with its latency
and jitter. Comparison of different scheduling algorithm on
the basis of Compliance Ratio is shown in Figure 8. It is
clear from the figure that our scheduling algorithm performs
much better compared to the other two algorithms. This is
primarily because our scheduling algorithm provides hard
guarantees to the requests and hence none of them violate their
QoS constraints. But, since our algorithm is strict about QoS
constraint it admits fewer requests compared to the other two.
As an aside, readers can notice (from Figure 7 and Figure 8)
that the acceptance ratio and compliance ratio are same for
our algorithm, since our algorithm accepts connections only if
it can guarantee it QoS.

D. Validation of QoS Guarantee

Next we present our results which shows that each and every
packet belonging to different admitted requests meets its delay
and jitter requirement. For this experiment, we have kept all
other parameters of both UGS and RTPS requests same (as
given in Table IV and Table V), but d_maz of all requests
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were set to 100 msec and tgj and tpj were set to 10msec.
It can be confirmed from Figure 9 and 10 that delays of all
the packets are less than 100msec and jitter values of all the
packets are less than 10msec. This validates the correctness of
our CAC algorithm in terms of providing strict QoS guarantees
to every packet.

Per Packet Delay Analysis

E. Average Number of Active Links per Slot (ANALS)

In this section, we show the variation of Average Number
of Active Links per time Slot (ANALS) at different request
arrival rate for networks having different number of nodes
(Figure 11). This graph essentially shows how our scheduling
algorithm can increase the network capacity by having multi-
ple simultaneous data transmissions. It is clear from the figure,
as the size of network (V) grows, the value of AN ALS also
increases which implies that the network throughput increases.

F. Comparison of Different Methods for Allocating Extra
Bandwidth to RTPS Requests

In this section, we present comparison among different
methods used for allocating extra bandwidth to RTPS requests.
This comparison is done using different metrics as described
below.

The first metric used is the Acceptance Ratio and the
comparison is shown in Figure 12. If requests are admitted
at R_-min and they are not provided any extra bandwidth
above R_min (GRMin method), then the Acceptance Ratio
of this scheme is the highest. On the other hand if requests
are admitted at R_maz (GRMax method), then the Acceptance
Ratio of this scheme is the lowest. Performance of the other
two schemes lies in between these two schemes.

The next metric we use is the percentage of packet drop.
Here packet drop refers to the packets that the receiver drops
because the packet did not meet its delay or jitter constraint.
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Fig. 10. Per Packet Jitter Analysis

The simulation for this is done in two scenarios.
e Scenario 1: In the first scenario, there are RTPS requests
with the following parameters :

npi tpj R.min | Romax| p d-max
(in (in (in (in (in (in sec) (in sec)
msec) msec) slots) slots) mins)
20 10 10 20 3 200 10
30 15 10 20 3 200 10
e Scenario 2: In the second scenario, there are RTPS

requests with the following parameters :

npi tpj R.min | Romax| p d-mazx | v

(in (in (in (in (in (in sec) (in sec)
msec) msec) slots) slots) mins)

20 10 10 40 3 200 50

30 15 10 40 3 200 50

The main difference between the two scenarios is that in
Scenario 2, the variation between between R_min and R_-mazx
is much higher than in Scenario 1.

From Figure 13 and 14 it is clear that for both the scenarios
packet drop is maximum if the requests are admitted at
R_min and no extra bandwidth is granted to the requests
(GRMin method) and packet drop is zero when the requests
are admitted at R_maxz (GRMax method). In Scenario 1, the
performance of GERB is almost same as GEBRL. Since the
variation in bandwidth requirement is not high, there is not
much backlog when GERB method is used. But, in scenario
2, GEBRL performs much better than GERB, since it is able
to reduce backlog by asking for more bandwidth than required
by the request so as to flush the backlog.

Finally, we compare various methods using average end-
to-end delay as the metric (Figure 15 and 16). Here we use
the same two scenarios as used while comparing packet drop.
When the requests are admitted at R_max (GRMax method)
then the avg end-end delay is minimum. The avg end-to-
end delay for the case when requests are admitted at R_min
(GRMin method) is also low. In GRMin method, there are
packets which do not meet the delay constraints which are
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dropped by the SS and hence, the average delay is computed
over the packets which meet the delay constraints. The relative
performance of GEBRL over GERB method is better in both
the scenarios due to the fact that GEBRL tries to flush the
queue by asking for more bandwidth than required by the
requests.

X. CONCLUSION AND FUTURE WORK

In this paper, we have presented two efficient routing
algorithms and a centralized scheduling algorithm for IEEE
802.16 mesh networks for UGS and RTPS service class. The
proposed centralized scheduling algorithm uses a novel idea
of splitting a request into two parts. The first part takes care of
delay constraint and not worry about jitter constraint whereas
the second part is responsible for jitter constraint. We have
proposed a CAC algorithm which works closely with the
scheduling algorithm to make sure that requests are admitted
such that every packet of the request meets its delay and
jitter requirements. For RTPS requests, we have also proposed
different methods for allocating extra bandwidth to RTPS
requests.

In this study, we have assumed that channel condition does
not change and that the nodes are fixed. We intend to extend
this study to varying channel condition and mobile nodes as
future work. We have not considered node or link failures in
the current study. It will be interesting to see how our proposed
algorithm can be modified to handle such failures.
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