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Abstract—Recent research in the different functional
areas of modern routers have made proposals that can
greatly increase the efficiency of these machines. Most
of these proposals can be implemented quickly and often
efficiently in software. We wish to use personal computers
as forwarders in a network to utilize the advances made by
researchers. We therefore examine the ability of a personal
computer to act as a router. We analyze the performance
of a single general purpose computer and show that I/O is
the primary bottleneck. We then study the performance of
distributed router composed of multiple general purpose
computers. We study the performance of a star topology
and through experimental results we show that although its
performance is good, it lacks flexibility in its design. We
compare it with a multistage architecture. We conclude
with a proposal for an architecture that provides us with
a forwarder that is both flexible and scalable.

I. INTRODUCTION

The changing requirements in routers demands flex-
ibility in its design. The functions performed by a
router at different time scales have varied over the
years. Current routers are the fourth generation in their
evolution [1]. Modern routers are no longer passive
forwarders of traffic. The hardware and software in
routers have been creatively designed to keep up with the
new requirements imposed on them [2]. These include
supporting firewalls, encryption capabilities, QoS, per-
user forwarding rules, very deep packet inspection, Vir-
tual Private Networks, Network Address Translation and
more. These advances have been in the architecture, the
algorithms and the functionalities offered by the routers.

Most of these research proposals can be implemented
in software and hardware. We believe that implementa-
tion in software on a personal computer (PC) is easier
and sometimes quicker because tremendous support tools
are available. It is therefore natural to ask whether a gen-
eral purpose computer can act as a networking element—
specifically a router. We already have a large body of
software that enables a general purpose computer to act
as a router. The next step is to identify the performance
characteristics of this PC based router.

A router consists of three distinct planes of
operation—control, data and management. Each plane
works at a different time scale and hence requires a
different level of performance. The most performance
demanding plane is the data plane where the timescale
is at the bit level. A performance evaluation of a PC
in the data plane should give us a good idea of the
capabilities of a personal computer. We have, therefore,
restricted ourselves only to the data plane for the present.
Our study covers non-commercial publicly described
hardware and software. Previous work on this [3] has

concluded that a high end general purpose computer is
limited by its I/O bus. We extend this work to account for
different forwarding table sizes and different number of
flows. We start with a comparison of the Linux kernel’s
[4] performance with Click [5] software.

We observe like Bianco et al. [3] that a single
general purpose computer is not sufficiently powerful to
handle even one Gigabit per second traffic. Therefore, we
propose a distributed design that uses multiple PCs. We
evaluate the performance of one such design where the
computers are connected to each other in a star topology
through a high speed switch. This set of computers forms
a single logical router and performs much better than the
single PC setup. However, we notice that because of it’s
symmetric design, it is less than ideal in certain cases.

We therefore look into another proposed design [6]
which is a two-stage architecture. The first stage or
the front-end acts like a layer 2 load balancer. The
second stage or the back-end consists of the layer 3
forwarders. We examine the performance characteristics
of this architecture and the flexibility it offers for the
implementation of certain research proposals.

The remainder of the paper is organized as follows.
In Section II we have an overview of some of these re-
search proposals. Section III discusses the experimental
performance of the single computer setup for both Click
[5] and Linux. Section IV discusses the experimental
performance results of one distributed architecture. Sec-
tion V discusses the multistage architecture proposal for
a router. We offer some conclusions in Section VI.

II. RECENT RESEARCH PROPOSALS IN ROUTERS

Some researchers have proposed adding many new
functions on a router [7]. Some of these also propose
a fresh approach in the internal design as routers are
not just passive forwarders of traffic anymore. Deeper
inspection of packets may allow a router to provide better
functionality including security at the edge of a network.
Several approaches have been suggested [8], [9].

For packet processing, instead of ASICs, network
processor (NP) based routers were designed because
they offer programming flexibility and yet are more
specific in their abilities to process packets than general
purpose CPUs [10]. Parallel processing of packets has
been attempted in routers. Most modern routers perform
the forwarding function for most packets on the line
card itself [1]. There are proposals to take advantage
of pipelining to process packets in parallel.

It was previously argued for the end-to-end design
philosophy in the network [11] and for separation
of functions within the device itself [12]. With new
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Fig. 1. The router and machine interconnections

services being demanded of the routers, new proposals
for its software architecture have been put forward [13].
Principles of software engineering are used for better
performance. A study of a few different architectures
[14] concludes that modularization creates a flexible and
extensible router. Linux in the data plane, Quagga and
XORP [15] in the control plane, separate the different
routing protocols into discrete portions of software.
Modularization allows easier decoupling which in turn
allows flexibility in design. So far, the software of the
control and data planes have been tightly coupled. An
argument to separate the control plane (CP) from the
data plane (DP) of a router has been proposed by many
researchers [16], [17]. Rexford et al. claim that this
approach improves reacheability, performance, reliability
and security of the network. General purpose computers
are used as forwarders. Click [5], a modular software
router has been shown to be an impressive alternative
on a PC. A router that that used the DEC Alpha as the
main forwarder ran hand written assembly code [18].

In the control plane, a router runs distributed algo-
rithms to compute a forwarding table. In the data plane,
the forwarding function looks up the forwarding table
to determine the next hop of a packet and sends that
packet to the next hop. New algorithms and extensions
are continuously proposed to improve operations in both
these areas [19], [20]. A good survey paper [21]
discusses most of the common approaches to packet
classification. Hash tables, aggregated bit vectors and
decision trees are some techniques. There are some other
equally important algorithms in the areas of scheduling,
reliability and measurement.

III. SINGLE COMPUTER ARCHITECTURE

We first start with a simple base design, i.e. a single
personal computer (PC), and identify the limitations
inherent in it. We wish to identify limitations in the
processing capability, the I/O capability and the software
of this machine. To achieve this, we run a series of
experiments that stress these aspects of this PC. We used
Gigabit Ethernet as our link layer and UDP/IP packets.
Since the router is to be stress tested, we have injected
fixed size packets as a stream of constant bit rate (CBR)
traffic. We varied the bit rate of the injected trafffic and
observed the system’s response.

As shown in Fig. 1, the Linux router is connected to
four test machines (TMs). The test machines are used
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Fig. 2. Click vs. Linux

to source and sink the traffic. There are two source
machines and two sinks. Only the router performs layer
3 routing. The TMs and the router are interconnected
with a layer 2 Gigabit switch.

Appendices A.1 and A.2 list the details about the
computer hardware. The operating system details are
mentioned in Appendix B.2 and the tools used in our
experiments are detailed in Appendix B.

We first try to identify software that will perform the
forwarding in the router. We compare two open source
software: Linux and Click.

A. Performance of Click vs. Linux
Click [5] is a modular, software router for PCs. Linux

is the kernel of the GNU/Linux operating system which
has built-in ability to act as a router. We compare the
performance of Click with Linux’s routing ability. For
our experiments, we configured Click to adhere to the
RFC 1812 standard for the forwarding path.

In our experiments, the tests were run for three
different packet sizes (64, 576 and 1470 bytes), for
three different number of flows (one, two and many)
and for two different forwarding table (FT) sizes (10
and 1000 entries). In this paper, we are reporting the
results only for the case of FT size 1000 and many
flows. From the graphs in Fig. 2, we note that Click
mostly outperforms Linux in terms of forwarding ability
for different packet sizes. Click continues to outperform
Linux with increasing FT size (which is not shown here).

Thus, the better choice of software for a PC based
forwarder is Click. Click unfortunately, did not, as of at
the time of our experiments, support large forwarding
tables in the kernel mode of operation. Therefore, we
used the Linux kernel networking stack for all our
remaining experiments.

B. Experiment Results for a Single Computer Router
A router processes every incoming packet and also de-

cides its next hop. Thus, the processing elements inside
the router can be a bottleneck for packet processing rate.
Our experiments tested the throughput and therefore the
packet processing rate capability of the PC router.

We used three different parameters. The size of the
packets, the number of flows (source and destination
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Fig. 3. Single flow on a PC router with FT sizes of 1K and 167K

pairs) and forwarding table size. For packet size, we
used three values: 64, 576 and 1470 bytes. Minimum
packet size stresses processing elements and hence 64
was chosen. The average packet size on the Internet [22]
is acknowledged to be 576 bytes. The maximum packet
size stresses the I/O hardware and hence 1470 bytes
were chosen since we use Ethernet for our link layer.For
number of flows, we chose one, two and many. For one
flow, one source computer sent packets destined to the
same destination sink computer. This tested the caching
mechanism of the router. For two flows, the first source
sent packets to the first sink only and the second source
sent packets to the second sink only. This tested the
software switching and caching mechanism for all links
together. For many flows, each source generated random
destination IP addresses. Thus successive packets in this
scenario could end at different sinks. This test simulates
a real world router living away from the edge of a
network. Lastly, four different firwarding table sizes were
chosen—10, 1000, 10000 and 167000 entries. These
entries were taken from a core router on the Internet.
The average of 12 readings is reported.

The graphs are plotted to show the input rate and the
actual throughput at the router. The graphs compare for
the different flow scenarios as well as for different packet
sizes.
1) For a single flow: We first consider the case for

packets in a single flow. Fig. 3 shows the results from
our experiments. We have a single flow going from Test
Machine 3 to Test Machine 1 via the router. Note that the
NIC receiving the packets on the router is NAPI enabled.
We have shown the results only for FT sizes 1000 and
167000. We make a couple of observations.

First, the packet generation source machine itself is a
bottleneck. This can be seen from the fact that the packet
injection rate does not increase after a point.

Second, even with a reduced packet input rate (as
packet size increased) the Gigabit link remained unsatu-
rated. This despite that, the processor can process almost
three times more packets per second (as seen in the 64
bytes case). Clearly, the I/O bus on the PC router and
the source is restricting the throughput.
2) For Two Flows: We next consider the case for

packets in two flows. Here, the first flow is from Test
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Fig. 4. Two flows on a PC router with FT sizes of 1K and 167K

Machine 3 to Test Machine 1. The second flow is from
Test Machine 4 to Test Machine 2. We make some
observations.

Comparing Fig. 4 with Fig. 3, we observe that the
throughput for two flows has increased to a small extent.
We noticed during our tests that the router would forward
an unequal number of packets from the two flows. This
was because one of the reception NICs on the router
was using NAPI and hence the scheduling mechanism
favored it. The other did not use NAPI leading to
possible IRQ thrashing.

We note that the throughput of the router drops after
a point. The additional load on the router as it switches
between the two flows causes work to be lost as packets
get dropped. Processing is thus a bottleneck. We also
observe that for 576 byte packets, the drop is more
than that for minimum or maximum sized packets. We
believe the reason for this behavior is the high cost of
bus arbitration mechanism on the PCI bus for average
sized packets.
3) For No Flows i.e. randomly destined packets:

Lastly, we consider the case for no flows wherein,
every successive packet coming into the router, has a
different destination address. We make two interesting
observations from Fig. 5.

First, after a certain packet injection rate there is a
sharp drop in the packet processing capability of the
router. As the injection rate increases, the router’s queue
length increases. Sometimes, the packet does not get
fetched from the NIC and it is overwritten. These appear
as overruns in the NIC statistics. Secondly, as the FT size
increases, the packet processing rate drops further. For
both of these observations, we believe, route lookup time
is the main bottleneck.

C. Observations for the Single Computer
• Forwarding Table Size Affects Performance:

From Fig. 5, we observe that the FT size makes
a substantial impact on the forwarding rate and can
be a bottleneck.

• Line Rates Not Reached: It is observed from
Fig. 3 and Fig. 4 that the router’s processor does
not reach its packet processing capacity for larger
packet sizes. Thus, the I/O bus is one bottleneck.
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Fig. 5. Many flows on a PC router with FT sizes of 1K and 167K

• Packet Drops at NICs: As the injection rate
increases into multiple NICs, a large number of
overruns are observed in the NICs. This means that
the CPU can also be a bottleneck at these values.

• Plateau Regions: After a point, the router through-
put becomes constant or decreases linearly with a
small slope and we see a plateau. As packet size
increases, this happens earlier. For 64-byte packets,
we did not reach the end of the plateau due to the
source bottleneck but we did in the case of the larger
packet sizes.

IV. A DISTRIBUTED ARCHITECTURE

The observations in Sec. III-C naturally led us to
consider a router made up of a distributed set of PCs. A
distributed architecture should allow higher performance.
In a distributed architecture, a PCr would now act like a
forwarder and interconnected with other PCs similar to
itself. All the PCs together act as a single logical router.
Therefore, we next address the hardware and software
design for our distributed architecture.

There are several basic topologies for interconnection
of the computers in our distributed setup—bus, ring, star,
mesh etc. A bus topology does not make sense as it has
obvious inefficiencies in communication between pairs
of nodes in the set. A ring topology has two obvious
disadvantages. Not only will a packet have to traverse
the network stacks of multiple computers unnecessarily,
it fails to provide adequate service if even a single
computer goes down. A mesh topology requires n

2

interconnections which will quickly cause scaling issues.
Thus, we are left with the star topology.

A look at most modern router architecture reveals that
each line card in the router is capable of performing
forwarding. In the same way, each of our PCs act
as forwarders akin to a line card of a router. In the
commercial router design, the line cards are connected
by a very high speed switching fabric. Similarly, our
PCs are interconnected to each other with a high speed
switch. Thus, as in Fig. 6, we use a star topology
for our architecture and consider the impact on our
forwarding performance. The hardware details are listed
in Appendix A.2.

TM = TEST
           MACHINE

  R = ROUTER

HIGH SPEED SWITCH

R1 R2

R3 R4

TEST
MACHINE

TEST
MACHINE

TEST
MACHINE

TEST
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Fig. 6. Distributed Setup. Star Topology
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Fig. 7. Single flow on a distributed setup with FT sizes of 1K and
167K

Four PCs act as forwarders—R1, R2, R3 and R4. The
dotted box around the four computers is to show that
these computers should act as a single logical router.
Each forwarder has two NIC cards. One NIC is used for
the interconnection amongst the forwarders. The other
NIC connects to a test machine directly.

The PCs run software as in Section B.2 and Section B.
We performed the same set of experiments as in Sec-
tion III-B. The two sources sent their packets directly
to R3 and R4. The two sinks were connected to R1
and R2. We configured router R3 to forward packets
to R1 by default. Similarly, router R4 was configured to
forward packets to router R2 by default. For non default
entries, R3 sends the packets to R2 and R4 forwards
the packets to R1. This prevents the traffic to sink on
only one interface in a forwarder during the many flows
scenario test.

For the case of single flow, we see from Fig. 7 that
the performance is about the same as that of the case for
the single computer in Fig. 3.

We also observe that curves in the distributed case
are smoother. We assume this to be so because the flow
passes through the network stack of two computers.

For the case of two flows, comparing Fig. 8 and Fig. 4,
we see almost a doubling in throughput. This is because
the two flows do not mix anywhere.

In the case for many flows, since the packets have
random destination addresses, the flows from the two
sources mix and cross over and hence a more real picture
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Fig. 9. Many flows on a distributed setup with FT sizes of 1K and
167K

emerges. A comparison of Fig. 9 and Fig. 5 shows that
the performance drop is along similar lines. However,
in the distributed case, the performance drop is very
noticeable for small packet size and not as much for
larger packet sizes.
A. Observations

• Increased throughput: The throughput is almost
double for every case with more than one flow.
Thus, the I/O bottleneck of a single PC can be
overcome by using a distributed setup.

• Line Rates still not achievable: This is expected
as the line rates are still bound by the limitations
of the PC and not by the architecture.

• Large FT size causes performance drop:
Throughput drops as the FT size increases. Thus,
FT size can be a bottleneck here too.

• Smoother Curves: The curves for the distributed
setup are smoother than the single setup. It could
be because the flows course through the network
stack of two computers.

B. Architectural Issues
• Double Routing: Packets are getting routed twice

which is inefficient and TTL is decremented twice.
The TTL decrementing code can lookup the identity
of the incoming interface for the packet and decre-
ment the count iff packet is coming from outside the
logical router. The double routing can be avoided
by adopting the architecture described in Section V.

• Latency: The packets in our distributed architecture
travel though two software network stacks causing
increased latency.

• Routing Table Efficiency: Forwarding table size
dictates performance in certain cases. Partitioning
of FT with no overlap may be desired.

• Control Plane: We need to ensure consistency of
the router’s forwarding tables inside the different
computers. Else, a packet may die shuttling between
the different computers of the system. A family
of protocols to effect this and other control plane
issues has been developed but was not implemented
when our experiments were performed.

• Inefficiency in ports per machine: To build a
router with many gigabit ports and achieve max-
imum performance, one PC per incoming line is
necessary. Alternatively, use PCs with the newer
high speed buses.

• Fast switching interconnect: We need to always
ensure that the interconnection network is not the
new bottleneck.

V. AN ALTERNATE DISTRIBUTED ARCHITECTURE

Bianco et al. proposed a multistage distributed router
[6] using PCs. Their design uses two stages. The first-
stage acts as load balancer at layer 2 and sends incoming
packets to the the back-stage. The back stage PCs act as
layer 3 forwarders. In this design, there can be asymme-
try between the front and back stages in terms of number
of PCs, their capabilities and the interconnections.

It was observed that this architecture allows a lot
more flexibility in distributing the work done by a
router. The first stage may do more sophisticated pro-
cessing/classification and send the packets to a particular
back-end forwarder. Thus, some of the forwarders in this
architecture may do specialized processing. The number
of second stage PCs may be scaled as per requirements.
The architecture allows redundancy and high availablilty
to be implemented more easily. It must be noted that the
front end stage can easily become a bottleneck in this
architecture if more than a Gigabit of traffic is to flow
through a first-stage PC.

A multistage design introduces some issues that need
to be addressed like maintaining packet ordering [23],
handling fragmented packets, synchronization of for-
warding tables in the back stages, different processor
capabilities in the back stages, intelligent load balancing
in case of failures. Once these issues are addressed,
this architecture may give us both flexibility and high
performance.

VI. CONCLUSION

We observe inadequacies in using a single general
purpose computer as a router for our goal for high per-
formance routing. We therefore examined a distributed
router approach in order to make substantial gains in
flexibility and the performance. The distributed nature
allows us to implement a number of different research
proposals for packet forwarding or techniques within.

We examined two such distributed architectures. The
first design was a simple symmetric design that allowed
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us gains in performance but not necessarily in flexibil-
ity. The second architecture, the multistage architecture,
allows us to have gains in performance and in flexibility.
It is scalable, robust and can be extended easily through
software programming. It allows decoupling of functions
inside a router. It can therefore accommodate disparate
hardware and software and thus lends itself for expan-
sion.

APPENDIX

A. Hardware Details
1) For Single Computer Experiment: Opteron

2.0GHz, 2GB DDR 400 RAM in dual channel mode.
Four Gigabit Ethernet interfaces. An onboard NVidia,
a DLink DL2000 32-bit PCI card, two Intel 82540EM
32-bit PCI cards. The single PCI bus runs at 66MHz.
The Intel NIC cards are NAPI enabled in our tests.

The test machines are Intel Pentium 4 HT 3.0 GHz
with 512 MB DDR 400 RAM, one Intel 82540EM 32-bit
PCI GbE card. The single PCI bus runs at 66MHz.

The Layer 2 switch is a DLink DGS-1008D.
2) For Multiple Computer Experiment: For this case,

we took three additional computers to act as forwarders.
So, the four forwarders were: One Opteron 2.0GHz, 2GB
DDR 400 RAM, NVidia and Intel NICs, one PCI bus
at 66MHz. Two Dual Core CPUs 2.4GHz. 2GB DDR-
II 400 RAM, Intel NICs, one PCI bus at 66MHz. One
Dual Core CPU 2.13GHz, 2GB DDR-II 400 RAM, Intel
NICs, one PCI bus at 66MHz.
B. Software Details
1) Tools: Click: Click version 1.5.0 compatible with

Linux kernel version 2.6.16-13. TCP Replay: A set of
tools used to work with captured tcpdump ”pcap” traffic
files. Perl: Perl scripts for manipulation of text output,
running two flows at the same time, populating Linux
FTs, and in post processing to generate graphs.
2) Operating System: Linux Version : 2.6.16-13. Tx

Queue Length: 10000 packets. Rx Queue Length: 30000
packets. Rx Window Size: 524287 bytes. Maximum Rx
Window Size: 524287 bytes. Tx Window Size: 524287
bytes.

The RX queue is shared by all interfaces and hence
we kept its length at 30000 packets. Since TX queues
are unique to each particular interface, we kept its size
at 10000. Further increase in lengths of queues did not
give us any observable benefit. The window sizes are at
the maximum.
C. Testing Procedure
1) Method for generating single flow: Test Machine 3

was generated packets using the Click software at a pre-
cise rate and addressed them to Test Machine 1 (TM1).
A Click script at TM1 collected the packets and incre-
mented counters for maintaining an absolute count of
packets received and for calculating the average number
of packets per second. After counting, the packets were
dropped. To ensure that only the correct packets were
being counted, we sent/received UDP packets on port
1234 only. Each single test/reading ran for approximately
10 seconds irrespective of the rate.

2) Method for generating two flows: Here, the earlier
method was extended to utilize all four test machines.
Flow 1 was between Test Machine 3 and Test Machine
1. Flow 2 was between Test Machine 4 and Test Machine
2. The rest of the details are similar to Section C.1.
3) Method for generating randomly destined packets:

A Click script at the source machine was used to
generate packets with random destination IP addresses.
Another Click script was run at the receiver to get the
statistics. The rest of the steps are the same as above.
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