
Intelligent Query Tree (IQT) Protocol to Improve RFID Tag Read Efficiency

Naval Bhandari, Anirudha Sahoo and Sridhar Iyer
Kanwal Rekhi School of Information Technology

Indian Institute of Technology, Bombay, Powai, Mumbai, India, 400076
email:fnaval, sahoo, srig@it.iitb.ac.in

Abstract
Radio Frequency Identification (RFID) is slated to be-

come a standard for tagging various products. As more and
more products become RFID enabled, fast tag identification
mechanisms will become important. Various tag identifica-
tion (or anti-collision) algorithms have been proposed for
RFID systems. This work focuses on methods to improve tag
read efficiency in RFID Systems. In this paper, we propose
an Intelligent Query Tree (IQT) Protocol for tag identifica-
tion that exploits specific prefix patterns in the tags and make
the identification process more efficient. IQT is a memoryless
protocol that identifies RFID tags more efficiently in scenar-
ios where tag IDs have some common prefix (e.g., common
vendor ID or product ID). IQT is suitable for readers de-
ployed in exclusive showrooms, shipment points of big malls,
where the products may come from same manufacturer and
may have same product IDs. We provide the worst case com-
plexity analysis of IQT and show the performance improve-
ment of this protocol over traditional Query Tree protocol in
different scenarios.

1. Introduction
Radio Frequency Identification (RFID) is a means of

identifying objects using radio frequency transmission[3, 7,
2]. In an RFID system, very small RF chips (called tags
or transponders) communicate wirelessly with readers (in-
terrogators) within a certain range. Tags can either be ac-
tive (powered by battery) or passive (powered by the reader
field).

A major problem with RFID systems is that a tag might
not be read, in spite of being in the reader’s range, due to
collisions[6]. We are mainly concerned with Single Reader-
Multiple Tags collision. Here multiple tags communicate
with the reader. They respond simultaneously and reader is
not able to interpret the signal. These problems need to be re-
solved to provide efficient solution for tag identification and
these are the major research areas, where work needs to be
done to practically implement RFID Systems.1.1. Motivation

RFID mechanism is inherently unreliable. Thus, we need
multiple read cycles to improve reliability of tag identifica-
tion. The conventional tag identification protocols do not
have any mechanism to use the information contained in tag
IDs to improve tag read efficiency. Hence, there is a need for
different tag identification protocol, which can use informa-

tion about specific prefix patterns in tag IDs so as to speed
up the tag read process.1.2. Problem Formulation

There are practical scenarios where tags have some spe-
cific pattern in their tag IDs. For example, items at godowns,
shipment points in malls, exclusive showrooms etc., have
some common prefix such as EPC version, manufacturer ID
or product ID. Our work targets improvement in these de-
ployment scenarios. Tag read efficiency can be improved by
reducing the number of bits transmitted during tag identifi-
cation process and also by using tag read history to reduce
the number of collisions in subsequent read cycles.

The rest of the paper is organized as follows: Section 2
discusses related work. Section 3 presents our proposed In-
telligent Query Tree (IQT) Protocol. Section 4 analyzes the
worst case complexity of IQT Protocol and compares it with
the complexity of Query Tree (QT) Protocol. Finally, con-
cluding remarks are given in Section 5.

2. Related Work
The IQT Protocol proposed in this paper belongs to the

class of Single Reader-Multiple Tag collision resolution pro-
tocols. Other important protocols in this category are Binary
Tree Protocol[14], Query Tree Protocol[14][9], Framed Slot-
ted Aloha based I-Code Protocol [12] and Adaptive Memo-
ryless Tag Anti-Collision Protocol[10].

IQT Protocol is closely related to QT Protocol. IQT Pro-
tocol improves QT Protocol to reduce the communication
overhead in the scenarios where TagIDs have some common
prefix.

Query Tree (QT) Protocol requires very less tag circuitry.
It is a memoryless tag identification protocol, in which the
tags do not need to remember their inquiring history. In this
protocol, the reader sends a query containing a prefix having
length of 1 to n bits. The tags whose prefixes match with
the bits sent by the reader, reply back with their tag ID. A
queue of such prefixes is maintained and the queries are sent
in order from this queue. As and when a query is done, its
corresponding entry is removed from the queue. If there is a
collision corresponding to any query, i.e., there are more than
one tags with the same prefix, the reader removes that query
and adds two new queries to the queue, first by appending
a 0, and then a 1 to the current prefix. No collision implies
either an ID has been read successfully or there is no tag with
matching prefix. An example is shown in Table 1 where there
are 3 tags with the IDs of 0000, 0010, 1000. In Table 1, the
first row corresponds to the first query (with null prefix), to

Reader sends Tags answer Status Queue Status (Initiallyfg)
start * collision f0, 1g
0 * collision f1, 00, 01g
1 1000 read f00, 01g
00 * collision f01, 000, 001g
01 no response f000, 001g
000 0000 read f001g
001 0010 read fg

Table 1. The tag identification process of
Query Tree Protocol

read the given set of tags. All tags reply to it. There is a
collision as there are more than one tags in the system. Then
it sends query with prefix0, which leads to collision again,
as there are two tags starting with0. Next time it tries1,
there is only one tag starting with1, which will reply back
with its tag ID, and is identified. Similarly process goes on
till all the tags have been identified.

I-Code Protocol is a probabilistic protocol, based on
framed slotted aloha principle, in which tags randomly
choose the slots to transmit. Adaptive Memoryless Tag Anti-
Collision Protocol is an improvement on Query Tree Proto-
col, to improve the subsequent read cycles.

When multiple readers try to read tags simultaneously,
and their reading operation interfere with each other, mul-
tiple reader collision avoidance algorithm is used. Impor-
tant protocols in this category are Colorwave Algorithm [13],
T-Colorings based Algorithm[5], Q-Learning Algorithm [8]
and Pulse Protocol[4]. Optimizations based upon these pro-
tocols may also be used in future, to improve tag read effi-
ciency.

3. Intelligent Query Tree Protocol
Intelligent Query Tree Protocol exploits specific prefix

patterns in the tag IDs to reduce the communication overhead
between reader and tags. The common prefix in tag IDs may
be due to the fact that items to which the tags are attached
have the same manufacturer or product type. Query Tree
Protocol (QT) has been modified for the scenarios where the
tags within the range of the reader have some common pre-
fix. It also uses history of read cycles to further improve the
tag read efficiency. Following are its advantages over Query
Tree Protocol:

� Reduction in number of bits transmitted by tag.� Reduction in number of collisions by maintaining the
history of tag read patterns.� Reduction in number of collisions for subsequent read
cycles by using the information of previous read cycles.

3.1. Key Terms
� EPC Code[1] : Like universal bar code, EPC code is

a standard Tag ID assignment code that assigns glob-
ally unique IDs to RFID tags. EPC code essentially
has four fields:EPC Version, Manufacturer ID, Prod-
uct Type ID, Item ID.� Read Cycle : Read cycle refers to the set of queries
required to read all the tags that are in range of reader
at a particular time. In a single read cycle, a reader may
not be able to read all the tags due to various factors like

collisions, interference etc. So multiple read cycles are
required to improve reliability.� Query : It refers to the command containing some pre-
fix sent by the reader, in response to which all the tags
with matching prefix reply back with their tag IDs.� Invert Query Command : It is just the opposite of the
normal query command. Reader sends some prefix with
the command and all the tags having prefixes different
from that sent by reader are supposed to reply to this
command. This command is issued to ensure that all
the tags, that are read by the reader in the current read
cycle, have same prefix.� Prefix Pool : It is a set of frequently occurring prefixes
sorted according to rank based upon the frequency of
their occurrence, and how recently the prefix was used
in previous read cycles.

Figure 1. Different types of nodes in query tree� No-Response Node: The leaf node in query tree where
no tag ID starting with that prefix is found. In Figure 1,
nodes represented by diamond are No-Response Nodes.� Identified Node : The node in the query tree that lead
to response from single tag i.e one and only one tag is
identified using this prefix. Nodes represented by filled
circles in Figure 1 are Identified Nodes.� Collision Nodes: These are the internal nodes in the
query tree which leads to response from more than one
tag IDs corresponding to a query using a prefix. In Fig-
ure 1, unfilled circles represent the Collision or Internal
Nodes.

3.2. Notations Used: Table 2 shows variousnotations used in this paper.
EPC Number of bits for EPC version.
Manufacturerid Number of bits for Manufacturer ID.
Product id Number of bits for Product ID.
Item no Number of bits for Item ID.
prefix1 Bits corresponding toEPCVersion +Manufacturerid +

Product id in the EPC code.
prefix2 Bits corresponding toEPCVersion +Manufacturerid in

the EPC code.
max tries Maximum number times, the reader tries the prefixes

from prefix pool, to guess the prefix for current read cy-
cle.

k Number of bits in tag ID
prefix Refers tofprefix1 or prefix2g
rem (k � prefix) bits

Table 2. Notations Used in this paper

3.3. Working of Intelligent Query Tree Pro-tocol
Mechanism used in IQT to identify tags in the first read

cycle is different from subsequent read cycles. When IQT

performs first read cycle, it has no knowledge of tag IDs, but
when it performs subsequent read cycles, it knows whether
the tags have some common prefix. If they have a common
prefix, then it is known to the reader. Hence, IQT does not
read those bits again.

3.3.1. First Read Cycle
Intelligent Query Tree Protocol does the following steps to
perform first read cycle.

Step 1 - Try prefixes from Prefix Pool :For the first read
cycle, prefix with highest score from prefix pool is selected
and Invert Query Command (see Section 3.1) is executed us-
ing first prefix2bits to check whether all the tags have the
same firstprefix2bits. If there is a collision, next prefix from
the prefix pool is tried and so on.

If it succeeds, then the reader tries other prefixes (which
have sameprefix2bits as that of the one which lead to suc-
cess) by sendingprefix1bits. Reader now sendsprefix1bits
to execute invert query command. This guessing phase con-
tinues for a maximum ofmax tries number of times. If it
succeeds, then it knows the firstprefix1bits that are common
in all the tags present.

Step 2 - If Step 1 fails for First Read Cycle : If it is
not able to know the prefix in step 1, then it proceeds with
normal Query Tree Protocol to know firstprefix1bits.

Step 3 : After reading firstprefix1bits either from step 1
or step 2, reader now executes invert query command using
prefix1.

Figure 2. Tag Identification using Intelligent
Query Tree Protocol

� If no tag replies, it means all tags have the same first
prefix1bits. Hence, communication can take place us-
ing Item no only. This leads to reduction in number
of bits transmitted between reader and the tags. Area-
2 in Figure 2, shows the queries where communication
takes place using fewer bits. Reader also ignores all the
queries with number of bits less thanprefix1as it has
already read theprefix1bits successfully and it knows
that all the tags start with thisprefix1. This leads to sav-
ing in number of queries as shown by Area-1 in Figure
2. Here the nodes marked with crosses represent the
queries saved (not needed) in IQT Protocol. If reader
succeeds in guessing theprefix, it need not perform any
other query in Area-1.� If some tags reply, then the invert query is executed with
prefix2. If no tag replies to this command, then it means

that all the tags have the same manufacturer ID. Hence,
the reader can communicate using only the bits of prod-
uct type and item number. The reader ignores all the
queries with number of bits less thanprefix2 for this
read cycle.� If some tags reply to invert query withprefix2, it means
that there are items from different manufacturers in the
lot. In this case normal Query Tree Protocol will be
used for tag identification.

3.3.2. Subsequent Read Cycles
IQT improves subsequent read cycles by storing information
about previous read cycles. This information is stored in the
form of candidate queue as described in [10]. Candidate
queue contains Identified Nodes and No Response Nodes
only, it does not include Collision Nodes.

For subsequent cycles, query is issued using only the el-
ements of candidate queue i.e. using only the No-Response
Nodes and the Identified Nodes of the previous read cycle. If
any new tag appears which leads to collision, then only the
subtree rooted at that node is further explored using normal
QT Protocol, instead of following the whole query tree from
the root as shown in 3.

Further improvement is possible if all the tags have the
same prefix and it matches with the one found in the previ-
ous read cycle. In that case query command with prefixes
less thanprefix1bits need not be executed. That means, all
nodes in Area-1, and Collision Nodes in Area-2 of Figure 3
represent the saving in terms of number of queries. Hence,
query command is only issued for the No-Response Nodes
and Identified Nodes of the previous read cycle and that too
with lesser (rem) bits. For subsequent read cycles, the pro-

Figure 3. Query using candidate queue entries
for subsequent read cycles

tocol works as follows.
Run invert query with maximum matched prefix (prefix1

or prefix2) found in the first read cycle.� If query with prefix1 succeeds, it means that all the
tags have common prefixprefix1. Then the reader starts
querying using only the No Response Nodes as well as
the Identified Nodes, having number of bits more than
prefix1. It does not query nodes having lesser number
of bits, because it already knows theprefix1 bits and
has ensured that no tag has different prefix. Now com-
munication takes place using onlyItem no (bits below
prefix1).

� ELSE If query withprefix2succeeds, then reader starts
querying with Identified Nodes and No Response Nodes
below prefix2 levels. Communication between reader
and tag now takes place using the bits belowprefix2.� Else reader has to send queries for all the Identified and
No Response Nodes using k bits (all the bits in tag ID).

4. Comparative analysis of IQT Protocol with
QT Protocol

IQT Protocol achieves substantially better performance
with very minimal change in tag hardware complexity. This
is because along with the prefix, the query itself can con-
tain control information to determine whether query will take
place using the entire tagID or with therembits.

Performance of Intelligent Query Tree Protocol is com-
pared with normal Query Tree Protocol. Better efficiency
can be obtained by decreasing the number of bits transmitted
between reader and tag in one query, as well as by reducing
the number of queries in one read cycle. Different optimiza-
tion techniques for the first read cycle and the subsequent
read cycles are applied. In the first read cycle, improvement
is mainly due to reduction in bits transmitted between reader
and tag, while in subsequent read cycles, the improvement is
mainly due to reduction in number of queries.4.1. Where IQT Protocol gains over QT Pro-tocol ?

Figure 2 describes the tag reading using Intelligent Query
Tree Protocol for the first read cycle. Optimization is due to
two factors.

� Crosses marked nodes in Area-1 of Figure 2 denote the
reduction in number of queries in IQT Protocol over
normal Query Tree Protocol. After reachingprefixth
level, the Intelligent Query Tree Protocol will check
whether all the items have prefixes matching with the
bit sequence read till that point. If all the items have
first prefix bits common, then reader need not perform
query for some other node, with less thanprefix bits.
Hence on an average, half of the queries corresponding
to No-Response Nodes tillprefix levels will be saved.
Savings are even greater, if we are able to guess the
prefix in certain number of tries, instead of learning it
one bit at a time.� Area-2 in Figure 2 denotes the improvement due to re-
duction in number of bits. Queries in Area-2 need not
be performed using the whole tag ID. Hence, if all the
items have firstprefix bits common, then communica-
tion can take place using only the remaining (rem) bits.

Figure 3 describes the saving for subsequent read cycles us-
ing Intelligent Query Tree Protocol over Query Tree Proto-
col. Again, optimization is due to two factors.

� For the nodes in Area-1 of Figure 3, we need not per-
form any query, as we already know the prefix from first
read cycle. We need to confirm that no tag with different
prefix appears, so we run Invert Query Command using
the prefix found in first read cycle. Hence we save all
the queries in Area-1, and perform just one Invert Query
Command. This will lead to success most of the times,
as we are using the protocol in the scenarios where there

is high probability of items from same vendor or prod-
uct type i.e. tags with some common prefix are highly
probable.� In Area-2 of Figure 3, we will save the queries corre-
sponding to Collision Nodes (crossed nodes). Also for
the remaining queries we will be using lesser number of
bits (rem) only.

4.2. Comparisons of IQT Protocol with QTProtocol in the worst case of tag iden-ti�cation
In this section, we analyze performance of IQT Protocol

over QT. We look at the worst case scenario of tag identifica-
tion, which occurs when the tags present in the system have
IDs such that maximum number of queries are required. We
look at the worst case, because it gives lower bound in terms
of number of tag reads per cycle.

In this study, we look at two performance parameters: 1)
the number of queries to identify all the tags and 2) the num-
ber of bits transmitted per query. Note that these two param-
eters indirectly decide the performance of a reader in terms
of number of tags read per unit time. We show that IQT pro-
tocol performs much better than QT. Hence, readers running
IQT protocol can read more tags per unit time.

We first calculate the number of queries required in the
worst case of tag identification i.e. size of the largest query
tree. We present our results using the following lemmas and
theorems. First, we define some important terms used:

Definition 1 TagPair is a set of two tags, which differ only in the last bit
of their tag IDs. This means that tags in the TagPair have the firstk � 1
bits common in their tag ID. Hence, to identify a TagPair, the query tree will
have collisions uptok�1 levels and identification of the tags would happen
at thekth level. ith TagPair in a system is denoted as TagPairi.
Note that, to identify only a TagPair, the query tree will grow to levelk, root
of the tree being level0.

Figure 4. Overlapped and Non Overlapped Re-
gions in query tree

Definition 2 Pairwise Subtree (SQTi) is defined as the query tree formed
while identifying only two tags belonging toTagPairi. It is obvious thatSQTi would be a subtree ofQT . QT is the query tree formed while iden-
tifying all then tags in the system. Figure 4(a) shows the Pairwise Subtree
(SQTi) corresponding to the tag pairTagPairi
Definition 3 Overlapping Region (SOL) is the subtree of the query treeQT from level 0 to level L, as shown in Figure 4(c), where L is given byL = maximum level at which8i;9jjSQTi\SQTj 6= ;: (1)

In other words, at each level in Overlapping Region, at least one node is
common among Pairwise Subtrees.

Definition 4 Non Overlapping Region (SNOL) is the region of the query
tree from levelL + 1 to levelk where L is given in Equation 1. In other
words, in this region, there is no overlap among all the Pairwise Subtrees,
as shown in Figure 4(c).

Lemma 1 If we have only two tags withk bit tag IDs, then the query tree
will have maximum ofk levels with2 � k+1 nodes. This happens when the
two tags form a TagPair.

Lemma 2 If we have an even number of tags and all of them form Tag-
Pairs, the query tree will haven nodes at every level in the Non Overlapping
Region.

Lemma 3 If the number of tags (n) is odd and the tags form(n � 1)=2
TagPairs, then the query tree will haven�1 nodes at every level in the Non
Overlapping Region.

Lemma 4 In the Overlapping Region, query tree having an even number
of n tags, which formsn=2 TagPairs, will always have less thann nodes
at each level. If the number of tagsn is odd and they form(n � 1)=2
TagPairs, then the query tree will have less thann � 1 nodes at each level
in the Overlapping Region.

Lemma 5 Number of levels in Overlapping Region will be at leastblog2(n� 2)c; n > 2, when there aren tags formingbn=2c TagPairs.

Proofs of above lemmas can be found in [11].

Theorem 1 If n is the number of tags, then the maximum number of nodes
in the query tree is given by:n 2blog2(n�2)c+1 � 1 + (k � blog2(n� 2)c) � (n) if n is even2blog2(n�2)c+1 � 1 + (k � blog2(n� 2)c) � (n� 1) if n is odd

(2)

Proof: From Lemma 1, size of query tree will be maximum if tags
occur as TagPairs. Lemma 4 shows that the largest query tree for a given
number ofn tags (formingbn=2c TagPairs) will be obtained if there are
least number of levels in the Overlapping Region. This is because, Overlap-
ping Region has fewer nodes than Non Overlapping Region.

Nodes in the query tree are divided into two parts: Nodes in Overlapping
Region and Nodes in Non Overlapping Region

Maximum number of nodes in the Overlapping Region is given by the
maximum possible nodes in the complete binary tree of heightblog2(n �2)c, n > 2 . This is equal to:n 20 + 21 + : : :+ 2blog2(n�2)c for n > 2= 2blog2(n�2)c+1 � 1 for n > 2 (3)

Consider the case whenn is even. From Lemma 3, each level in Non
Overlapping Region will haven nodes. Since there are(blog2(n � 2)c)
levels in the Overlapping Region i.e. there are(k � blog2(n � 2)c) in
the Non Overlapping Region, hence maximum number of nodes in Non
Overlapping Region isn � (k � blog2(n� 2)c). Hence, number of nodes
in largest query tree is given by:2blog2(n�2)c+1 � 1 + (k � blog2(n� 2)c) � (n) for n > 2 (4)

Now considern to be odd. In this case, maximum number of nodes will
be equal to nodes in the largest query tree withn� 1 nodes, since last odd
tag will just replace one No-Response Node with Identified Node.
Hence, number of nodes is given by:2blog2(n�2)c+1 � 1 + (k � blog2(n� 2)c) � (n� 1) for n > 2

(5)

4.2.1. Performance Improvement in the First Read Cycle
IQT would be deployed where it is highly probable that tag
IDs have common manufacturer ID or product ID fields i.e.
all the tags have firstprefixbits same.prefix is equal topre-
fix1, if all the items have same EPC version, manufacturer
and product type, and it is equal toprefix2 if all the items
have same EPC version and manufacturer, but they are of
different product types. In this scenario, we assume that
first prefix bits of all the tags are same. We will consider
only even number of tags to derive expressions for the com-
plexity, since all the calculations remain same, just the term

2blog2(n�2)c+1�1+(rem�blog2(n�2)c)� (n) will be re-
placed by2blog2(n�2)c+1�1+(rem�blog2(n�2)c)�(n�1),
for odd values ofn, as explained in Theorem 1

Number of queries required in QT Protocol:
Assuming even number of tags andn > 2, Query Tree Proto-
col requires2�prefix+1 queries to identify firstprefixbits, as
shown in Figure 2. Theorem 1 shows that withn (even) tags,
we require maximum of2blog2(n�2)c+1�1+(k�blog2(n�2)c) � (n) queries. But in our case, we are assuming that
tags have commonprefix, and tag IDs are distributed accord-
ing to worst case scenario for the levels belowprefix i.e. for(k�prefix)(i.e. rem) levels. Forrem levels the largest query
tree will have2blog2(n�2)c+1�1+(rem�blog2(n�2)c)�(n)
nodes. Hence, total number of queries required are:n 2 � prefix+ 1 + 2blog2(n�2)c+1 � 1+(rem� blog2(n� 2)c) � (n) for n > 2 (6)

Since tags reply with theirk bit tag IDs in the QT Protocol,
the total number of bits transmitted by tags in the first read
cycle is given byn (2 � prefix+ 1 + 2blog2(n�2)c+1 � 1+(rem� blog2(n� 2)c) � (n)) � k bits: (7)

Number of queries required in IQT Protocol:
Case 1: prefix is guessed withinmax tries:

Suppose reader is able to guess the prefix inno of guesses
tries. Further, one Invert Query Command is required to con-
firm that all the tags have the same firstprefixnumber of bits.
Then, total number of queries required by IQT protocol will
be:no of guesses+1+2blog2(n�2)c+1�1+(rem�blog2(n�2)c) �n Every unsuccessful guess of Invert Query command
will be responded by a tag withk bits. But once the Invert
Query command succeeds, the remaining queries(queries be-
low prefix levels) will only requirerembits.
Hence, the total number of bits transmitted by the tags are
given by no of guesses+ 1) � k + (2blog2(n�2)c+1 � 1 +(rem�blog2(n� 2)c) �n) � rem bits: So, performance im-
provement of IQT over QT, in terms of number of queries, is
given by (2 � prefix� no of guesses) (8)

and the improvement, in terms of bits transmitted by a tag, is((2 � prefix� no of guesses) � k+(2blog2(n�2)c+1 � 1 + (rem� blog2(n� 2)c) � n)�(k - rem) bits: (9)

Case 2: prefix is not guessed withinmax tries: This is the
case, when the prefix is not guessed withinmax tries tries.
Hence, firstprefixbits are learnt using the normal query tree
protocol. In the worst case, we need2 � prefix+ 1 queries
to learn the firstprefixbits, as needed by normal Query Tree
Protocol. Hence performance improvement in terms of the
number of bits will only ben (2blog2(n�2)c+1 � 1 + (rem� blog2(n� 2)c) � n)�(k � rem)�max tries � k bits,

(10)

since we waste maxtries queries to guess the prefix.
Table 3 shows the performance improvement in two sce-

narios. First, where all the tags have firstprefix1bits com-
mon and second, where all the tags have firstprefix2 bits
common. Second and Third columns in the table show the
percentage saving in bits whereprefix is guessed in4 tries.
Fourth and Fifth columns show the improvement when the
reader is not able to guess the prefix and it learns firstprefix
bits using the normal QT Protocol.

4.2.2. Performance Improvement in the Subsequent Read
Cycles

If the set of tags is exactly the same as in the first read cy-
cle, we will save queries corresponding to all the nodes in
Area-1, and Collision Nodes in Area-2 of Figure 3. Also,
we will need lesser number of bits for No-Response and
Identified Nodes in Area-2, if there is some matchingprefix
among all the tags. In this case, when set of tags is exactly
same as that of first read cycle, we will save2 � prefix+ 1
queries in Area-1, but one Invert Query Command needs
to be executed to confirm that all the tags have same pre-
fix. Hence, number of queries saved in Area-1 will be2 � prefix. In Area-2, we will save queries correspond-
ing to all the internal nodes. Since, in worst case, we have(2blog2(n�2)c+1�1)+(rem�blog2(n�2)c)�n nodes in the
subtree belowprefixlevels, the number of internal nodes will
be[(2blog2(n�2)c+1�1)+(rem�blog2(n�2)c)�n+1]=2�1.
Number of leaf nodes(No-Response and Identified Nodes)
are given by[(2blog2(n�2)c+1�1)+(rem�blog2(n�2)c)�n + 1]=2, which leads to saving of[(2blog2(n�2)c+1 � 1) +(rem� blog2(n� 2)c) � n+ 1]=2 � (k � rem) in terms of
bits, for the leaf nodes at the levels belowprefix.

Therefore, performance improvement of IQT over QT, in
terms of number of queries isn 2 � prefix+[(2blog2(n�2)c+1 � 1) + (rem� blog2(n� 2)c) � n+ 1]=2� 1

(11)
and the improvement, in terms of bits transmitted by a tag, is8<
:

(2 � prefix+ [(2blog2(n�2)c+1 � 1)+(rem� blog2(n� 2)c) � n+ 1]=2� 1) � k+[(2blog2(n�2)c+1 � 1) + (rem� blog2(n� 2)c) � n+ 1]=2
*(k � rem) bits:

(12)

Column number six and seven in Table 3, show the per-
centage reduction in bits transmitted by the tags, when they
have sameprefix1or prefix2respectively. These performance
improvements are based on the assumption that the set of
tags remains same, as for the previous read cycle. If some
tags are different in the subsequent read cycle, performance
improvement drops and it depends upon the number of nodes
in the new subtree, explored using QT Protocol.

No
Of
Tags

First Read Cycle Subsequent Read Cycles

. same
prefix1
(guessed
in 4
tries)

same
prefix2
(guessed
in 4
tries)

same
prefix1
(un-
able to
guess
the
prefix)

same
prefix2
(un-
able to
guess
the
prefix)

same
prefix1

same
prefix2

5 76.25 48.58 33.98 27.50 90.00 75.90
15 69.00 41.85 49.01 33.57 85.43 71.74
25 66.81 40.23 53.56 35.04 83.70 70.56
50 64.87 38.92 57.60 36.22 82.54 69.80
75 64.14 38.46 59.10 36.63 81.06 69.01
100 63.76 38.23 59.88 36.84 81.88 69.40
150 63.37 38.00 60.70 37.05 80.54 68.73

Table 3. Percentage reduction in number of
bits

5. Conclusions and Future Work
We have presented IQT, an efficient Query Tree based tag

identification protocol. IQT is suitable for readers deployed
in godowns, exclusive showrooms and shipment points to
large malls etc., where a single lot has similar items (with
same product ID and/or vendor ID). The protocol exploits
the fact that tags may have prefixes in common. IQT also
uses the history of previous read cycles to further optimize
the read process. The ranking criteria of prefixes stored in
the prefix pool needs to be tuned to provide better results
and makes this optimization applicable in general scenario.
We presented a comparative complexity analysis of IQT and
Query Tree protocol and have shown performance improve-
ment.

We intend to study the performance of IQT in different tag
ID distribution scenarios. We would like to look at how this
reader-tag protocol can be adopted along side other reader-
reader communication protocols to achieve better read rates.

References

[1] Electronic product code.http://www.epcglobalinc.
org .

[2] Radio frequency identification - a basic primer. White Paper,
AIM Inc WP-98/002R2, August 2001.

[3] A basic introduction to RFID technology and its use in supply
chain. Technical report, Laran Technologies, January 2004.

[4] S. Birari and S. Iyer. PULSE: A MAC protocol for RFID net-
works. 1st International Workshop on RFID and Ubiquitous
Sensor Networks (USN), Nagasaki, Japan, , Dec 2005.

[5] M. Cozzens and F. Roberts. T-Colorings of Graphs and the
Channel Assignment Problem.Congressus Numeruntium,
pages 191–208, 1982.

[6] D. Engels and S. Sarma. The Reader Collision Problem.
IEEE International Conference on Systems, Man and Cyber-
netics, 3:6, 2002.

[7] K. Finkenzeller.RFID Handbook : fundamentals and appli-
cations in contactless smart cards and identification. Chich-
ester : John Wiley, Leipzig, dritte edition, 2003.

[8] K. H. Junius. Solving the reader collision problem with a hier-
archical q-learning algorithm. Master’s thesis, Massachusetts
Institute of Technology, February 2003.

[9] C. Law, K. Lee, and K. Siu. Efficient Memoryless Protocol
for Tag Identification.Proceedings of the ACM International
Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications, pages 75–84, 2000.

[10] J. Myung and W. Lee. An Adaptive Memoryless Tag Anti-
Collision Protocol for RFID Networks.Dept of Computer
Science and Engineering, Korea University, Seoul, Korea,
2004.

[11] A. Sahoo, S. Iyer, and N. Bhandari. Improving rfid system
to read tags efficiently.http://www.it.iitb.ac.in/
research/techreport/reports/18.pdf , 2006.

[12] H. Vogt. Multiple object identification with passive RFID
tags. InIEEE International Conference on Systems, Man and
Cybernetics (SMC ’02), Oct. 2002.

[13] J. Waldrop, D. Engels, and S. Sarma. Colorwave : An
Anticollision Algorithm for the Reader Collision Problem.
IEEE International Conference on Communications, 2:1206
– 1210, 2003.

[14] F. Zhou, C. Chen, D. Jin, C. Huang, and H. Min. Evaluat-
ing and optimizing power consumption of anti-collision pro-
tocols for applications in RFID systems. InISLPED ’04: Pro-
ceedings of the 2004 international symposium on Low power
electronics and design, pages 357–362, New York, NY, USA,
2004. ACM Press.

