Intelligent Query Tree (IQT) Protocol to Improve RFID Tag Read Efficiency

Naval Bhandari, Anirudha Sahoo and Sridhar lyer
Kanwal Rekhi School of Information Technology
Indian Institute of Technology, Bombay, Powai, Mumbai, India, 400076
email: {naval, sahoo, sfi@it.iitb.ac.in

Abstract tion about specific prefix patterns in tag IDs so as to speed

Radio Frequency Identification (RFID) is slated to be-UP the tag read process.

come a standard for tagging various products. As more antl.2. Problem Formulation
more products become RFID enabled, fast tag identification There are practical scenarios where tags have some spe-

mechanisms will become important. Various tag 'dent'f'caéific pattern in their tag 1Ds. For example, items at godowns,

tion (or anti-collision) algorithms have been proposed forZ, . P .
RFID systems. This work focuses on methods to improve t Ipment points mf_mallsh exclusive showrooms ?tc" have
read efficiency in RFID Systems. In this paper, we propo me common prefix such as EPC version, manufacturer ID

. : -~ of product ID. Our work targets improvement in these de-
an Intelligent Query Tree (IQT) Protocol for tag identifica loyment scenarios. Tag read efficiency can be improved by
. L . - ducing the number of bits transmitted during tag identifi-
the identification process more efficient. IQT is a memoryle% : : .
protocol that identifies RFID tags more efficiently in scenar; tion process and also by using tag read history to reduce

: - ber of collisions in subsequent read cycles.
ios where tag IDs have some common prefix (e.g., commHHe num : ! ; ,
vendor ID or product ID). IQT is suitable for readers de- The rest of the paper is organized as follows: Section 2

ployed in exclusive showrooms, shipment points of big mall Isl_cusstes relatﬁ_d WO:k-TSC;DCtI?n 3|prgsetr_1ts cilur prtljposetdhln-
where the products may come from same manufacturer afgd'9€nt Query Tree (IQT) Protocol. Section 4 analyzes the
may have same product IDs. We provide the worst case cof rst case complexity of IQT Protocol and compares it with
plexity analysis of IQT and show the performance improv C_|l(,le d(i:r? mr%lr?]gtr{:far%u?%J{ﬁ%g%{:—gnpéomml' Finally, con-
ment of this protocol over traditional Query Tree protocol in 9 9 :

tion that exploits specific prefix patterns in the tags and ma

different scenarios. 2. Related Work
The IQT Protocol proposed in this paper belongs to the
1. Introduction class of Single Reader-Multiple Tag collision resolution pro-

] o ) tocols. Other important protocols in this category are Binary
_Radio Frequency Identification (RFID) is a means offree Protocol[14], Query Tree Protocol[14][9], Framed Slot-
identifying objects using radio frequency transmission[3, %ed Aloha based I-Code Protocol [12] and Adaptive Memo-
2] In an RFID system, Very Sma” RF Ch|p$ (CaHEd tag$y|ess Tag Anti-Collision Protoco][lO]_
or transponders) communicate wirelessly with readers (in> |QT Protocol is closely related to QT Protocol. IQT Pro-
terrogators) within a certain range. Tags can either be agcol improves QT Protocol to reduce the communication
]E!V?dgpowered by battery) or passive (powered by the readggerhead in the scenarios where TagIDs have some common
iela). ) ) ~ prefix.

A major problem with RFID systems is that a tag might  Query Tree (QT) Protocol requires very less tag circuitry.
not be read, in spite of being in the reader’s range, due {0is a memoryless tag identification protocol, in which the
collisions[6]. We are mainly concerned with Single Readeltags do not need to remember their inquiring history. In this
Multiple Tags collision. Here multiple tags communicateprotocol, the reader sends a query containing a prefix having
with the reader. They respond simultaneously and reader|igngth of 1 to n bits. The tags whose prefixes match with
not able to interpret the signal. These problems need to be ke bits sent by the reader, reply back with their tag ID. A
solved to provide efficient solution for tag identification andyueue of such prefixes is maintained and the queries are sent
these are the major research areas, where work needs to®@rder from this queue. As and when a query is done, its
done to practically implement RFID Systems. corresponding entry is removed from the queue. If there is a
1.1. Motivation collision corresponding to any query, i.e., there are more than

one tags with the same prefix, the reader removes that query

RFID mechanism is inherently unreliable. Thus, we neednd adds two new queries to the queue, first by appending
multiple read cycles to improve reliability of tag identifica-a 0, and then a 1 to the current prefix. No collision implies
tion. The conventional tag identification protocols do notither an ID has been read successfully or there is no tag with
have any mechanism to use the information contained in tagatching prefix. An example is shown in Table 1 where there
IDs to improve tag read efficiency. Hence, there is a need fare 3 tags with the IDs of 0000, 0010, 1000. In Table 1, the
different tag identification protocol, which can use informafirst row corresponds to the first query (with null prefix), to



Reader sendy Tags answer] Status yypue Status (intially collisions, interference etc. So multiple read cycles are

Start g coflision 0,1} required to improve reliability. o

0 ¥ collision 1,00, 0% e Query : It refers to the command containing some pre-

1 1000 read 00, Ol} f b h d H h h ” h

50 = collision 01,000, 00F ix sent by the reader, in response to which all the tags

01 no response| {000, 00% with matching prefix reply back with their tag IDs.

000 0000 read 001} e Invert Query Command : It is just the opposite of the

001 0010 read 1 ; ;
normal query command. Reader sends some prefix with

the command and all the tags having prefixes different
from that sent by reader are supposed to reply to this
command. This command is issued to ensure that all
the tags, that are read by the reader in the current read
cycle, have same prefix.
e Prefix Pool: It is a set of frequently occurring prefixes
sorted according to rank based upon the frequency of
their occurrence, and how recently the prefix was used
in previous read cycles.

Table 1. The tag identification process of
Query Tree Protocol

read the given set of tags. All tags reply to it. There is a

collision as there are more than one tags in the system. Then

it sends query with prefi®, which leads to collision again,

as there are two tags starting with Next time it tries1,

there is only one tag starting with which will reply back

with its tag ID, and is identified. Similarly process goes on YN s S

till all the tags have been identified. ¥ %uo Response nodes >
I-Code Protocol is a probabilistic protocol, based on 0 o/\_Tag to be identified M

framed slotted aloha principle, in which tags randomly 0 Yo

choose the slots to transmit. Adaptive Memoryless Tag Anti- 0 i

Collision Protocol is an improvement on Query Tree Proto- > 9 Lo

col, to improve the subsequent read cycles. H BB "B
When multiple readers try to read tags simultaneously,

and their reading operation interfere with each other, mul-

tiple reader collision avoidance algorithm is used. Impor- Figyre 1. Different types of nodes in query tree
tant protocols in this category are Colorwave Algorithm [13], ;5 _Response NodeThe leaf node in query tree where
T-Colorings based Algorithm[5], Q-Learning Algorithm [8] no tag ID starting with that prefix is found. In Figure 1,
and Pulse Protocol[4]. Optimizations based upon these pro- S5 o acanted by diamond are No-Response Nodes.
tocols may also be used in future, to improve tag read effi- , |gentified Node : The node in the query tree that lead
ciency. to response from single tag i.e one and only one tag is
3. Intelliaent Querv Tree Protocol identified using this prefix. Nodes represented by filled

. 9 Query ) . , circles in Figure 1 are Identified Nodes.

Intelligent Query Tree Protocol exploits specific prefix o Collision Nodes: These are the internal nodes in the
patterns in the tag IDs to reduce the communication overhead query tree which leads to response from more than one
between reader and tags. The common prefix intag IDs may tag IDs corresponding to a query using a prefix. In Fig-
be due to the fact that items to which the tags are attached yre 1, unfilled circles represent the Collision or Internal
have the same manufacturer or product type. Query Tree Nodes.

Protocol (QT) has been modified for the scenarios where the

tags within the range of the reader have some common prg-2. Notations Used: Table 2 shows various

Identified nodes @

fix. It also uses history of r_ead cyc_les to further improve the notations used in this paper.
tag read efficiency. Following are its advantages over Query
Tree Protocol: EPC Number of bits for EPC version.
i . . i Manufacturerid | Number of bits for Manufacturer TD.
e Reduction in number of bits transmitted by tag. Productid NUmber of bits for Product 1D
¢ Reduction in number of collisions by maintaining the 'treef;t(nlo g‘ltt'gg;frg b[')trf dflcr’: Itt?Enlg’ICD\./ersmn N —
hIStOI'y .Of ta.-g read patterns. L. | P Productid iFrJ1 the EgPC code.
e Reduction in number of collisions for subsequent read| prefix2 Bits corresponding t&PC Version +Manufacturerid in
H H H i the EPC code.
cycles by using the information of previous read CyCIeS‘ maxtries Maximum number times, the reader tries the prefixes
frlom prefix pool, to guess the prefix for current read gy-
cle.
3.1. Key Terms K Number of bits in tag 1D
prefix Refers to{prefix1 or prefixZ
rem (k — prefi)) bits

e EPC Codd1] : Like universal bar code, EPC code is
a standard Tag ID assignment code that assigns glob-
ally unique IDs to RFID tags. EPC code essentially Table 2. Notati in thi
has four fields:EPC Version Manufacturer 10 Prod- able 2. Notations Used in this paper
uct Type 1D Item ID. . .

e Read Cycle: Read cycle refers to the set of queries3-3- Working of Intelligent Query Tree Pro-
required to read all the tags that are in range of reader ~ tocol
at a particular time. In a single read cycle, a reader may Mechanism used in IQT to identify tags in the first read
not be able to read all the tags due to various factors likeycle is different from subsequent read cycles. When IQT



performs first read cycle, it has no knowledge of tag IDs, but
when it performs subsequent read cycles, it knows whether
the tags have some common prefix. If they have a common
prefix, then it is known to the reader. Hence, IQT does not
read those bits again.

3.3.1. First Read Cycle
Intelligent Query Tree Protocol does the following steps to
perform first read cycle.
Step 1 - Try prefixes from Prefix Pool : For the first read
cycle, prefix with highest score from prefix pool is selecte®.3.2. Subsequent Read Cycles
and Invert Query Command (see Section 3.1) is executed U§T improves subsequent read cycles by storing information
ing first prefix2 bits to check whether all the tags have theabout previous read cycles. This information is stored in the
same firsprefix2bits. If there is a collision, next prefix from form of candidate queue as described in [10]. Candidate
the prefix pool is tried and so on. gueue contains Identified Nodes and No Response Nodes
If it succeeds, then the reader tries other prefixes (whiabnly, it does not include Collision Nodes.
have samerefix2bits as that of the one which lead to suc- For subsequent cycles, query is issued using only the el-
cess) by sendingrefix1bits. Reader now sengsefix1bits ements of candidate queue i.e. using only the No-Response
to execute invert query command. This guessing phase caledes and the Identified Nodes of the previous read cycle. If
tinues for a maximum ofnax_tries number of times. If it any new tag appears which leads to collision, then only the
succeeds, then it knows the fipgefix1bits that are common subtree rooted at that node is further explored using normal
in all the tags present. QT Protocol, instead of following the whole query tree from
Step 2 - If Step 1 fails for First Read Cycle : If itis  the root as shown in 3.
not able to know the prefix in step 1, then it proceeds with Further improvement is possible if all the tags have the
normal Query Tree Protocol to know finstefix1bits. same prefix and it matches with the one found in the previ-
Step 3 : After reading firstprefix1bits either from step 1 ous read cycle. In that case query command with prefixes
or step 2, reader now executes invert query command usitess tharprefix1bits need not be executed. That means, all
prefix1 nodes in Area-1, and Collision Nodes in Area-2 of Figure 3
represent the saving in terms of number of queries. Hence,
qguery command is only issued for the No-Response Nodes
and Identified Nodes of the previous read cycle and that too
with lesser {em) bits. For subsequent read cycles, the pro-

that all the tags have the same manufacturer ID. Hence,
the reader can communicate using only the bits of prod-
uct type and item number. The reader ignores all the
gueries with number of bits less thamefix2 for this

read cycle. . . o
e |f someé tags reply to invert query wittrefix2 it means

that there are items from different manufacturers in the
lot. In this case normal Query Tree Protocol will be
used for tag identification.

prefix =| {prefix1 or prefix2} levels o

Area - 1: Communication
using k (size of Tag ID) bits

(] *

prefix =| {prefix1 or prefix2} levels 0 %

Area - 2 : Communication using

remaining (rem) bits only 0
0 0
0 J
2

Area -1 : Need not guery nodes in
this area for Subsequent Read
Cycles, if all the items have the
matching prefix, as found in the first
read cycle.

Area - 2: Query for No-Response and
Identified Nodes only, and using rem bits

Identified Node { In
Fig. 3) is converted
to Collision Node

Figure 2. Tag ldentification using Intelligent
Query Tree Protocol

e If no tag replies, it means all tags have the same first _ _ )
prefix1bits. Hence, communication can take place us- Figure 3. Query using candidate queue entries
ing Item.no only. This leads to reduction in number for subsequent read cycles
of bits transmitted between reader and the tags. Areg;.q| works as follows.

2 in Figure 2, shows the queries where communication g, invert query with maximum matched prefiréfix1
takes place using fewer bits. Reader also ignores all the prefix2) four?d in){he first read cycle. prefpré

queries with number of bits less thamefixlas it has i . )
¢ If query with prefixl succeeds, it means that all the

already read therefix1bits successfully and it knows CCece
that all the tags start with thjzrefix1 This leads to sav- tags have common prefprefix1 Then the reader starts

ing in number of queries as shown by Area-1 in Figure
2. Here the nodes marked with crosses represent the
gueries saved (not needed) in IQT Protocol. If reader
succeeds in guessing theefix it need not perform any
other query in Area-1.

¢ If some tags reply, then the invert query is executed with
prefix2 If no tag replies to this command, then it means

querying using only the No Response Nodes as well as
the Identified Nodes, having number of bits more than
prefixl It does not query nodes having lesser number
of bits, because it already knows tpeefix1 bits and
has ensured that no tag has different prefix. Now com-
munication takes place using orgm.no (bits below
prefixJ).



e ELSE If query withprefix2succeeds, then reader starts is high probability of items from same vendor or prod-
querying with Identified Nodes and No Response Nodes  uct type i.e. tags with some common prefix are highly
below prefix2 levels. Communication between reader robable.

and tag now takes place using the bits befefix2 e In Area-2 of Figure 3, we will save the queries corre-
e Else reader has to send queries for all the Identified and sponding to Collision Nodes (crossed nodes). Also for

No Response Nodes using k bits (all the bits intag ID).  the remaining queries we will be using lesser number of
bits (rem) only.

4, Comparatlvei- analysis of IQT Protocol with Comparisons of IQT Protocol with QT
QT Protoco Protocol in the worst case of tag iden-
IQT Protocol achieves substantially better performance tification

with very minimal change in tag hardware complexity. This | this section, we analyze performance of IQT Protocol
is because along with the prefix, the query itself can corsyer QT. We look at the worst case scenario of tag identifica-
place using the entire taglD or with thembits. _ IDs such that maximum number of queries are required. We
Performance of Intelligent Query Tree Protocol is comygok at the worst case, because it gives lower bound in terms
pared with normal Query Tree Protocol. Better efficiencysf number of tag reads per cycle.
between reader and tag in one query, as well as by reduciggs number of queries to identify all the tags and 2) the num-
the number of queries in one read cycle. Different optimizayer of bits transmitted per query. Note that these two param-
tion techniques for the first read cycle and the subsequegfers indirectly decide the performance of a reader in terms
read cycles are applied. In the first read cycle, improvemegt numper of tags read per unit time. We show that IQT pro-
and tag, while in subsequent read cycles, the improvement|'t§-|- protocol can read more tags per unit time.
mainly due to reduction in number of queries. We first calculate the number of queries required in the
4.1. Where IQT Protocol gains over QT Pro- Worst case of tag identification i.e. size of the largest query
tocol ? tree. We present our results using the following lemmas and
_ i _ _ ) theorems. First, we define some important terms used:
Figure 2 describes the tag reading using Intelligent Que

r
i imization i (gefinition 1 TagPair is a set of two tags, which differ only in the last bit
Tree Protocol for the first read cycle. Optimization is due tof their tag IDs. This means that tags in the TagPair have the first 1

two factors. bits common in their tag ID. Hence, to identify a TagPair, the query tree will
. . have collisions upté& — 1 levels and identification of the tags would happen
e Crosses marked nodes in Area-1 of Figure 2 denote th@ine» level.it» TagPair in a system is denoted as TagPair
reduction in number of queries in IQT Protocol overN o denti v & TaaPair. th " evlo
normal Query Tree Protocol. After reachilplgefi%h Of"tt,fettgtétggm%”}'efyg_”ya agPair, the query tree will grow to levloot
level, the Intelligent Query Tree Protocol will check

whether all the items have prefixes matching with the In Non Overlapped Region, No. of
bit sequence read till that point. If all the items have e e recseen. T
first prefix bits common, then reader need not perform /_*\ e SORHEBING
query for some other node, with less tharefix bits. L LYY b \R*\m;“
Hence on an average, half of the queries corresponding . 0 : 0 . I T o0 N | penaped
to No-Response Nodes titirefix levels will be saved. Lo E j\% I
Savings are even greater, if we are able to guess the [ 00\1. - -of‘\; o “’\1. :/C\; o
prefix in certain number of tries, instead of learning it “ ¢ K)L____?____ﬁ_;__. weian

H H i+ s Pairwise P) TagPair; ‘s Pairwise ¢} Huary Ireawn

. Areas la:itgllrtrl]reé 2 denotes the improvement due to re- Sty ™" S S nodeste. 2 TeaPais (5

duction in number of bits. Queries in Area-2 need not

be performed using the whole tag ID. Hence, if all the

items have firsprefix bits common, then communica-  Figure 4. Overlapped and Non Overlapped Re-
tion can take place using only the remainimgn{) bits. gions in query tree

F'gure ?I,descr'bes the saving for S|Ubsequent read cycles Befinition 2 Pairwise Subtree 6@, ) is defined as the query tree formed
ing Inte ,'gent Qu_ery_ Tre,e Protocol over Query Tree PrOtOWhiIe identifying only two tags belonging ®agPair;. It is obvious that
col. Again, optimization is due to two factors. S, would be a subtree . Q7 is the query tree formed while iden-

. . tifying all then tags in the system. Figure 4(a) shows the Pairwise Subtree
e For the nodes in Area-1 of Figure 3, we need not per(;yQTg_’) Corregpor?dmg to thgtag paf%gpaisni)

form any query, as we already know the prefix from first

read cycle. We need to confirm that no tag with differenbefinition 3 Overlapping Region (So1) is the subtree of the query tree
prefix appears, so we run Invert Query Command usingr from level 0 to level L, as shown in Figure 4(c), where L is given by
the prefix found in first read cycle. Hence we save all . S

the queries in Area-1, and perform justone Invert Query - = maximum level atwhicki, 3515, N SQr; 70 @)
Command. This will lead to success most of the timesy, other words, at each level in Overlapping Region, at least one node is
as we are using the protocol in the scenarios where thet@mmon among Pairwise Subtrees.



Definition 4 Non Overlapping Region (Sx o) is the region of the query 211092(n=2)J+1 _ 1 4 (rem — |loga(n—2)]) * (n) will be re-

tree from levelL + 1 to levelk where L is given in Equation 1. In other [loga(n—2) |+1 _ _ _ _
words, in this region, there is no overlap among all the Pairwise Subtree: ‘Iaced by2 g2 1—+—_(rem_ Llogg (n 2)J )*(n 1)'
as shown in Figure 4(c). or odd values of:, as explained in Theorem 1

_— Number of queries required in QT Protocol:
Lemma 1 If we have only two tags with bit tag IDs, then the query tree .
will have maximum of levels with2 x k£ 4+ 1 nodes. This happens when the Assuming even number of tags amd> 2, Query Tree Proto-

two tags form a TagPair. col require xprefix+1 queries to identify firsprefixbits, as

Lemma 2 If we have an even number of tags and all of them form Tag-ShOWn "_1 Figure 2. Theorem 1 shows that witeven) tags,

Pairs, the query tree will have nodes at every level in the Non Overlapping We require maximum atlo92(n=2)1+1 _ 1 4 (k — |logs (n —
Region. 2)|) * (n) queries. But in our case, we are assuming that
Lemma 3 If the number of tagsr() is odd and the tags forn — 1)/2  tags have commoprefix and tag IDs are distributed accord-
TagPairs, then the query tree will hawe- 1 nodes at every level in the Non ing to worst case scenario for the levels belowfixi.e. for
Overlapping Region. (k—prefix)(i.e. rem) levels. Forem levels the largest query

Lemma 4 In the Overlapping Region, query tree having an even numberee will have2lieg2(n—2)|+1 —14(rem—|logs(n—2)])*(n)

of n tags, which forms:/2 TagPairs, will always have less thannodes ; ; .
at each level. If the number of tagsis odd and they fornfn — 1)/2 nodes. Hence, total number of queries required are:

TagPairs, then the query tree will have less thar- 1 nodes at each level 2 % prefix+ 1 4 2lleg2(n=2)1+1 _ 6
in the Overlapping Region. ‘F(rem — |loga(n — 2)]) # (n) forn > 2 ©)

Lemma 5 Number of levels in Overlapping Region will be at leastSjnce tags reply with thei bit tag IDs in the QT Protocol,
Lloga(n —2)],n > 2, when there are. tags forming|n,/2] TagPairs. the total number of bits transmitted by tags in the first read

Proofs of above lemmas can be found in [11]. cycle is given by
Theorem 1 If n is the number of tags, then the maximum number of nodes (2 * prefix+ 1 + 2llog2(n=2)]+1 _ 1 %
in the query tree is given by: +(rem — |log2(n — 2)|) = (n)) % k bits.
gllogz(n=2)]+1 _ 1 4 (k — |loga(n — 2)|) * (n) ifnis even Number of queries required in IQT Protocol:
2llog2(n=2)]+1 1 4 (k — |loga(n — 2)]) * (n — 1) if nis odd Case 1: prefix is guessed withimax tries:
%) Suppose reader is able to guess the prefiroinf_guesses

tries. Further, one Invert Query Command is required to con-

Proof: From Lemma 1, size of query tree will be maximum if tags ¢; < : ;
occur as TagPairs. Lemma 4 shows that the largest query tree for a giv: that all the tags have the same fpsﬁaflxnumber of bits.

number ofn tags (forming|n/2] TagPairs) will be obtained if there are I nen, total number of queries required by IQT protocol will
least number of levels in the Overlapping Region. This is because, Overlage: no_of guesses 1+2L1292(»=2)1+1 14 (rem—|logs (n—

ping Region has fewer nodes than Non Overlapping Region.
Nodes in the query tree are divided into two parts: Nodes in Overlappina)J) *n Every unsuccessful guess of Invert Query command

Region and Nodes in Non Overlapping Region will be responded by a tag with bits. But once the Invert
Maximum number of nodes in the Overlapping Region is given by th(Query command succeeds, the remaining querles(querles be-
maximum possible nodes in the complete binary tree of heigh (n — low prefixlevels) will only requirerembits.

2)],n > 2. This s equal to: Hence, the total number of bits transmitted by the tags are

{ 90 4ol ... 4 2llog2(n=2) for > 2 (3 given bynoofguesses- 1) x k + (2lteg2(n=2)1+1 _ 1 4
= 2lleg2(n=2)]+1 —1forpn > 2 (rem — [logs(n —2)|) *n) xrem bits. So, performance im-

Consider the case whenis even. From Lemma 3, each level in Non Provement of IQT over QT, in terms of number of queries, is
Overlapping Region will have. nodes. Since there aféloga(n — 2)|) given by

levels in the Overlapping Region i.e. there &ke— |log2(n — 2)|) In (2 * prefix— no_of_guesses (8)

the Non Overlapping Region, hence maximum number of nodes in No. ; ; ; ; ;
Overlapping Region i « (k — |loga(n — 2)|). Hence, number of nodes And the improvement, in terms of bits transmitted by a tag, is

in largest query tree is given by: (2 « prefix— no_of_guessepx k
0d5 (1 ollog2(n—=2)]+1 _ 1 — loga(n — 2 9
gllogz(n=2)1+1 _ 1 4 (k — |loga(n — 2)|) x (n) forn >2  (4) z;((_ rem bits + (rem — [logz(n — 2)[) xn)x (9

Now considem to be odd. In this case, maximum number of nodes will . . . . -
be equal to nodes in the largest query tree wita 1 nodes, since lastodd Case 2: prefix is not guessed withimax_tries: This is the

tag will just replace one No-Response Node with Identified Node. case, when the prefix is not guessed withiaxtries tries.
Hence, number of nodes is given by: Hence, firsprefixbits are learnt using the normal query tree
loga(n=2)]+1 _ 3 3 3 protocol. In the worst case, we ne2d prefix+ 1 queries
2 14 (k= llogz(n = 2)]) x (n = 1) forn > 2 5y 10leam the firsprefixbits, as needed by normal Query Tree
m Protocol. Hence performance improvement in terms of the
number of bits will only be

(2llog2(n=2)1+1 _ 1 4 (rem — [loga(n — 2)]) * n)* (10)
(k — rem) — max_tries x k bits,

4.2.1. Performance Improvement in the First Read Cycle

IQT would be deployed where it is highly probable that tag {
IDs have common manufacturer ID or product ID fields i.e. . . . i
all the tags have firgirefix bits same prefixis equal topre- ~ SINCE We waste makies queries to guess the prefix.

fix1, if all the items have same EPC version, manufacturer_1aple 3 shows the performance improvement in two sce-
and product type, and it is equal poefix2if all the items narios. First, where all the tags have fipsefix1bits com-
have same EPC version and manufacturer, but they are '@Pn @nd second, where all the tags have forsffix2 bits
different product types. In this scenario, we assume thgPmmon. Second and Third columns in the table show the
first prefix bits of all the tags are same. We will considefP€rcentage saving in bits whepeefixis guessed irt tries.
only even number of tags to derive expressions for the confourth and Fifth columns show the improvement when the

plexity, since all the calculations remain same, just the terfg2der is not able to guess the prefix and it learnsnefix
bits using the normal QT Protocol.



4.2.2. Performance Improvement in the Subsequent Read 5. Conclusions and Future Work
Cycles We have presented IQT, an efficient Query Tree based tag

If the set of tags is exactly the same as in the first read ¢ entification protocol. 1QT is suitable for readers deployed
cle, we will save queries corresponding to all the nodes iff godowns, exclusive showrooms and shipment points to
Area-1, and Collision Nodes in Area-2 of Figure 3. Also,arge malls etc., where a single lot has similar items (with

we will need lesser number of bits for No-Response ang@Me product ID and/or vendor ID). The protocol exploits

Identified Nodes in Area-2, if there is some matchjrgfix the fact that tags may have prefixes in common. QT also
among all the tags. In this case, when set of tags is exactypeS the history of previous read cycles to further optimize
same as that of first read cycle, we will save prefix+ 1 the read process. The ranking criteria of prefixes stored in
queries in Area-1, but one Invert Query Command need8€ Prefix pool needs to be tuned to provide better results
to be executed to confirm that all the tags have same prald makes this optimization applicable in general scenario.
fix. Hence, number of queries saved in Area-1 will pe/Ve presented a comparative complexity analysis of IQT and
2 % prefiz. In Area-2, we will save queries correspond-Query Tree protocol and have shown performance improve-

ing to all the internal nodes. Since, in worst case, we ha/8€nt. .
(2%092("—2)J+1 ~ 1)+ (rem— [logs(n—2)|) #n nodes in the We intend to study the performance of IQT in different tag

. / - ID distribution scenarios. We would like to look at how this
subtr?leo b?i?‘;'?j‘jfl'x'e"e's' the number of internal nodes will reader-tag protocol can be adopted along side other reader-
be[(2t"92 —1)+(rem—|logs(n—2)])xn+1]/2=1.  reader communication protocols to achieve better read rates.
Number of leaf hodes(No-Response and Identified NodesS
are given byj(2lloz(n=2]+1 _1) 4 (rem — |log2(n—2)])x  References
n + 1]/2, which leads to saving df2lies=(n=2)1+1 _ 1) 4
(rem — [loga(n — 2)]) *xn + 1]/2 % (k — rem) interms of  [1] Electronic product codehttp://www.epcglobalinc.

bits, for the leaf nodes at the levels belpvefix org .

. . [2] Radio frequency identification - a basic primer. White Paper,
Therefore, performance improvement of IQT over QT, in AIM Inc WP-98/002R2, August 2001.

terms of number of queries is [3] Abasic introduction to RFID technology and its use in supply
chain. Technical report, Laran Technologies, January 2004.
2 x prefiz [4] S.Birariand S. lyer. PULSE: A MAC protocol for RFID net-
{ +[(2llog2(n=DI+1 1) 4 (rem — |loga(n — 2)|) xn+1]/2 — 1 works. 1st International Workshop on RFID and Ubiquitous
(11) Sensor Networks (USN), Nagasaki, Japabec 2005.

and the improvement, in terms of bits transmitted by a tag, is[5] M. Cozzens and F. Roberts. T-Colorings of Graphs and the
Channel Assignment ProblemCongressus Numeruntiym

(2 * prefiz + [(2llog2(n=2)]41 _ ) pages 191-208, 1982. o

+(rem — |loga(n —2)) xn +1]/2 - 1) x k [6] D. Engels and S. Sarma. The Reader Collision Problem.
+[(2lteg2 (=141 1) 1 (rem — |loga(n — 2)|) * n 4 1]/2 IEEE International Conference on Systems, Man and Cyber-
*(k — rem) bits. netics 3:6, 2002.

(12) [7] K. Finkenzeller.RFID Handbook : fundamentals and appli-

Column number six and seven in Table 3, show the per- cations in contactless smart cards and identificati@hich-

P : ester : John Wiley, Leipzig, dritte edition, 2003.
centage reduction in bits transmitted by the tags, when the)fS] K. H. Junius. Solving the reader collision problem with a hier-

have samerefixlor prefix2respectively. These performance archical g-learning algorithm. Master’s thesis, Massachusetts
improvements are based on the assumption that the set of |nstitute of Technology, February 2003.

tags remains same, as for the previous read cycle. If somg] C. Law, K. Lee, and K. Siu. Efficient Memoryless Protocol
tags are different in the subsequent read cycle, performance for Tag Identification.Proceedings of the ACM International
improvement drops and it depends upon the number of nodes Workshop on Discrete Algorithms and Methods for Mobile

in the new subtree, explored using QT Protocol. Computing and Communicatiornsages 75-84, 2000.
P 9Q [10] J. Myung and W. Lee. An Adaptive Memoryless Tag Anti-

Collision Protocol for RFID Networks.Dept of Computer

(l\)l? First Read Cycle Subsequent Read Cycles Science and Engineering, Korea University, Seoul, Korea
2004.
TGS e SaT— ST —sae [11] A. Sahoo, S. lyer, and N. Bhandari. Improving rfid system
prefix1 | prefix2 | prefixl | prefix2 | prefixl | prefix2 to read tags efficientlyhttp://www.it.iitb.ac.in/
uessed uessed (un- un-
(guessed (guessed un- "I Wn- o research/techreport/reports/18.pdf _ , 2006.
tries) | tries) | guess | guess [12] H. Vogt. Multiple object identification with passive RFID
thef_ ) thef_ ) tags. INIEEE International Conference on Systems, Man and
prefix prefix Cybernetics (SMC '02)0ct. 2002.

I A I A I [13] J.Waldrop, D. Engels, and S. Sarma. Colorwave : An

25 | 66.81 | 4023 | 5356 | 35.04 | 83.70 | 70.56 Anticollision Algorithm for the Reader Collision Problem.

50 | 64.87 | 3892 | 57.60 | 36.22 | 8254 | 69.80 i icati

730 Sg‘-lg‘ gg_gg 53-%3 gg_gg Sl-gg 83-0%, IEszlcl)nt%g%nonal Conference on Communicatip@s1 206

1 7 . 59. .84 1. 4 - ' : . .

150 | 63.37 38.00 60.70 37.05 80.54 68.73 [14] F. Zhou, C. Chen, D. Jin, C. Huang, and H. Min. Evaluat-
ing and optimizing power consumption of anti-collision pro-
tocols for applications in RFID systems.IBLPED '04: Pro-

Table 3. Percentage reduction in number of ceedings of the 2004 international symposium on Low power
bits 9 electronics and desigpages 357-362, New York, NY, USA,

2004. ACM Press.



