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Abstract

In an open shortest path first (OSPF) based best effort network, when a packet experiences congestion, the routing sub-
system cannot send it through an alternate path. Thus, it fails to provide desired quality of service (QoS) during conges-
tion. In order to provide QoS we have reported three different load sensitive routing (LSR) protocols in [A. Sahoo, An
OSPF based load-sensitive QoS routing algorithm using alternate paths, in: IEEE International Conference on Computer
Communication Networks, October 2002; A. Tiwari, A. Sahoo, Providing QoS support in OSPF based best effort network,
in: IEEE International Conference on Networks, November 2005; A. Tiwari, A. Sahoo, A local coefficient based load sen-
sitive routing protocol for providing QoS, in: IEEE International Conference on Parallel and Distributed Systems, July
2006]. The LSR protocol forwards packets through alternate paths in case of congestion. The number of alternate paths
at any node depends on the value of operating parameter or coefficient used for alternate path calculation. Though the
basic protocol in these cases was the same, the methods of choosing operating parameter were different. We referred to
these three methods as LSR [A. Sahoo, An OSPF based load-sensitive QoS routing algorithm using alternate paths, in:
IEEE International Conference on Computer Communication Networks, October 2002], E-LSR [A. Tiwari, A. Sahoo,
Providing QoS support in OSPF based best effort network, in: IEEE International Conference on Networks, November
2005] and L-LSR [A. Tiwari, A. Sahoo, A local coefficient based load sensitive routing protocol for providing QoS, in:
IEEE International Conference on Parallel and Distributed Systems, July 2006] coefficient methods. In this paper, we pres-
ent the LSR protocol along with the three coefficient calculation methods pointing out the reason for going from one
method to the next. The main strength of our LSR protocol is that it provides loop free alternate paths in the event of
congestion and can interwork with routers running vanilla OSPF protocol. We show through simulation that the LSR pro-
tocol based on any of the three different coefficient calculation methods performs much better than OSPF and that out of
the three methods proposed by us, L-LSR performs the best.
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1. Introduction

There has been an upsurge in real time applications like Voice over IP, video streaming on the Internet.
These applications require quality of service (QoS) to perform satisfactorily. But the current Internet is built
on best effort infrastructure. Hence there is need for providing QoS on top of best effort network. Usually it is
relatively easy to provide QoS to real time application when the application starts. But it is quite difficult to
repair the QoS when QoS deteriorates in the middle of running of the application. For example, there are few
mechanisms available to provide QoS to VOIP calls when a request for call arrives. Cisco VOIP gateways have
Call Admission Control mechanisms in place to admit calls with an accepted level of QoS at the time of call
arrival [4]. But when a VOIP call is already connected and the two parties are in conversation, if the QoS of the
call deteriorates, then mid call routing should be used to reroute the call in a different path to repair the QoS.
This should happen transparently without affecting the call. But there is no satisfactory method for providing
mid call routing to VOIP or video applications. One effective way would be to provide mid call routing sup-
port at the routing layer.

Typically, routing sub-system uses shortest path algorithm [5] like OSPF to route packets. But the rout-
ing decision, in this case, is solely based on the destination address of the packets. Hence, packets for a
particular destination follow the same path, even though there may be better alternate paths available.
Thus, QoS demand of the packets are not considered while routing the packets. If routing protocol can
provide support for routing packets along alternate paths, then real time applications like VOIP can per-
form satisfactorily when the shortest path gets congested. Obviously, this can be exploited for mid call
routing.

But routing the packets through better alternate paths is not as straight forward as it may look. One of the
challenges is to make the alternate path loop free. If the alternate path protocol is not loop free, then a sep-
arate loop detection mechanism has to be put in place. This approach may not be attractive to implementors,
since that would mean changing the packet forwarding engine.

In this study, we propose a routing protocol that uses alternate paths to provide QoS along OSPF paths.
The network is assumed to be running a link state routing protocol like Open Shortest Path First (OSPF)
[6]. Given an OSPF path from a source node to a destination node, the protocol tries to find alternate paths
for nodes along the OSPF path. When a node experiences congestion on an outgoing link, it sends conges-
tion notification to all its neighbors except the one connected to it over the congested link. The congestion
notification is not flooded, rather it is restricted to only one hop neighbor of the congested node. This node
as well as the neighboring nodes then forward packets through alternate paths. The alternate paths are cho-
sen in such a way that the packets do not end up in a loop. Once congestion is over, then the nodes
involved in alternate path routing revert back to OSPF routing. Thus, the protocol proposed is very simple,
yet is quite effective in providing QoS. But the performance of the protocol depends on being able to find
alternate paths for nodes. However, a node cannot arbitrarily choose any neighbor as alternate next hop,
rather it has to do so such that the alternate path does not form a loop. The loop free property makes the
implementation of the protocol simple, because it does not require a separate loop detection mechanism in
the packet forwarding engine. The loop free property of this routing protocol is achieved by adhering to
some packet forwarding properties of OSPF protocol, which is loop free. More the alternate paths the bet-
ter will be the performance of the protocol. The number of alternate paths depends on how the parameter
(or coefficient) for finding alternate path is fixed. We present three different methods of finding the param-
eter. While the basic protocol remains the same the number of alternate paths and the distribution of alter-
nate paths among the nodes change based on the method used. We refer to the protocol as LSR protocol,
but choice of alternate path during congestion will change depending on how the operating parameter or
coefficient is chosen. Accordingly, we refer to the coefficients as LSR coefficient [1], Efficient LSR
(E-LSR coefficient) [2] and Local LSR (L-LSR coefficient) [3]. Note that the operating parameter or coef-
ficient is only calculated one time after OSPF has converged. The same coefficient is used until the topology
of the network changes (say due to a link failure), at which time the coefficients are recalculated. Thus, the
overhead of calculation of coefficients is quite minimal. In this paper, we discuss how the different coeffi-
cients are calculated and present the performance of the protocol when run with different coefficients and
compare them with OSPF.
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The following are the advantages of LSR protocol over OSPF:

– Better average performance: The LSR protocol tries to find alternate path to route packets when there is
congestion in the OSPF path. Hence, packets get better QoS.

– Less overhead and scalability: Our protocol does not use flooding mechanism to communicate congestion
of a link. Rather the congestion notification is only contained to the neighbors of the node. Thus, it has less
overhead and it can scale easily to large networks.

– Coexistence with OSPF router: Our protocol can be implemented easily with an extension to the framework
of OSPF standard [7] by creating a new LSA type. Routers running our algorithm can coexist with routers
running vanilla OSPF (without our algorithm). When vanilla OSPF routers get this new LSA types, they
will simply drop the LSA. Thus, our LSR protocol can be implemented in the Internet in phases.

– Loop free property: In LSR protocol, alternate next hop is chosen based on next hop property of OSPF
routing, which is a loop free protocol. Hence LSR protocol provides loop-free alternate path routing.
So there is no need for separate loop detection mechanism in the protocol.

The rest of the paper is organized as follows. In Section 2 we discuss the related work in this area. Section 3
explains the system model used in this paper, Section 4 presents the theory and notations used for LSR and E-
LSR coefficient calculation. Section 5 provides the details of LSR coefficient calculation whereas Section 6
does the same for E-LSR coefficient calculation. Section 7 is devoted on the details of L-LSR coefficient cal-
culation. We provide the formal proof of loop free property of LSR protocol in Section 8. We present our
simulation results in Section 9 and finally conclude the paper in Section 10.

2. Related work

QoS routing has been studied quite extensively [7–11]. A cheapest path algorithm from one source to all des-
tinations when links have two weights (cost and delay) is studied in [12]. The cheapest path is chosen such that
the delay along the path is not more than a certain threshold. In [13], the properties of path weight functions are
investigated so that hop-by-hop routing is possible and optimal paths can be computed with the generalized
Dijkstra’s algorithm. Few studies have analyzed the costs associated with QoS routing [14,15]. Some other solu-
tions in the literature use source routing along with shortest path routing to achieve the goal [16]. But security is
a major concern in source routing. Routing on alternate paths based on shortest path first has been studied in
[17]. But the disadvantage of this method is that the alternate paths may have loops. Hence a loop detection
module is needed in the system. There are few solutions proposed that use flooding to advertise QoS parameters
[16,9]. Traffic Engineering extension to OSPF has been proposed in [18] to provide QoS support in OSPF based
network. This also uses flooding to advertise QoS related parameters such as maximum bandwidth, unreserved

bandwidth, traffic engineering metric etc. But overhead and protocol convergence are main concerns in these
approaches. The routing protocol proposed in this paper, does not use flooding to update QoS parameters,
rather the change in routing information is confined to the region where the QoS has deteriorated. Thus, it
has low protocol overhead, low convergence time and does not need a separate loop detection mechanism.
QoS can be provided in an IP network by deploying RSVP [19], DiffServ [20] or MPLS [21] in the network.
In an MPLS based network traffic engineering has been proposed to provide QoS to traffic flows [22].

3. System model

3.1. Network

We model a network consisting of N nodes. A node P is identified by Node(P), 0 6 P < N. Nodes in a net-
work are connected by physical links. Physical link from Node(P) to Node(Q) is denoted by Link(P,Q).
Node(P) and Node(Q) are said to be neighbors if they are connected by Link(P,Q). Every link Link(P,Q)
has a cost Cost(P,Q) > 0 associated with it. The OSPF path from Node(P) to Node(Q) has a OSPFcost asso-
ciated with it and is denoted by OC(P,Q). OSPFcost is the sum of the cost of each link along the OSPF path.
The Number of hops from Node(P) to Node(Q) along the OSPF path is denoted as HC(P,Q).
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3.2. Routing table

Each node builds a routing table from the network topology. Given a network topology, a node runs OSPF
protocol, i.e., it runs Dijkstra’s shortest path algorithm with itself as the source. Each entry in the routing table
is a quadruple consisting of destinationnode, nexthop, OSPFcost, Hop Count. The nexthop will contain the
OSPF next hop of the destination when the node uses OSPF for routing. But the nexthop will be the LSR next-
hop when LSR based alternate path is used due to congestion. Thus, the use of alternate path is transparent to
the packet forwarding engine.

3.3. Messages

There are two control messages used by LSR protocol:

– Congestion Notification: This message is sent by a node to all its neighbors (except the one connected to it
over the congested link) when it detects congestion on that outgoing link. We denote this message by Con-

gestion(P,Q) which signifies that a congestion is experienced on the Link(P,Q) by Node(P) and that
Node(P) sends this message to all its neighbors except Node(Q).

– Congestion Over: When a link, which was congested earlier, is no longer congested, this message is sent out
to all the neighbors (except the one connected to it over the congested link). We denote this message by
CongestionOver(P,Q) which is sent by Node(P) to all its neighbors except neighbor Node(Q) when conges-
tion gets over on Link(P,Q).

3.4. Overview LSR protocol

In this section, we present the overview of LSR protocol. Note that this is the protocol followed by the
nodes for alternate path routing. But the set of alternate paths for a node will be dependent on how the oper-
ating parameter (or coefficient) of the network is chosen.

Now we present forwarding and processing of control message by the LSR protocol:

– When Node(P) detects congestion on the link Link(P,Q), it sends congestion notification message Conges-

tion(P,Q) to all its neighbors except Node(Q). The congestion notification is not flooded in the network. It
is restricted to only one hop neighbor of the congested node.

– When Node(R), a neighbor of Node(P), receives Congestion Notification message Congestion(P,Q), it first
gets the set of all destinations for which packets forwarded from Node(R) to Node(P) would go out on con-
gested link Link(P,Q). For each of these destinations, it finds the alternate LSR next hops to forward pack-
ets. The method for calculating LSR alternate next hop is dependent on the operating coefficient used and is
described later in the paper. If there are more than one alternate LSR next hops, then the one with the least

cost to the destination is chosen. This new LSR next hop is put into nexthop entry of routing table so that
packets are routed transparently by the packet forwarding engine through LSR alternate path. Node(P)
also follows the same procedure for finding LSR alternate next hop.

– When Node(P) detects that the congestion is over on link Link(P,Q), then it sends congestion over message
CongestionOver(P,Q) to all its neighbors except Node(Q).

– When Node(R) receives the CongestionOver(P,Q) message it checks the set of all destinations for which
packets forwarded from Node(R) to Node(P) would go out on congested link Link(P,Q). For each destina-
tion in this set, it resets the next hop entry in the routing table to the OSPF next hop. This makes the packet
forwarding engine to transparently revert back to OSPF path. Node(P) also reverts back to OSPF next hop
in a similar manner.

3.5. Properties of alternate path

For finding alternate paths, we have assumed that QoS should be provided along a few OSPF paths to a
particular destination i.e. OSPF paths between few source nodes to a particular destination are chosen as QoS
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paths (the same method can be applied if QoS needs to be provided to OSPF paths to a different destination).
We denote such paths as QoSPath(S,D) from source Node(S) to destination Node(D).

Alternate paths in LSR are determined based on the following two OSPF properties.

Property 1. The number of hops from OSPF next hop to a given destination along the OSPF path is less than the

number of hops from the current node to the same destination.

Property 2. For a given destination, OSPF cost from OSPF next hop is less than the OSPF cost from the current

node.

If Node(Q) is the OSPF next hop of Node(P) for destination Node(D) then from Property 1 we have

HCðQ;DÞ < HCðP ;DÞ ð1Þ
And from Property 2, we have

OCðQ;DÞ < OCðP ;DÞ ð2Þ

Multiplying both the sides of (1) and (2) by a and b respectively and then combining the two inequalities we
have

a � HCðQ;DÞ þ b � OCðQ;DÞ < a � HCðP ;DÞ þ b � OCðP ;DÞ ð3Þ

where a P 0, b P 0 and (a,b) 5 0. The notation (a,b) 5 0 means that a and b cannot be zero simultaneously.
Without loss of generality a can be substituted as 1 and we get

HCðQ;DÞ þ b � OCðQ;DÞ < HCðP ;DÞ þ b � OCðP ;DÞðb P 0Þ ð4Þ
For a particular node P, a neighbor Q is considered an eligible alternate next hop if inequality (4) holds and

the neighbor Q is not the OSPF next hop. This ensures that when alternate next hops are chosen, they still
conform to OSPF property. This is important for providing loop free alternate paths.
4. Theory and notations used in LSR and E-LSR coefficient calculation

We start with theory and notations used for calculating LSR and E-LSR coefficients. We begin with a the-
orem which gives the possible cases of finding alternate paths. We provide the theorem here for ease of
reference.

Theorem 1. Let OC(P,D) and HC(P,D) be the OSPF cost and OSPF hop count from Node(P) to destination

Node(D) respectively. Let OC(Q,D) and HC(Q,D) be the OSPF cost and OSPF hop count from Node(Q) to

destination Node(D) respectively. If Node(Q) is a neighbor of Node(P) and not the OSPF next hop for destination

Node(D), Node(Q) will qualify as alternate next hop for Node(P) in the following cases:

Case 1. If HC(Q, D) < HC(P, D) and OC(Q, D) 6 OC(P,D) then Node(Q) can be accepted as alternate next

hop if

b P 0 ð5Þ
Case 2. If HC(Q,D) < HC(P,D) and OC(Q,D) > OC(P,D), then Node(Q) can be accepted as alternate next

hop if

b < x ð6Þ
where x = (HC(P, D) � HC(Q,D))/(OC(Q,D) � OC(P,D)).

Case 3. If HC(Q,D) P HC(P, D) and OC(Q,D) < OC(P,D), then Node(Q) can be accepted as alternate next

hop if

b > y ð7Þ
where y = (HC(Q, D) � HC(P,D))/(OC(P, D) � OC(Q,D)).
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Proof

Case 1. From Eq. (4), if Node(Q) should be LSR eligible next hop, then

HCðQ;DÞ þ b � OCðQ;DÞ < HCðP ;DÞ þ b � OCðP ;DÞ ð8Þ

In this case HC(Q,D) < HC(P,D) and OC(Q,D) 6 OC(P,D). Clearly, Eq. (4) will be satisfied for
b P 0.

Case 2. In this case, HC(Q,D) < HC(P,D) and OC(Q,D) > OC(P,D). From Eq. (4)

b � ðOCðQ;DÞ � OCðP ;DÞÞ < HCðP ;DÞ � HCðQ;DÞ
i:e:; b < x ð9Þ

where x = (HC(P,D) � HC(Q,D))/(OC(Q,D) � OC(P,D)). Note that x is a positive term due to the
conditions of this case.

Case 3. In this case, HC(Q,D) P HC(P,D) and OC(Q,D) < OC(P,D), then Node(D). From Eq. (8)

ðHCðQ;DÞ � HCðP ;DÞÞ < b � ðOCðP ;DÞ � OCðQ;DÞÞ
i:e:; b > y ð10Þ
where y = (HC(Q,D) � HC(P,D))/(OC(P,D) � OC(Q,D)). Note that y is a positive term due to the
conditions of this case. h

Now the task is to determine value of coefficient b. For this purpose, we define two notations GT(P,p,D)
and LT(P,p,D) representing the constraints on value of b.

– In cases 1 and 3, the value of b should be greater than 0 and y respectively. Since y is a positive quantity, the
two constraints can be combined to one constraint that b should be greater than y. We refer to it as greater

than (GT for short) constraint. The pth greater than constraint of Node(P) for destination Node(D) is
denoted by b > GT(P,p,D). Thus, for a destination Node(D) if the pth greater than constraint is due to
neighbor Node(Q) then GT(P,p,D) is equal to y given in Eq. (7).

– In the case 2, the value of b should be less than x. Similarly, we denote the pth less than (LT for short) con-
straint of Node(P) for destination Node(D) by LT(P,p,D). Thus, for destination Node(D), if the pth less
than constraint is due to neighbor Node(Q) then LT(P,p,D) is equal to x given in Eq. (6).

Example. In Fig. 7, a service provider wants to use LSR protocol to provide QoS along the OSPF path between
ingress node 0 and egress node 5. The OSPF path between these two nodes is 0, 1, 2, 3, 4, 5. Nodes 31 is the
neighbor which is not in the OSPF path of node 3 and hence can potentially become eligible alternate next hop
for 3. The OSPF cost from 3 to 5 is 6 and the corresponding hop count is 2. The OSPF cost from 31 to 5 is 7 and
the corresponding hop count is 1. We use these values in Eq. (4) to get the LSR constraint as follows:

1þ 7b < 2þ 6b; i:e:; b < 1

Thus, neighbor 31 can become eligible alternate next hop of node 3 if b < 1. This is a LT constraint.

Thus, for a particular destination, if a node satisfies m number of constraints (LT and GT), then potentially

it has m alternate paths for that destination. But only n (0 6 n 6 m) out of the m potential alternate paths will
actually be used for alternate path routing, depending on the operational value of b decided by our algorithm.
Thus, fixing the value of operational b (denoted as bop(D) for destination Node(D)) appropriately is crucial for
the efficient operation of LSR and E-LSR algorithms. Remember that we are trying to provide QoS along the
OSPF path of an ingress node Node(S) and an egress node Node(D) (Node(D) is the destination). Let this path
be denoted by QoSPath(S,D).

In subsequent discussions, our focus will be on the OSPF path QoSPath(S,D) between an ingress node
Node(S) and egress node Node(D) with the egress node Node(D) being the destination. We introduce few more
notations which are needed to calculate bop(D).
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– For destination Node(D), let SGTall(D) contains all the greater than constraint parameters GT(P,p,D) of all
the nodes along the OSPF path. Let there be m 0 elements in SGTall(D) denoted by the ordered list
ðg01; g02; . . . ; g0m0 Þ such that g01 6 g02 � � � 6 g0m0 . Now remove duplicate entries from SGTall(D) and sort them
in increasing order. Let this sorted list be SGT(D). Let there be m elements in SGT(D) denoted by the
ordered list (g1,g2, . . . ,gm) such that g1 < g2 � � � < gm, where gi, (1 6 i 6 m) are the distinct greater than con-
straint parameters.

– Similarly SLTall(D) contains all the less than constraint parameters. Let there be n 0 elements in SLTall(D)
denoted by the ordered list ðl01; l02; . . . ; l0n0 Þ such that l01 6 l02 � � � 6 l0n0 . Now let SLT(D) is the corresponding
ordered list for distinct less than constraints i.e. SLT(D) is given by (l1, l2, . . . , ln), such that, l1 < l2 � � � < ln,
where li (1 6 i 6 n) are the distinct less than constraint parameters.

– GTmin(S,D) represents the minimum value among all the greater than constraint parameters of Node(S) for
destination Node(D).

– Similarly, LTmax(s,d) represents maximum value among all the less than constraint parameters of Node(s)
for destination Node(d).

– No_of_Constraints_GT(gi,D) represents the number of GT constraints that will be satisfied if gi < b < gi+1

where gi and gi+1 belong to SGT(D). If Cg
i is the number of greater than constraints in SGTall(D). Then we

have

No of Constraints GTðg1;DÞ ¼ Cg
1 ð11Þ

No of Constraints GTðgi;DÞ ¼ Cg
i þNo of Constraints GTðgi�1;DÞ ð12Þ

where 1 < i 6 m.
– Similarly No_of_Constraints_LT(li,D) represents the number of LT constraints that will be satisfied if

li�1 < b < li where li�1 and li belong to SLT(d). If Cl
i is the number of less than constraints in SLTall(D),

then

No of Constraints LTðln;DÞ ¼ Cl
n ð13Þ

No of Constraints LTðli;DÞ ¼ Cl
i þNo of Constraints LTðliþ1;DÞ ð14Þ

where 1 6 i < n.

5. LSR coefficient calculation

In this section, we present the algorithm for calculating LSR coefficient. LSR coefficient is calculated
such that the total number of alternate paths in the network (for a given destination) is maximized.
LSR_coefficient_calculation( ) in Algorithm 1 shows the algorithm used for calculating LSR coefficient.
In step 11, it goes through each LT constraint and checks how many alternate paths are possible if
the operating parameter is chosen as the LT constraint. It remembers the LT constraint for which the
maximum number of alternate paths are obtained. In step 24, it tries each GT constraint and retains
the one which gives the maximum number of alternate paths. Finally, in step 36 it sets the operating
parameter (bop(D)) to either the LT or the GT constraint depending which one resulted in more alternate
paths.

Now coming to time complexity of Algorithm 1, the number of LT constraints or GT constraints in O(N2),
where N is the number of nodes in the network. So from step 11 and step 13 it is clear that the time complexity
of LSR_coefficient_calculation( ) is O(N4).

Algorithm 1 (LSR_coefficient_calculation(SLTall(D), SGTall(D))).

1: count = 1, alt_path = 0, lt_min = INVALID, gt_max = INVALID;
2: alt_path_lt = 0;

/* there is no greater than constraint */
3: if m 0 = 0 then
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4: bopðDÞ ¼ l01 � �;/* where ðl01 � �Þ > 0 */
5: else if n 0 = 0 then

6: /* there is no less than constraint */
7: bopðDÞ ¼ g0m0 þ �; /* where ðg0m0 þ �Þ < Infinity */
8: else if l01 > g0m0 then

9: bopðDÞ ¼ ðg0m0 þ l01Þ=2
10: else

11: for all l0 ¼ l01tol0n0 do

12: alt_path_lt = count;
13: for all g0 ¼ g01tog0m0 do

14: if g
0
> l

0
then

15: alt_path_lt++;
16: end if

17: end for

18 if alt_path_lt > alt_path then

19: alt_path = alt_path_lt; lt_min = l
0
;

20: end if

21: count++;
22: end for

/* Go through all the greater than constraints in increasing order */
23: count = 1, alt_path_gt = 0;
24: for all g0 ¼ g01 to g0m0 do

25: alt_path_gt = count;
26: for all l0 ¼ l01 to l0n0 do

27: if l 0 < g 0 then

28: alt_path_gt++
29: end if

30: end for
31: if alt_path_gt > alt_path then

32: alt_path = alt_path_gt; gt_max = g 0;
33: end if

34: count++;
35: end for

36: if gt_max != INVALID then

37: bop(D) = gt_max + �;
38: else
39: bop(D) = lt_min � �;
40: end if

41: end if
6. E-LSR coefficient calculation

LSR coefficient was calculated such that the total number of alternate paths in the entire network is maxi-
mized. But that may lead to number of alternate paths, that is skewed towards some nodes. That is, some nodes
in the network may have too many alternate paths whereas some other nodes may not have any alternate path.
Thus, LSR protocol based on LSR coefficient may not able to handle congestion if congestion occurs at one of
the nodes which do not have any alternate path. To address this problem we have devised Efficient LSR
(E-LSR) coefficient method. The criterion used for choosing the value of bop(D) in E-LSR is that the total num-
ber of alternate paths is maximized subject to the constraint that maximum number of nodes in QoSPath(S,D)
have at least one alternate path. The rational behind this optimization is that there will be more number of nodes
which has alternate paths to avoid congestion along the OSPF path and hence it will lead to better performance.
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Towards this goal, we introduce the objective function( ) that is used for E-LSR coefficient calculation. This
function is designed in such a way that the number of alternate paths is maximized with the constraint that
maximum number of nodes will have at least one alternate path. The objective function takes four arguments:
low_limit and high_limit specify the range in which the value of b is tested for optimal operational E-LSR coef-
ficient. Path(i, j) represents the path along which the optimization criteria is applied. Node(d) is the destination
node.

Procedure 2. Objective_function(low_limit,high_limit,Path(i, j),Node(D))

1: int n = 0, m = 0;
2: for all Node(P) in Path(i, j)
3: if (low_limit P GTmin(P,D)) or (high_limit 6 LT_max(P,D))
4: n++; /* This node has an alternate path */
5: end if

6: end for

/* n is number of nodes in Path(i, j) having at least one alternate path */
7: m = No_of_constraints_LT(high_limit, D) + No_of_constraints_GT(low_limit,D);

/* Now m represents total number of alternate paths if b takes a value between low_limit and high_limit.*/
8: m = m � n;
9: return N * N * n + m; /* N is the total number of nodes */

The above objective function defines two parameters, namely, n and m. n represents number of nodes with
at least one alternate path and m represents number of alternate paths other than those n alternate paths (if the
value of b is chosen between low_limit and high_limit). The final value returned is (N * N * n + m), where N is
the total number of nodes in the network. The following theorem shows that objective_function( ) will always
return a value that would represent maximum alternate paths subject to the constraint that maximum number
of nodes have at least one alternate path.

Theorem 2. When the E-LSR coefficient b is chosen between low_limit and high_limit, let n be the number of

nodes with at least one alternate path to a destination Node(D) and m be the total number of alternate paths

excluding those n alternate paths in the topology. If N is the total number of nodes in the topology, then

(N2
* n + m) represents a value that leads to maximum alternate paths subject to the constraint that maximum

number of nodes have at least one alternate path.

Proof. For a destination Node(D), the maximum number of alternate paths possible for a node Node(P) in the
network is N � 2. This is because there can never be any alternate path through two nodes: itself and the des-
tination Node(D). Let us say that Node(P) finds an alternate path through Node(Q). Then for Node(Q), the
maximum number of alternate paths to Node(D) would be N � 3. This is because, in addition to the two nodes
(itself and Node(D)), Node(P) also cannot qualify as alternate next hop for Node(Q) (If Node(Q) qualifies as
the alternate next hop for Node(P) from Eq. (4) it is clear that Node(P) cannot qualify as alternate next hop for
Node(Q).). If we continue finding upper bound of alternate paths for each node, then we arrive at the upper
bound of total number of alternate paths as given by

ðN � 2Þ þ ðN � 3Þ þ ðN � 4Þ þ � � � þ 1 ¼ ðN � 1ÞðN � 2Þ=2

The above expression can be taken as an upper bound on m i.e.

m < ðN � 1ÞðN � 2Þ=2 ð15Þ
But ðN � 1ÞðN � 2Þ=2 < N 2 for N > 0.

Hence, from Eq. (15),

m < N 2 ð16Þ
Therefore, if n is given a weight of N2 (by multiplying it with N2), then (N2

* n) will always be greater than m

for any value of n and m where (n,m) 5 0. Note that the total number of alternate paths is (n + m). Hence, the
objective function value will be maximum for the E-LSR coefficient with the largest value of n. Also, if n is
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same for two values of E-LSR coefficient, then the one with larger m will get the larger value from the objective
function. Thus, the expression (N2

* n + m) would lead to maximum number of alternate path subject to the
constraint that maximum number of nodes have at least one alternate path. h

The coefficient calculation routine E_LSR_coefficient_calculation( ) shown in Algorithm 2 makes use of
objective_function() to get the optimal value of b along the OSPF path from Node(S) to Node(D). This path
is denoted as QoSPath(S,D). It first checks for trivial cases, where there may be only LT constraints (step 3) or
only GT constraints (step 5). Then in steps 13 and 14, note that constraint parameters are not exhaustively
tested for optimality. Instead, only intervals between two consecutive GT and LT constraint, where the LT
constraint parameter is greater than the GT constraint parameter, are tried. To understand this, refer to
Fig. 1. Since GT constraint g1 and LT constraint l1 are consecutive and l1 > g1, the interval is tested for opti-
mality. There is no point in trying the interval (l1, g2), since a value of b in that interval will produce at least
one less alternate path than a b value chosen in the interval (g1, l1) (it will lose alternate path corresponding to
l1). Similarly, interval (g2,g3) should not be tried, because it is better to get a value of b in the interval (g3, l2) so
that at least one more alternate path (corresponding to g3) can be obtained. Hence, steps 13 and 14 examine
only consecutive LT and GT constraints, where the LT constraint parameter is greater than the GT constraint
parameter. The algorithm then computes an objective function value for b that belongs to this selected range.
Finally, the value of b which results in maximum objective function value is chosen as operating E-LSR coef-
ficient (bop(D)) for a destination Node(D). Note that, with little modification, this coefficient calculation algo-
rithm can be used for multiple ingress-egress pairs.

Now let us analyze the time complexity of E � LSR_coefficient_calculation( ). The complexity of objec-

tive_function( ) is O(N). Since the number of GT constraints is O(N2), from step 12 it clear that the time com-
plexity of E � LSR_coefficient_calculation( ) is O(N3). Thus, it is a significant improvement over LSR
coefficient calculation.

Algorithm 2 (E-LSR_coefficient_calculation(QoSPath(S,D))).

1: value_old = 0;
2: Infinity = a large number such that it is greater than any constraint parameter (LT or GT);

/* Go through all greater than constraints in increasing order */
/* m is the number of elements in SGT(D) */

3: if m = 0 then

4: bop(D) = l1 � �, /* where (l1 � �) > 0 */
/* n is the number of elements in SLT(D) */

5: else if n = 0 then

6: bop(D) = gm + �; /* where (gm + �) < Infinity */
7: else if l1 > gm then

8: bop(D) = (gm + l1)/2
9: else

10: SGT 0(D) = insert 0 to the beginning of SGT(D);
Fig. 1. Coefficient calculation for destination Node(d) along Path(s,d).
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11: SLT 0(D) = insert Infinity to the end of SLT(d);
12: for all constraint gi in SGT 0(D) do

13: find next high value in SLT 0(D), let it be lj;
14: if gi+1 < lj then
15: continue;
16: end if

17: value = objective_function(gi, lj,QoSPath(S,D),Node(D));
18: if value > value_old then

19: bop(D) = (gi + lj)/2; value_old = value;
20: end if

21: end for

22: end if
7. L-LSR coefficient calculation

LSR and E-LSR algorithms find alternate paths based on global coefficients, i.e., for a given destina-
tion, all the nodes in the entire network use the same coefficient to determine alternate next hop. This is a
very limiting factor, which will lead to some nodes losing alternate next hops because of the final opera-
tional value of global coefficient. This constraint was thought to be necessary to provide loop free alter-
nate paths. Local LSR coefficient or L-LSR coefficient allows nodes to choose the coefficients locally. This
gives much more freedom to individual nodes to choose alternate paths. Hence this method should poten-
tially give rise to more alternate paths for a node. In this section, we describe how local coefficients of the
nodes in a network are calculated using graph theoretic approach. We need the following notation for this
purpose.

(i) b(X,D): L-LSR coefficient of Node(X) for destination Node(D).
(ii) Neighbor(X): Neighbor of Node(X).

(iii) No_of_neighbors(X): Number of neighbors of Node(X).
(iv) QoSPath(S,D): It is the OSPF path from source Node(S) to destination Node(D). QoS should be pro-

vided when congestion occurs on any of the links along this path. Note that multiple QoS paths can
be specified along which QoS would be provided.

(v) GQ(V,EQ,D): A directed graph, called QoS graph, where V is the set of vertices and EQ is set of directed
edges between those vertices for destination Node(D). An edge from Node(vi) to Node(vj) signifies that
Node(vj) is a possible alternate next hop of Node(vi) for destination Node(D). Later in the section, we
show how this graph can be built.

(vi) DirectedEdge(X,Y): A directed edge from Node(X) to Node(Y).
(vii) T(V,ET,D): Sink tree rooted at destination Node(D) [23]. Note that a sink tree rooted at a node of a

graph is the union of the shortest paths from all other nodes to that particular node.
(viii) CE(i, j): It denotes a Cross Edge in GQ(V,EQ,D) from any Node(vi) to Node(vj) where Node(vi) and

Node(vj) belong to two different OSPF paths. Hence edge CE(i, j) would not be present in T(V,ET,D).
(xi) ME(i, j): It denotes a Main Edge in GQ(V,EQ,D) from any Node(vi) to Node(vj) where Node(vi) and

Node(vj) belong to the same OSPF path. Note that two nodes are said to be in the same OSPF path (with
respect to a destination node) if one of the nodes is along the shortest path (to the same destination) from
the other node. Every edge in the sink tree T(V,ET,D) is a Main Edge. The weights of all the main edges
are assigned as infinity.

(x) weight(X,Y): Weight of the edge from Node(X) to Node(Y).

Now, we explain some of the above notations, using an example topology shown in Fig. 2. The topology of
the network is represented as a graph whose vertices are the nodes of the network and the edges are the links in
the network. The cost of the links are labeled along the edges. Sink tree of this topology, T(V,ET,D), rooted at
destination D is shown in Fig. 3. The sink tree is built from the original graph and consists of all OSPF paths
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Fig. 2. Example topology to explain the notations used for L-LSR coefficient calculation.
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Fig. 3. Sink tree of the example topology rooted at destination D.
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from all other nodes to destination node D. Existence of an edge from Node(vi) to Node(vj) in the sink tree
means that Node(vj) is OSPF next hop of Node(vi) for destination Node(D). For example, existence of edge
B, C in the sink tree means that C is the OSPF next hop of B for destination D. For this example, we have
chosen OSPF path A, B, C, D as the QoS path. Thus, QoS should be provided when any of the links AB,
BC or CD is congested. This QoS path would be denoted as QoSPath(A,D). The corresponding QoS graph,
GQ(V,EQ,D), is shown in Fig. 4. This is built using the algorithm createQoSGraph (described later in this Sec-
tion). Note that edge EH in the original topology does not appear in the QoS graph. This is because neither E

nor H is part of the QoS path. In this QoS graph, the edge from node B to node H is a cross edge denoted as
CE(B,H). This is because B and H belong to two different OSPF paths. B has four neighbors: A, C, E, H. But
B cannot choose C as alternated next hop since C is the OSPF next hop. B also cannot choose A as alternate
next hop since it is the OSPF next hop of A. Hence, B can only choose two neighbors, E and H, as potential
alternate next hops. Thus, cross edges BE and BH are both assigned a weight of 2. Edge BC, denoted as
ME(B,C), is a main edge in the QoS graph, since it is an edge along the OSPF path from A to D. All the main
edges have a weight of infinity as shown in Fig. 4.

The following algorithm createQoSGraph creates GQ(V,EQ,D), starting with T(V,ET,D). For each node
along a QoS path, the algorithm adds edges from the node to all its neighbors, except its OSPF next hop
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Fig. 4. QoS graph of the example topology.
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and the neighbor for which it is the OSPF next hop (these edges would already be present in T(V,ET,D)).
Thus, GQ(V,EQ,D) represents the neighboring relationship of nodes from the packet forwarding point of
view. This algorithm assumes that a node along QoS path can potentially have all its neighbors as alternate
next hops. But the node excludes its OSPF next hop and the node for which it is the OSPF next hop from
the alternate next hop list. The weight of a cross edge is one less than the out degree of the node from
which the edge originates. This is because the edge from the node to its OSPF next hop should be excluded
from the out degree, since it does not connect to an alternate next hop. Thus, if a node has many alternate
next hops, the weight of outgoing cross edges from that node will be higher than the node with fewer
alternate next hops.

Algorithm 3 (createQoSGraph (Set_of_QoS_paths(D),T(V,ET,D))).

1: GQ(V,EQ,D) = T(V,ET,D)
2: for all edges from Node(X) to Node(Y) do in GQ(V,EQ,D)
3: weight (X,Y) =1
4: end for

5: for all QoS_path(Si,D) in Set_of_QoS_paths(D) do
6: for all Node(X) present do along QoS_path(Si,D)
7: no_of_neighbors = 0;
8: for all Neighbor(X)
9: if (Neighbor(X) is not OSPF next hop of Node(X)) AND (Node(X) is not OSPF next hop of

Neighbor(X)) then

10: no_of_neighbors++;
11: end if

12: end for /* no_of_neighbors contains the out degree of Node(X) */
13: for all Neighbor(X) do

14: if (Neighbor(X) is not OSPF next hop of Node(X)) AND (Node(X) is not OSPF next hop of
Neighbor(X)) then

15: Add an edge from Node(X) to Neighbor(X) in GQ(V,EQ,D);
16: weight(X,Neighbor(X)) = no_of_neighbors;
17: end if

18: end for

19: end for
20: end for

But addition of new edges to T(V,ET,D) may create cycles in GQ(V,EQ,D). This means that packets will
loop when sent along the alternate path. So some edges have to be removed from GQ(V,EQ,D) to make it acy-
clic. This would ensure that packets do not loop in the alternate path. This problem is termed as Feedback arc

set problem [24]. A feedback arc set of a (directed) graph is a subset of its arcs whose removal makes the graph
acyclic. Similarly, the minimum feedback arc set problem consists of finding a minimum weight set of arcs such
that after their removal the graph is acyclic. Both problems are NP-complete [25]. A polynomial time approx-
imate algorithm FAS(Æ) for minimum feedback arc set problem is reported in [24]. We make use of the same
algorithm to remove cycles from GQ(V,EQ,D).

Create_acyclic_graph(GQ(V,EQ,D)) algorithm, shown below, converts GQ(V,EQ,D) into an acyclic graph
by removing the edge with maximum weight from a cycle. The reason behind the criteria is that edges having
higher weight correspond to nodes having more alternate paths. So the edge which has the maximum weight in
the cycle should be removed. Let the resultant acyclic graph be GAQ(V,EAQ,D).

Algorithm 4 (create_acyclic_graph(GQ(V,EQ,D))).

1: max_weight = maximum weight out of CE(i, j) for all i, j

2: for all CE(i, j) do

3: weight(i, j) = max_weight � weight(i, j)
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4: end for

/* Let the new graph be G0QðV ;E;DÞ */.
5: GAQðV ;EAQ;DÞ ¼ FASðG0QðV ;E;DÞÞ
6: return acyclic graph GAQ(V,EAQ,D)

The create_acyclic_graph(GQ(V,EQ,D)) uses FAS(Æ) given in [24]. FAS finds a minimum feedback arc set
of G in O(EQ.V) worst case running time. The step 3 essentially transforms the weight of edges such that the
edge with maximum weight will have minimum weight and vice-versa. This enables us to apply FAS(Æ) algo-
rithm directly. Then in step 5 FASðG0QðV ;E;DÞÞ removes a set of edges with minimum weight such that all
cycles are broken in G0QðV ;E;DÞ. This implies that a set of edges with maximum weight are removed to break
cycles in GQ(V,EQ,D). Let this acyclic graph be GAQ(V,EAQ,D) in which an directed edge from Node(vi) to
Node(vj) indicates that Node(vi) can forward packets to Node(vj) without forming loops for destination
Node(D).

Thus, GAQ(V,EAQ,D) is the topology that can be used to forward packets using L-LSR protocol. Every
node could just store this graph and use this graph when finding out the alternate next hop. But this would
not be efficient in terms of storage, especially since a node has to store one such graph for every destination
node. Hence, given this acyclic graph, we find the corresponding L-LSR coefficients such that GAQ(V,EAQ,D)
is used while finding alternate next hop. Let b(vi,D) and b(vj,D) be the L-LSR coefficient of Node(vi) and
Node(vj) for destination Node(D) respectively. If Node(vi) can choose Node(vj) as its alternate next hop then
the L-LSR constraint must be satisfied as follows:

HCðvj;DÞ þ bðvj;DÞ � OCðvj;DÞ < HCðvi;DÞ þ bðvi;DÞ � OCðvi;DÞ ð17Þ
i:e: bðvj;DÞ � OCðvj;DÞ � bðvi;DÞ � OCðvi;DÞ < HCðvi;DÞ � HCðvj;DÞ ð18Þ
i:e: b0ðvj;DÞ � b0ðvi;DÞ < weightðvj; viÞ ð19Þ

where

weightðvj; viÞ ¼ HCðvi;DÞ � HCðvj;DÞ ð20Þ
b0ðvi;DÞ ¼ bðvi;DÞ � OCðvi;DÞ ð21Þ
b0ðvj;DÞ ¼ bðvj;DÞ � OCðvj;DÞ ð22Þ

Thus, as per inequality (19), GAQ(V,EAQ,D) can be converted to a constraint graph GC(V,EGC,D) [26]
where there will be a directed edge from Node(vj) to Node(vi) having weight HC(vi,D) � HC(vj,D). This means,
that GC(V,EGC,D) can be obtained from GAQ(V,EAQ,D) by reversing the direction of edges and assigning
weights according to (20).

The calculate_coefficient algorithm calculates L-LSR coefficients of all the nodes. It is clear that destination
Node(D) will be a source vertex in GC(V,EGC,D) since its incoming degree is 0. The algorithm starts with the
source vertex of GC(V,EGC,D). We assume that b 0(X,D) is K where K is any positive real number. Let the
currently visited node be node_visit and b 0(node_visit,D) is already calculated. Now let Neighbor(node_visit)
be a neighbor of node_visit in GC(V,EGC,D) then coefficient corresponding to Neighbor(node_visit) is calcu-
lated so that following constraint (applying (19)) get satisfied.

b0ðnode–visit;DÞ � b0ðNeighborðnode–visitÞ;DÞ < weightðnode–visit;Neighborðnode–visitÞÞ ð23Þ

The step 11 ensures that b 0(X,D) for any Node(X) is assigned such that it satisfies L-LSR constraints (23)
along all its incoming edges and also ensures that b 0(X,D) is always a positive number. We define getNextNode

List(X) function which will return the list of neighbors of Node(X) such that all incoming edges to those neigh-
bors are visited and they have at least one outgoing edge. The step 15 enqueues all the nodes returned by get-

NextNodeList( ) to the node_visit_list queue. The getNextNodeList(X) is similar to Breadth First Search (BFS)
[26] as it is necessary that before calculating the L-LSR coefficient corresponding to any node, the
L-LSR constraints corresponding to all its parent must be available. As an example, refer to Fig. 5 where
D is the source node. getNextNodeList(D) will return Y and Z. X is excluded from the list since YX incoming
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edge has not been visited for X. Note that a BFS search at this stage would have returned X, Y and Z for the
next round. Later, when Y becomes node_visit, it will traverse edge YX and then getNextNodeList(Y) would
put X in the node_visit_list, since now all the incoming edges of X has been traversed.

Once the L-LSR coefficient of all the nodes are calculated, it is easy for a node to find out which neigh-
bor can be an alternate next hop for a given destination. For every neighbor it needs to apply inequality
(4). If the inequality is satisfied, then the neighbor can be an alternate next hop. If there are multiple
neighbors for which (4) is satisfied, then the node should choose the neighbor which has the least cost
to the destination.
8. Loop free property of LSR protocol

The LSR protocol is loop free because the three different coefficient calculation methods are based on
OSPF properties which is loop free. Since L-LSR uses local coefficients, we first prove that L-LSR is loop free.
Then we explain how LSR and E-LSR can also be proved loop free in a very similar manner.

Algorithm 5 (calculate_coefficient(GC(V,EGC,D))).

1: for all Node(X) in V do

2: b 0(X,D) = K
3: end for

4: edge_list = set of all edges in GC(V,EGC,D).
5: node_visit = Node(D) /* Start with source node */
6: node_visit_list = {Node(D)}./* node_visit_list is queue of nodes to be visited */.
7: b(node_visit,D) = b 0(node_visit,D)
8: while edge_list is NOT empty do

9: node_visit = DEQUE(node_visit_list) /* Remove the first node from node_visit_list */
10: for all Neighbor(node_visit) do

11: b 0(Neighbor(node_visit),D) = max(b 0(Neighbor(node_visit), D),
(b 0(node_visit,D) � weight(node_visit,Neighbor(X)))) + C1 /* this is according to (23)
and C1 is a positive real number

12: edge_list = edge_list � DirectedEdge(node_visit,Neighbor(node_visit))
/* Remove the edge after visiting it */

13: b(Neighbor(node_visit),D) = b 0(Neighbor(node_visit), D)/OC(Neighbor(node_visit),D)
14: end for

15: ENQUE(node_visit_list,getNextNodeList(node_visit))
16: end while
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Theorem 3. If local L-LSR coefficients are chosen such that both OSPF and L-LSR forwarding satisfy the L-

LSR constraint given in Eq. (4), then L-LSR protocol is loop free.

Proof. We prove this theorem by contradiction. Let us assume that L-LSR protocol will have a loop. Fig. 6
shows a case where a loop is formed. Let the loop consist of n nodes (for any n > 1) such that Node(P1) for-
wards packet destined to Node(D) (not shown in figure) to Node(P2) which forwards packet to Node(P3) and
so on. The forwarding of packets between any pair of nodes may follow L-LSR or OSPF routing protocol.
Now as Node(P1) forwards packet to Node(P2) for destination Node(D), the following L-LSR constraint
should be satisfied regardless of whether L-LSR or OSPF routing is used (the L-LSR coefficients are chosen
such that both OSPF and L-LSR next hops satisfy the L-LSR constraint).

HCðP 2;DÞ þ bðP 2;DÞ � OCðP 2;DÞ < HCðP 1;DÞ þ bðP 1;DÞ � OCðP 1;DÞ ð24Þ
Similarly, Node(P2) forwards packet to Node(P3) for destination Node(D) and so on. Finally, Node(Pn) for-
wards packet to Node(P1) for the same destination. This can happen only if following set of L-LSR constraints
are satisfied.

HCðP 3;DÞ þ bðP 3;DÞ � OCðP 3;DÞ < HCðP 2;DÞ þ bðP 2;DÞ � OCðP 2;DÞ ð25Þ

..

.

HCðP n;DÞ þ bðP n;DÞ � OCðP n;DÞ < HCðP n�1;DÞ þ bðP n�1;DÞ � OCðP n�1;DÞ

Combining above (n � 1) inequalities we get

HCðP n;DÞ þ bðP n;DÞ � OCðP n;DÞ < HCðP 1;DÞ þ bðP 1;DÞ � OCðP 1;DÞ ð26Þ
Since Node(Pn) forwards packet to Node(P1), the corresponding L-LSR constraint should be satisfied as
shown below.

HCðP 1;DÞ þ bðP 1;DÞ � OCðP 1;DÞ < HCðP n;DÞ þ bðP n;DÞ � OCðP n;DÞ ð27Þ
Clearly, (27) contradicts (26). Hence such a loop is not possible. h

To prove that LSR and E-LSR are loop free, it is a simple matter of following the similar steps except that
the coefficient used will be global i.e., the coefficients used in the above inequalities will only be denoted as b.

9. Simulation experiment

In this section, we present our simulation setup and performance comparison of L-LSR algorithm with E-
LSR, LSR and OSPF algorithms. Our simulation was done using ns2 simulator [27].

9.1. Simulation topology

The topology used in our simulation is shown in Fig. 7. There are 34 nodes in the topology. We have
chosen two QoS paths in the topology destined to Node(5): 0, 1, 2, 3, 4, 5 and 10, 9, 8, 7, 6, 5 represented
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Fig. 7. Topology used for simulation.
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by QoSPath(0, 5) and QoSPath(10,5). Thus, QoS will be provided along these two paths. OSPF costs of
the links are shown in the figure. Cost of links are assigned according to the guideline given in [28] as
follows:

link cost ¼ d1; 000; 000=link bandwidth in bpse ð28Þ
All the links along the QoS paths are monitored for congestion. The congestion threshold is set to 90% i.e if

utilization of a link exceeds 90%, then the link is assumed to be congested.
We have simulated different scenarios as follows:

(i) Scenario A: This scenario simulates voice traffic along the QoS paths. We model each voice traffic
flow as Constant Bit Rate (CBR) traffic with bandwidth requirement of 64 kbps (packet size:
160 bytes and interval: 0.02 s).1 A number of such flows destined to node 5 originates from two
sources i.e. node 0 and node 10. Thus, it simulates the scenario of voice flows sent along the two
QoS paths.

(ii) Scenario B: This scenario simulates data traffic along the QoS paths destined to node 5. Each flow is
Exponential ON/OFF traffic (packet size: 576 bytes,2 mean ON period: 50 ms, mean OFF period:
50 ms, average rate: 128 kbps)

We generate cross traffic in other paths in both Scenario A and Scenario B, to account for the network traf-
fic flowing through other nodes. This cross traffic is generated as follows: source and destination nodes are
chosen randomly from among all the nodes in the network. Then each source and destination pair exchange
traffic which follows Poisson distribution with an average rate of 32 kbps.

9.2. Results

For performance comparison between L-LSR, E-LSR, LSR and OSPF algorithms, we have used average

delay of packets from source node to destination node along the designated QoS paths and percentage packet

drop (PPD) as performance metrics. PPD is defined as the ratio of number of packets not received at the des-
tination to the total number of packets sent from the source. In Scenario A, for a given number of voice traffic
flows along the QoS paths, we measure the average delay and PPD of those voice flows. The number of voice
flows is gradually increased to observe the system performance at various voice traffic load conditions. Sim-
1 This simulates G.711 voice codec.
2 This is the path MTU recommended in [29].
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ilarly, in Scenario B the number of data flows is increased and the corresponding average delay and PPD of the
data flows are measured.

Fig. 8 shows the average delay of voice flows in Scenario A for different routing protocols, as the number of
voice flows (hence load along the path) increases along the QoSPath(10,5). Clearly, average delay in the case
of OSPF algorithm is more than that of LSR algorithm. And average delay in the case of LSR algorithm, in
turn, is more than that of E-LSR algorithm for any load. Further, the average delay of L-LSR is the least. In
the case of OSPF, when the OSPF path gets congested, OSPF does not reroute packets through any alternate
paths, hence delay in this case is the largest. Furthermore, at a high load (more than nine flows), since queues
are almost full, delay plateaus around 0.59 s and PPD is quite high at that load. In the event of congestion,
Fig. 9. Average delay vs number of flows (Scenario B) along QoSPath(10,5).

Fig. 8. Average delay vs number of flows (Scenario A) along QoSPath(10,5).
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LSR, E-LSR and L-LSR reroute packets through alternate paths, which leads to lower delay than OSPF. The
reason behind the observed relative performance of L-LSR, E-LSR and LSR is explained as follows. In QoS-
Path(10,5), only node 9 has an alternate path in LSR. In case of E-LSR both node 9 and node 7 have alternate
paths. While in case of L-LSR all three nodes node 7, node 8 and node 9 have alternate paths. Note that in
LSR and E-LSR a single value of coefficient is chosen for a given destination for all nodes in the network. This
is a restricted requirement, which leads to less alternate paths. But in case of L-LSR each node chooses its own
local coefficient. Thus, L-LSR potentially can find alternate paths for more nodes in the network and each of
these nodes can have more alternate paths. Similar trend is observed in Fig. 9 across the three protocols in
Scenario B. Also, Figs. 10 and 11 show the similar performance for number of voice and data flows along
QoSPath(0,5) respectively.
Fig. 10. Average delay vs number of flows (Scenario A) along QoSPath(0,5).

Fig. 11. Average delay vs number of flows (Scenario B) along QoSPath(0,5).
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Fig. 12 shows the corresponding comparison based on PPD in Scenario A for flows along QoSPath(10,5).
Here also L-LSR has the least PPD. The PPD of E-LSR is lesser than LSR which is lesser than OSPF. Also
PPD increases as the number of flows along QoS paths increases. The similar trend is observed in Fig. 13
across the three protocols in Scenario B. Also, Figs. 14 and 15 show similar relative performance for number
of voice and data flows along QoSPath(0,5) respectively.

Tables 1 and 2 list maximum percentage reduction in average delay (MPRAD) and PPD (MPRPPD) of
L-LSR protocol over other protocols. For example, in Scenario A the average delay is reduced by as
much as 66%, 52% and 30% over OSPF, LSR and E-LSR respectively along QoSPath(10,5). Correspond-
ing numbers for PPD are 69%, 61% and 48% respectively. Thus, we can conclude that L-LSR performs
the best in terms of average delay and PPD along both the QoS paths and the performance improvement
is quite significant.
Fig. 12. Percentage packet drop vs number of flows (Scenario A) QoSPath(10,5).

Fig. 13. Percentage packet drop vs number of flows (Scenario B) along QoSPath(10,5).



Fig. 14. Percentage packet drop vs number of flows (Scenario A) along QoSPath(0,5).

Fig. 15. Percentage packet drop vs number of flows (Scenario B) along QoSPath(0,5).

Table 1
Maximum percentage reduction in average delay and PPD of L-LSR over other protocols (Scenario A)

Over OSPF Over LSR Over E-LSR

QoSPath(10,5) QoSPath(0,5) QoSPath(10,5) QoSPath(0,5) QoSPath(10,5) QoSPath(0,5)

MPRAD 66 63 52 51 30 20
MPRPPD 69 56 61 44 48 30

446 A. Tiwari, A. Sahoo / Simulation Modelling Practice and Theory 15 (2007) 426–448



Table 2
Maximum percentage reduction in average delay and PPD of L-LSR over other protocols (Scenario B)

Over OSPF Over LSR Over E-LSR

QoSPath(10,5) QoSPath(0,5) QoSPath(10,5) QoSPath(0,5) QoSPath(10,5) QoSPath(0,5)

MPRAD 72 63 63 43 48 22
MPRPPD 84 73 78 68 60 47
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10. Conclusion

We have presented a load sensitive routing (LSR) protocol for best effort network. We have proposed three
different ways of calculating the operating parameter (or coefficient) for LSR protocol. We started off with
LSR coefficient, pointed out its limitations which was mitigated by E-LSR coefficient. Finally, we proposed
L-LSR coefficient which is the most efficient of all because it allows nodes to choose coefficient locally. We
have compared the performance of all the three coefficient-based LSR protocol among each other as well
as with OSPF. We have shown through simulation that all the LSR family of protocol perform better than
OSPF in term of delay and PPD. Moreover, L-LSR achieves very significant performance improvement over
LSR and E-LSR. Thus, L-LSR can be very effective in providing QoS in best effort networks.
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