
Implementation of WFQ in a Distributed Open

Software Router

Azeem J. Khan, Anirudha Sahoo, D. Manjunath

{azeem,sahoo}@cse.iitb.ac.in, dmanju@ee.iitb.ac.in

IIT Bombay, Mumbai, India.

Abstract—There has been a considerable body of research
devoted to the design and performance of PC based software
routers running open source software. Most of the research on
open software routers (OSRs) have focused on improving the
performance of single PCs with a few proposals for a distributed
design. Modern routers are equipped with enhanced function-
ality such as QoS features in addition to packet forwarding.
However, providing enhanced functionality in distributed OSR
architectures has largely remained unaddressed. A distributed
design introduces challenges in its implementation due to looser
coupling between different subsystems.

WFQ is a widely used scheduler that enables QoS features in
a router. The inherent centralized nature of the design of WFQ
schedulers in most switches and routers creates several challenges
when exported to distributed architectures. In this paper, we
study the challenges of implementing WFQ in a distributed
OSR, propose some novel techniques to address these challenges
and compare the performance of our WFQ implementation in
distributed OSR with that of a centralized WFQ scheme.

Index Terms—QoS, WFQ, software routers, distributed

I. INTRODUCTION

The programmability of the general purpose CPU based

PC has led to the creation of several robust and high per-

formance software such as Zebra, Quagga, Linux, Click to

perform packet processing in software. Software routers that

utilize open source software and open hardware are termed

as Open Software Routers (OSRs). Recently, OSRs have

gained the attention of several researchers because of their

ability of high performance packet processing while retaining

all the advantages of an open platform [4]–[6], [9]–[11].

Most recent research has focused only on the performance

of single PC based OSRs. Certain performance bottlenecks

related to I/O and computational capacity in single PC OSRs

can be overcome in a distributed configuration. In fact, large

routers using commodity PCs can only be achieved by a

distributed configuration. Therefore, a distributed design that

provides a single logical router has been proposed by some

researchers [5], [9], [11]. A distributed architecture introduces

several challenges as we shall see below.

In recent years, routers have had to provide significantly

more functionality. Some of these new functionalities are

needed to support firewalls, encryption capabilities, QoS and

per user forwarding rules. Some of these functionalities can

be easily extended to a distributed architecture because of

the inherent parallel processing characteristic of packet for-

warding. Some other functionalities, such as providing QoS,

due to the inherent assumptions on the centralised nature

LOAD

BALANCER 1

LOAD

BALANCER 2

LOAD

BALANCER L

FORWARDER

 1

FORWARDER

 2

FORWARDER

 M

24 PORT GIGABIT ETHERNET SWITCH

LOAD BALANCING STAGE
FORWARDING STAGE

Network 1 Network N
Network2 Network 3

Fig. 1. The Switched Two-stage Distributed Router (STSDR). The router
comprises of two stages: a load balancer stage and a packet forwarding stage
comprised of forwarders. Each load balancer and forwarder is a Linux PC.
A dotted line shows how ingress packets are directed by a load balancer to a
forwarder where they are processed before being sent to the next hop.

of processing and communications, are not easily extendable

to a distributed architecture. We are therefore interested in

incorporating the implementation of such a functionality in a

distributed architecture.

The distributed OSR design considered in this paper is the

‘Switched Two-stage Distributed Router’ (STSDR) [2] shown

in Figure 1. The STSDR has two stages; a load balancing stage

and a packet forwarding stage. The PCs in load balancing

stage are responsible for directing packets to the forwarders

or forwarding engines (FEs). The FEs perform layer-3 packet

processing on the packets. The FEs and the load balancers are

connected to each other by a regular layer-2 Gigabit Ethernet

switch, represented as T-switch because of its shape. The

external interfaces to the STSDR terminate on the switch.

However, the IP addresses visible to the outside world are

actually assigned to the switch interfaces on which the load

balancers are connected. The arrows on the dotted line show

the direction of packet flow through the STSDR. Packets from

an external network enter the STSDR through the switch. ARP

resolution by external router would give the MAC address

of one of the load balancer interface as the layer-2 address

where the packet should be forwarded. Thus, the T-switch

sends the packet to the correct balancer. The load balancer

uses a suitable criteria to select a forwarder and sends the

packet to that forwarder. The forwarder receives the packet,

processes it and selects the next hop for the packet. Since

the forwarder and the next hop are directly connected via

the T-switch, it executes the ARP, finds the layer-2 address

of the next hop and transmits the packet. The packet enters

the T-switch through the forwarder’s network interface and

is transmitted to the next hop. It is assumed that all packets

from a traffic flow are directed to the same forwarder through

mechanisms such as hashing. We observe from Figure 1 that

the distributed nature of processing will necessarily create

challenges to the implementation of any feature that provides

services aggregated over the entire system.

Our work is motivated by the following reasons. Today,

medium and high end routers are typically equipped with QoS

features. WFQ is one of the most widely used scheduling

algorithms which enables many QoS features (e.g., DiffServ).

The STSDR proposal is a high performance distributed ar-

chitecture and should therefore support implementation of

WFQ. WFQ implementation in centralized routers is very

well understood and is quite mature. However, implementing

WFQ in a distributed system such as the STSDR has several

challenges. In our STSDR implementation, we observed that a

lot of computing power was left over after implementing basic

routing functionality [2], [11]. Hence we choose to implement

WFQ to take advantage of the available computing capacity

in the STSDR. In this paper, we shall study the challenges in

the implementation of WFQ in distributed OSR and address

those challenges. Note that our aim is not to provide the best

possible implementation of WFQ in distributed OSR but to

investigate the issues and provide solutions to those issues

with reasonably good performance.

Our principal contributions are as follows. First, we ana-

lyze the challenges of implementing WFQ on a distributed

system. Second, we propose a mechanism to implement WFQ

on the distributed OSR with a novel approach. Third, we

show through experiments on a real system, the performance

impact of our proposed implementation. Fourth, we perform an

experimental comparison of the fairness of our implementation

using a real router’s traffic trace.

II. BACKGROUND

A. Linux Open Software Routers

There is precedent both in recent years as well as in

the early days of the Internet for OSRs. In the data plane,

early versions of BSD Unix and other Unix based operating

systems performed routing entirely in software. In a num-

ber of simple environments, Linux and BSD Unix can be

easily used for packet routing. Newer data plane software

like Click [13] have been introduced for the Linux and

Linux/BSD Unix environment respectively. In [4], [6], it was

shown that Linux based PCs could achieve high performance

as packet forwarders. Further improvements in performance

of a Linux based OSR was achieved through optimizations

in Linux(e.g., [7]). Some researchers have proposed using

programmable Graphical Processing Units (GPUs) to perform

packet forwarding computations [10].

In [5], it was shown that a distributed architecture was

necessary and feasible to scale an OSR’s performance and

a control plane for the distributed design was proposed in [3].

Routebricks [9] defines an architecture that parallelizes the

packet forwarding functionality across multiple PCs and across

multiple cores of the CPUs within each PC. A technique

to improve performance of a distributed OSR was studied

in [2]. Thus considerable research effort has been devoted

to analyzing and improving the performance of OSRs in

both a single PC and in distributed configurations. However,

implementing additional features on the distributed OSRs

remains unaddressed.

B. WFQ Implementations

Most implementation proposals for WFQ utilize the cen-

tralized nature of the operation of a switch and assume fixed-

size packets to provide fair queuing [1], [14]. In typical WFQ

implementations on centralized routers, a WFQ algorithm at

each egress port executes independently and in parallel with

those at other egress ports [15]. This implementation is ideal

for centralized routers since all packets queued at an egress

port are destined on the same outgoing link. In the distributed

OSR, packets for different outgoing links may be queued at the

same egress port and packets at different egress ports may be

destined to the same outgoing link. Hence, adapting existing

WFQ implementation techniques of centralized routers to the

distributed OSR is not possible. One solution could be to

emulate centralized operation for WFQ in the distributed OSR.

However, this requires frequent communication between the

distributed egress ports which is a very expensive overhead.

Moreover, emulating centralized WFQ in a distributed set-

ting needs tight time synchronization. Therefore emulation of

centralized WFQ scheduler is not efficient and a distributed

implementation of WFQ is necessary.

A distributed fair queuing mechanism for network switches

has also been proposed [16]. In [16], where several distributed

fair queuing schedulers operate to provide approximately the

same service as a centralized single fair queuing scheduler

would provide when operating at the output port. The dis-

tributed schedulers in [16] operate at both the input and the

output ports of a switch and communicate frequently to update

their global state information. Although this research proposal

is a distributed design, it cannot be adapted to the distributed

OSR because (1) frequent communication is expensive in the

distributed OSR (2) output ports are non-programmable and

hence cannot execute scheduler processes. In the wireless

domain also, there have been research proposals on distributed

fair queuing (e.g., [18]). These proposals usually exploit the

broadcast nature of the wireless medium to a considerable

degree to meet their goals. Hence, these proposals cannot be

applied to the distributed OSR.

Thus we have seen that most research proposals on WFQ

implementations cannot be used in the distributed OSR be-

cause (1) expensive communication overheads prevent em-

Link 1 Link N-1 Link N

classifier classifier classifier

Packets with next hop

on Link 1

Packets with next hop

on Link N-1

Packets with next hop

on Link N

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

WFQ Scheduler WFQ Scheduler WFQ Scheduler

Fig. 2. WFQ in a centralized router: Packets for transmission on each output
link arrive at the corresponding line cards where they are classified, queued
and scheduled for transmission.

ulation of centralized behavior (2) the next hop links are

not tied to a specific egress port (3) the output ports are

not programmable and (4) the distributed OSR’s processing

nodes do not communicate over a broadcast medium. We

therefore propose some new techniques to adapt the central

ideas present in input queued switches that emulate output

queued switches for the purpose of providing QoS [8], [17].

In brief, the distributed WFQ problem is converted into a

matching problem with the requirement that the matching is

performed in a distributed fashion but identical results are

obtained at each processing node.

III. IMPLEMENTATION CHALLENGES FOR WFQ IN STSDR

In Section II-B, we briefly discussed WFQ implementation

proposals on network switches and a centralized OSR. In this

section, we shall first discuss in greater detail the typical

implementation of WFQ in a centralized router and then

describe the challenges that arise in a distributed configuration.

A. WFQ in Centralized Software Routers

Consider Fig. 2 which shows one possible implementation

of WFQ on a centralized router. The router has N egress ports

each on its own line card and it classifies packets into K

different classes. In Figure 2, K = 3. The scheduling proceeds

as follows. Once the packet reaches the egress line card, the

packet is classified into one of three classes and enqueued in

the queue meant for that class. The WFQ algorithm is executed

at each line card before transmission of a packet. One packet

is chosen from Q1, Q2 or Q3 by the WFQ scheduler and

then transmitted on the outgoing link. The classification and

WFQ execution are independent of each other and may occur

in parallel. Since each outgoing link is directly connected to

the line card, the WFQ algorithm at each line card executes

independently and in parallel with those of other line cards.

This level of parallelism can be extended to more egress ports

per line card.

1 2 1 2 1 2 1 2

1 2 1 2

3 3 3 3

FORWARDER

 OL
Queues for Queues for Queues for
 OL OL1

FORWARDER

Packets for
 OL

Packets for
 OL

3 3

Queues for

1 2
 OL 2

WFQ WFQ

T − SWITCH

1 2

Fig. 3. Emulation of centralized WFQ in the STSDR. We assume two
outgoing links, two forwarders and three classes of traffic in the figure. Packets
from different FEs of the same class are ordered in their arrival sequence and
WFQ is executed.

In the distributed OSR, the operation at egress ports is quite

different. Consider Figure 1. We observe that the outgoing

links (OLs) from the STSDR to next hops are connected to

the T-switch and not the FEs. Packets from any FE can be

transmitted on an OL and any OL can carry packets from a

FE. Let us assume there are M FEs and N outgoing links and

K classes of traffic. Therefore, in the STSDR, each FE has

N ×K queues. If we denote the queue of class k for outgoing

link OLj at forwarder FEi as Qijk, then we have 1 ≤ i ≤ M ,

1 ≤ j ≤ N and 1 ≤ k ≤ K.

If we are to emulate the WFQ behaviour of the centralized

router in the STSDR, the WFQ implementation will take the

form shown in Figure 3. The packets of a traffic class k

meant for OLj exist in each of the M FEs. These packets

are ordered in the sequence of their arrival times and WFQ is

executed over the K classes for OLj . The selected packet is

then transmitted by the appropriate FE. Although in principle

this process is straightforward, in practice there are a number

of implementation challenges.

B. Distributed state

Let us assume that the WFQ algorithm for each OL is

separate and is executed in one of the STSDR nodes. The

algorithm uses queue information for scheduling and this

information represents the state for the algorithm. In the

centralized system, the K class queues reside locally on the

same line card and querying the state is a local memory access.

In the STSDR, each forwarder is a physically discrete entity

with local memory and hence there is no shared memory

across the FEs. Therefore, the WFQ algorithm cannot query all

the queues meant for the same outgoing link as no FE has state

information about the other FEs. Thus explicit communication

of state information is necessary between forwarders. Once

state information is known, the head of the line (HoL) packets

of different FEs meant for the same outgoing link need to be

ordered according to their arrival times. This is an issue that

we study below in Section III-C. Also, the WFQ scheduler’s

decision must be communicated to all the forwarders.

C. Time synchronization

Let us assume that the forwarders have communicated in

some manner and attained global state synchronization. As

shown in Figure 3, packets from queues of the same class and

destined to the same OL, for example Q111 and Q211, should

be merged into a single queue. This ordering requires precise

knowledge of the arrival times of packets into the queues. This

requires that all the forwarders are perfectly time synchronized

in their clocks which is not the case.

The forwarders and the load balancers in the STSDR use

NTP for time synchronization using in-band signaling over

the links to the T-switch. NTP allows time synchronization

at the granularity of a few milliseconds. With links operating

at gigabit speeds, this level of time synchronization is not

sufficient. The time synchronization problem can be removed

with expensive high-precision mechanisms using out of band

signaling. Even with perfect time synchronization, communi-

cation between forwarders will be necessary for sharing state

information. However, as we shall see in Section IV, we avoid

the need for tight time synchronization by using a rather novel

approach.

D. Output link arbitration

In the absence of a coordinated transmission, multiple

forwarders may attempt to transmit packets on the same OL

simultaneously. This may result in queuing at the OL and this

can violate the fairness requirements of WFQ in the short term.

On the other hand, in the absence of time synchronization

and coordinated transmission, it is possible that a FE delays

its transmission assuming that a particular OL is busy. Such

delays should be avoided. It is also possible that the buffers in

the port of the T-switch may be insufficient for handling high

number of contentions. Simultaneous transmission on some

ports may therefore result in dropped packets and reduced

throughput. Thus, arbitration of an OL for a short period of

time is beneficial.

E. Expensive communication

We noted above that global state synchronization across all

forwarders is necessary for WFQ. Since explicit communica-

tion is necessary, broadcast or multicast of state information

should be used. In the STSDR, as in most modern computing

systems, computation is cheap and communication across for-

warders is very expensive. With a packet being processed every

few hundred nanoseconds on a Gigabit link, a communication

overhead of even a few milliseconds is significant. Hence

communication overheads are to be avoided as far as possible

to maintain throughput.

In summary, for the STSDR, we require a technique that is

able to synchronize the state of all forwarders and arbitrate the

link usage while satisfying the WFQ-based bandwidth sharing

without compromising performance.

IV. WFQ IMPLEMENTATION ON THE STSDR

In this section, we propose a distributed WFQ scheduling

implementation scheme that overcomes the challenges de-

scribed in Section III. First, we briefly explain the central ideas

for the implementation mechanism. Then we go into much

greater detail about each challenge. Finally, we make a quick

comparison of our implementation with that of a centralized

WFQ scheduler.

We now introduce some notations which we will use to

explain the implementation of WFQ on the STSDR. Let aijk

be the arrival time of a packet in the queue Qijk. aijk is

stamped with respect to the real clock of FEi. We refer to the

virtual finish time of the HoL packet of Qijk as vijk. Each

outgoing link OLj has a virtual clock Vj which is always

updated to the virtual finish of the last packet transmitted

on OLj . Since each FEi knows which packets were last

transmitted on OLj , each FEi knows the value Vj at all

times. The packet from FEi sent out for communicating state

information is identified as DSi.

The procedure for the WFQ selection and transmission of

packets at each forwarder consists of three separate phases.

In the first phase each forwarder broadcasts information about

the HoL packets in its K × N queues to other forwarders.

Thus, at the end of the first phase, information about the HoL

packets at all K×N×M queues of the entire STSDR systems

is known to every other FE.

In the second phase, FEi selects one packet for transmis-

sion per OLj (by running the WFQ algorithm over all the

queues destined to OLj). Since each FEi knows the queue

information about other FEs, it also determines packets to be

transmitted per OLj by other FEs. Each FEi knows the Vj for

every OLj . All this information is utilized in the third phase.

In the third and final phase, the stable matching algo-

rithm [12] is executed at every FE with inputs derived from

second phase. The algorithm outputs a set of matched FE

and OL pair {(FEi, OLj)}. The number of elements in this

matched set will be min(M , N). A matched pair (FEi, OLj)

implies that FEi will transmit the packet selected by itself (by

running WFQ over all the queues destined to OLj) over OLj .

The three phases together constitute a cycle and this cycle is

repeated. We discuss each of the three phases in greater detail

next.

A. Communication for global state synchronization

The forwarders use the standard broadcast mechanism at the

link layer, i.e., Ethernet broadcast frames to synchronize global

state information. Each FEi broadcasts the HoL packet’s

information for each of its K ×N queues in the DSi packet.

A master-slave paradigm is adopted for disseminating state

information. One of the forwarders is assigned to be the master

and the remaining forwarders behave as slaves. The master

forwarder broadcasts a DS frame which triggers a broadcast

reply from the slaves.

In the master FE, the contents of the DS packet is assembled

as explained below. This is then encapsulated in an Ethernet

frame. Using raw Ethernet frames avoids processing delay

Tbr

2Tbr

FE1

FE2

FE3

Fig. 4. Broadcasts of queue status information for global state synchroniza-
tion

at higher layers in the network stack. Since a link layer

broadcast does not offer reliability guarantees, there is a

chance that DS packets may be lost. However, additional

reliability mechanisms may be introduced if needed. For the

Ethernet frame, the destination address is set to the broadcast

Ethernet address and the Ethertype is set to a custom value.

The master broadcasts this Ethernet frame to the slaves. An

internal VLAN is employed to restrict these broadcasts to

STSDR nodes. When the slave forwarders receive such a

broadcast frame from the master forwarder, they construct their

own DS packets and broadcast it to all forwarders.

We illustrate this with an example in Figure 4. FE1 is

assigned to be the master FE. FE2 and FE3 are slaves. FE1

constructs DS1 and broadcasts it. Let us say that the time

for the broadcast to be received by all FEs is Tbr. At the

end of at most Tbr, FE2 constructs DS2 and FE3 constructs

DS3 and broadcasts them over the internal VLAN. The value

of Tbr depends on the link-layer technology and topology

and therefore must be found through experimentation. After

at most 2Tbr, each forwarder has information about the HoL

packets in all the queues of all forwarders.

The structure of the DS packets is as follows. Two quanti-

ties about each HoL packet are contained in the DSi packet.

The first is the arrival time-stamp (four bytes) and the second

is the packet length (two bytes). Thus six bytes per queue are

needed. These values can be modified for different setups if

the time-stamp resolution and/or the maximum packet lengths

are different. A two byte header identifies FEi. Each DSi

therefore has a body of (6 × N × K + 2) bytes.

Robustness of the information exchange is attained through

several procedures. To ensure timeliness, a timer is set for

Tbr at each slave FEi once the slave receives the master DS

packet. Only after waiting for Tbr, all the FEs enter the second

phase of packet scheduling.

One issue is that of a DS packet not being received by

an FE. DSi packets are sent in every cycle. However, the

information {aijk, Lijk}, k = 1, 2, . . . K, does not change if

no packet was transmitted from FEi to OLj in the previous

cycle. Thus, it is possible to reuse stale information in most

cases. Thus, it is clear that if a DS packet is not received by a

forwarder, it does not result in a critical failure. In the special

case where a slave receives DS packets from other forwarders

before hearing from the master forwarder, it behaves like other

slaves and broadcasts its own DS packet. In the rare event of

the master FE going silent, mechanisms for leader election in

distributed systems may be adopted to select a new master

forwarder.

At the end of the first phase, each FEi has information

about HoL packets in all the queues of all other FEs. Thus

each FE has the necessary information of all the queues in the

entire STSDR system. We now move onto the second phase

of packet scheduling.

B. Creation of preference lists at each forwarder

Many forwarders may have packets destined on the same

OL. Therefore arbitration is necessary to match a forwarder

with an outgoing link. The scheduling algorithm uses stable

matching to arrange this match. The stable matching algorithm

requires a preference list from each of the forwarders and each

of the outgoing links. Therefore, in the second phase, sets of

preference lists are created.

First, we obtain the preference list of the forwarders. Each

forwarder has one packet destined to each OL (after executing

the WFQ algorithm on its class queues per OL). Therefore for

every OLj at FEi, we will get

Pij = WFQ(Qij1, Qij2, ..., Qi1K) (1)

where WFQ(·) represents running WFQ algorithm on the set

of HoL packets in the queues indicated in the argument. Since

there are N outgoing links in the STSDR, FEi has a sequence

of N packets (Pi1, ..., PiN) for each OLj . We obtain the

preference list of FEi by sorting these N packets in increasing

order of their arrival times (i.e., earliest arrival first). Since

there are M FEs and N OLs, there are M forwarder preference

lists each containing N elements.

We illustrate this with an example where M = 2, N = 2
and K = 3 as shown in Figure 5. Consider the example of

FE1. First, WFQ is performed on Q111, Q112 and Q113 for

OL1 to obtain P11. Similarly P12 is obtained. P11 and P12

are then sorted by the algorithm ASORT (a simple sorting

algorithm), in the non-decreasing order of their arrival times.

For example if a12 < a11, the ordered sequence is (P12, P11).

This ordered list is X1 and represents the preference list of

FE1. Similarly X2 is computed for FE2.

Now, we obtain the preference list of all the outgoing links.

As before, we assume that each forwarder has one packet

destined to OLj . Since there are M forwarders, each OLj

has a sequence (P1j ,P2j ,...,PMj .) of packets destined to it.

We obtain the preference list of OLj by sorting this sequence

of packets in the non-decreasing order of their virtual finish

times. Since there are N OLs, N preference lists are produced

and each list contains M elements.

We note here that OLj cannot choose the FE with the packet

having the lowest virtual finish time (say FEi). This is because

FEi may have a packet destined to another OL (say OLj′)

whose arrival time is earlier than the one destined for OLj .

Hence there is a need for stable matching.

We return to the example in Figure 5. Consider the case

for OL1. P11 at FE1 and P21 are the packets destined for

OL1. The algorithm VSORT (a simple sorting algorithm)

orders the two packets in non-decreasing order of their virtual

1 2 1 2 1 2 1 2

WFQWFQ WFQ WFQ

ASORT ASORT

3 3 33

P
11 P 12

For OL For OL For OL For OL

VSORTVSORT

STABLE

ALGORITHM

MATCHING

j

P 22P 22

PP 21P
11

P

12 21

Z

T
H

IR
D

 P
H

A
S

E
S

E
C

O
N

D
 P

H
A

S
E

1 1 2 2
FE preference list X OL preference list Y

FE preference list
2

X2
OL preference list

1
Y1

(FE , OL)
i

1 2 1 2

QueuesQueuesQueuesQueues

FORWARDER FORWARDER

1 2

Fig. 5. WFQ packet scheduling in the STSDR. Phase one is assumed as
completed. Assume two outgoing links, two forwarders and three classes of
traffic. ASORT orders packets by their arrival times inside each FE. VSORT
orders packets by their virtual finish times inside each FE (even though it is
shown outside the FE). In the second phase, Xi∀i and Yj∀j is computed. In
the third phase, each FEi is matched to an OLj .

finish times to obtain Y1. For example, if v11 < v21, then the

ordered sequence is (P11, P21). This ordered sequence is Y1

and represents the preference list for OL1. Similarly, Y2 is

obtained for OL2.

In the actual implementation on the STSDR, each FE

computes the preference lists for itself, for the other FEs

and for the OLs independently. Hence, the computation is

distributed and deterministic; i.e., all the FEs will end up

having the same decision of order of scheduling. Note that

the arrival time of packets belonging to different forwarders

are never compared for a computation. Hence, the need for

tight time synchronization between FEs for the purpose of

WFQ scheduling is avoided. The virtual clock Vj is maintained

at each FEi and hence a direct comparison of the virtual

finish time is possible. We now move to the third phase of the

scheduling process.

C. Link Selection at each forwarder

In this phase, the preference lists produced at the end of

the second phase are fed as input into a stable matching

algorithm [12]. The stable matching algorithm assigns each FE

to a particular OL. At FEi who is assigned OLj , the outgoing

link corresponds to a packet selected by the WFQ from one

of its local queues destined to OLj . The FE transmits that

selected packet packet over OLj and updates the virtual clock

Vj . Once again we note that the stable matching algorithm

is executed on every FE and the output of the algorithm is

identical and deterministic at every FEi. Hence, all FEs have

exact knowledge of the packet transmitted by other FEs. All

FEs therefore update the virtual clock for all the OLs assigned

to the FEs.

Once all the transmissions are completed, the master for-

warder once again initiates the queue status information

exchange protocol and the cycle repeats. We thus have a

technique that is able to satisfy the WFQ-based bandwidth

sharing without compromising performance in a distributed

OSR such as the STSDR. The algorithm of the scheduler at

every FEi is listed in Algorithm 1.

Algorithm 1 WFQ scheduler algorithm executed at every FE

Broadcast DSi packet

Collect all DSm packets from other FEs where m 6= i,

1 ≤ m ≤ M

for i = 1 to M do

{/* for all FEs */}
Pi = () {/* Initialize empty ordered list */}
for j = 1 to N do

{/* For all OLs */}
Pij = WFQ(Qij1, ..., QijK)
Insert Pij into Pi {/*Pi = (Pi1, Pi2, ..., PiN) is the

sequence of packets selected for transmission from

FEi to OL1, OL2, ..., OLN respectively*/}
end for

Let Xi = ASORT (Pi1, Pi2, ..., PiN) {/* Xi is a list

of elements Pij , in non-decreasing order of their arrival

times.*/}
end for

for j = 1 to N do

{/* for all OLs */}
Rj = () {/* Initialize empty ordered list */}
for i = 1 to M do

{/* for all FEs */}
Insert Pij into Rj {/*Rj = (P1j , P2j , ..., PMj) is

the sequence of packets selected for transmission by

FE1, FE2, ..., FEM respectively*/}
end for

Let Yj = V SORT (P1j , P2j , ..., PMj) {/* Yj is a list

of elements Rj , in non-decreasing order of their virtual

finish times */}
end for

Z = StableMatch((X1,X2, ...,XM), (Y1, Y2, ..., YN)) {/* Z

is set of pairs. Each pair φ contains an FE and its matched

OL. Number of elements in Z = min(M , N)*/}

D. Comparison with centralized WFQ

There are two major differences between our implemen-

tation of the distributed WFQ and the centralized WFQ of

a single PC router. The biggest difference is that in our

implementation of the distributed WFQ, the scheduler is non

work conserving. This occurs due to two reasons. IP packets

are variable in length and it is possible for some forwarders

to finish their transmission early and then wait for other

forwarders to complete their transmissions. This necessarily

makes our implementation a non-work conserving one. A

second reason is the latency introduced due to the three

phases of the scheduling process. Although some pipelining

of the computations does occur, this non-work conserving

behavior does affect performance as we shall see shortly. The

second difference is that the stable matching algorithm may

cause some packets to be transmitted in a different sequence

compared to a centralized scheduler.

In the next section, we report the results of the experiments

that were performed on the distributed WFQ implementation

proposed in this section.

V. EXPERIMENTAL RESULTS

In this section we present the results of our experiments after

implementing the distributed WFQ design. We present two sets

of results. In the first set we compare the performance of the

STSDR forwarder with WFQ. In the ideal case, introduction

of WFQ functionality should not affect the throughput of the

STSDR forwarder. In the second set we compare the fairness

of the STSDR with a centralized WFQ scheduler. In the

ideal case, the fairness of the distributed OSR implementation

should remain the same as that of a centralised single PC OSR

having the same number of interfaces as the total number of

external interfaces on the STSDR. The hardware and software

details of the experimental setup is listed in the Appendix.

For the performance experiments, two packet generators are

used to inject packets into the two load balancers which then

direct these packets to a forwarder. The generated packets

have a randomly chosen destination IP address from a valid

range and are of type UDP. The UDP port is also set

randomly from a fixed range. The maximum queue length

value at each forwarder was set at 10000 packets for each

queue. One million 64-byte packets were generated and the

average throughput noted for a set of twelve experiments. For

the fairness experiments, each traffic class in the forwarders

is assigned an equal weight wk and the distributed WFQ

scheduler is configured with these values. Ties occurring at

the distributed WFQ scheduler are broken randomly. For both

sets of experiments we chose N = 3 and K = 3. Thus, each

forwarder transmits information about 9 queues in its DSi

packet.

A. Scheduling a single packet per cycle

In this experiment, a single packet is transmitted at the end

of every cycle. We call this the single DSi or S-DSi approach.

Initially, Tbr was set to 20µs. It was observed with Tbr = 20µs

that several broadcast packets never arrived at the forwarders.

Further experiments showed that even on idle forwarders,

a Tbr ≥ 50µs was necessary for all forwarders to receive

DSi. Note that a 100-byte packet inside an Ethernet frame

transmitted on a 1Gbps link corresponds to a time of about

1µs. The DSi packets were only 50 bytes long. This implies a

severe limitation in the operation of the commodity hardware

based T-switch. An improvement in the processing speed of the

T-switch should result in reduction of Tbr. This also implies

tbr Input Rate Percentage of lost Output rate Percentage
(µs) (pps) broadcast frames (pps) throughput

72 13888 2.31 12831 92.39
76 13157 1.82 12322 93.65
80 12500 2.05 11822 94.57

TABLE II
PACKET THROUGHPUT FOR DISTRIBUTED WFQ ON THE STSDR USING

THE S-DSi APPROACH

that Tbr is not constrained by the layer-2 technology used here

(Gigabit Ethernet) or the topology of the distributed OSR.

We begin by comparing the fairness of the bandwidth allo-

cation of our proposed implementation. One million packets,

both of fixed length and variable lengths were transmitted

(i.e., one million rounds of scheduling were conducted). We

chose the fixed packet length to be 64 bytes. For variable

packet lengths, we chose the values of packet lengths from

a real trace (details in the Appendix). Packets from the trace

were randomly assigned to one of three classes. We chose

Tbr = 72µs. In Table I, we report the number of bytes

transmitted on outgoing link OL1 for a centralized WFQ

scheduler and the distributed WFQ scheduler. We observe that

for fixed packet lengths, the difference between the schedulers

is a maximum of 256 bytes, i.e., four packets. For variable

length packets the difference is larger, especially Class #3

(about 0.0008%). A careful analysis revealed that the packets

assigned to Class #3 packets had a lower mean packet length

and hence fewer bytes on average were transmitted per cycle.

We note that the bandwidth allocation of our distributed WFQ

scheduler is very close to the centralized scheduler for all the

classes. We now consider the performance of the distributed

WFQ scheduler.

We compare the packet per second throughput performance

of the WFQ implementation of the STSDR forwarder with

the STSDR forwarder without WFQ. As mentioned before, in

an ideal scenario, the throughputs in both the cases should

be identical. In our experiments, the STSDR with no WFQ

implementation achieved a throughput of ∼ 186 kpps.

Table II lists the observed performance on a STSDR forwarder

for different values of Tbr. We observe that the forwarder

throughput with WFQ is very low and there are some lost

broadcast frames as well. We measured the execution time of

the cycle’s three phases. The first phase executed in ∼105µs.

The second phase took ∼600ns. The third phase of stable

matching took ∼450ns. Clearly, the first phase dominates the

total time taken for the entire cycle. The performance of the

STSDR forwarder is limited by the first phase, as during

the first phase no packets are being transmitted on the OLs.

This issue can be addressed in several ways. We look at two

particular techniques next.

B. Scheduling multiple packets per cycle

Our earlier experiments confirmed that the communication

overhead is very expensive in the distributed OSR. Hence,

a means of either avoiding communication or amortizing the

Packet Size
Class #1 Class #2 Class #3

Centralized Distributed Centralized Distributed Centralized Distributed

64 bytes 21,333,312 21,333,3440 21,333,312 21,333,120 21,333,312 21,333,376
Variable 246,333,087 246,315,351 246,333,123 246,339,218 246,341,016 246,145,323

TABLE I
FAIRNESS COMPARISON BETWEEN CENTRALIZED AND S-DSi. THE BYTES TRANSMITTED PER CLASS AT THE END OF 1 MILLION ROUNDS ARE NOTED.

ALL CLASSES HAVE SAME WEIGHT.

Packets per DSi Throughput in kpps

15 115.3
20 130.9
25 150.6

TABLE III
PACKET THROUGHPUT FOR DISTRIBUTED WFQ ON THE STSDR USING

THE M -DSi APPROACH

cost of communication is necessary. The value of Tbr was kept

at 72µs.

One approach is to transmit information about the first

l packets of a queue in DSi. Thus, distributed WFQ and

stable matching can occur for up to l packets before state

synchronization is necessary. We call this the multiple DSi or

the M -DSi approach. We vary l with three different values of

15, 20 and 25 shown in the first column. Since each packet’s

information consists of 6 bytes (4 bytes time-stamp and 2

bytes of packet length), information for about 25 packets per

queue can be enclosed in one single Ethernet frame. The

average throughput across the three links are reported. No

DSi losses were observed in this approach. We report the

performance results of M -DSi in Table III. We observe that

the throughput improves considerably from 12.8 kpps in the

S-DSi approach to 115.3 kpps. The M -DSi technique is

clearly far more efficient than S-DSi. However, the maximum

throughput still falls short of its potential value of ∼186 kpps

due to three major reasons. First, about 2µs per cycle are

utilized for the second and third phase of scheduling. Second,

information of only about 25 packets can be accommodated

in the maximum length Ethernet frame. Third, between two

consecutive cycles, every FE has to wait for the longest packet

to finish transmission before starting transmission of the next

round thereby causing idle periods on most links. Thus we

need an alternative technique that overcomes these issues.

The second approach that we consider is lazy scheduling.

In lazy scheduling, the packet selection and link assignment

happen as described in Section IV. However, instead of

transmitting just one packet, l packets from the selected queue

are transmitted. We call this the L-DSi approach. Transmitting

l packets from a single queue will necessarily alter the short

term fairness in the STSDR compared to the centralized WFQ

or the S-DSi approach. However, there are two advantages

to L-DSi. First, phase two and three, i.e., distributed WFQ

and stable matching, are executed only once every l packets.

Second, transmitting l packets from a single queue allows

device driver optimizations to transmit/fetch several packets

in one DMA transfer.

Packets per cycle Throughput in kpps

15 130.4
20 149.9
25 174.2

100 183.1

TABLE IV
PACKET THROUGHPUT FOR DISTRIBUTED WFQ ON THE STSDR USING

THE L-DSi APPROACH

For L-DSi, we vary l for four values of 15, 20 and 25

and 100. The transmission at each forwarder stops when the

sum of packet lengths crosses l ∗ 64 bytes. Note that in this

technique, l can be varied more widely. However, the value

of l should not cause some queues to drain completely before

the other queues have finished transmission to reduce non-

work conserving behaviour and reduce short-term fairness

imbalance. In Table IV, we report the performance of L-DSi.

We observe that L-DSi performs better than M -DSi for the

same values of l. The L-DSi is thus able to avoid the issues

limiting the performance of M -DSi. We therefore observe

that in L-DSi, a STSDR forwarder is able to achieve almost

the same throughput as the STSDR forwarders with no WFQ

functionality.

We now address the issue of fairness for M -DSi and L-

DSi. M -DSi is a direct extension of S-DSi. Hence, the

fairness will remain identical to that of S-DSi which was

presented in Table I. Let us now consider L-DSi.

Table V reports the number of bytes transmitted by the L-

DSi and a centralized WFQ scheduler on OL1. We retain the

same traces (as used for S-DSi) for variable packet lengths.

We report the results for 25 packets transmitted per cycle.

For fixed length packets, the fairness declines considerably

compared to the single packet per cycle implementation. This

is due to the fact that in every cycle, 25 packets get transmitted

from a class queue before another class may catch up (recall

that all class queues have same weight). The worst case

difference in the number of bytes transmitted for fixed length

packets is about 0.001%. For variable length packets, the

worst case difference is about 0.7%. We thus conclude that

lazy scheduling performs a tradeoff for higher throughput

performance in exchange for a slight decrease in the fairness of

bandwidth allocation. We have thus demonstrated a distributed

scheduler implementation (L-DSi) on a distributed OSR that

offers both high performance and almost fair bandwidth allo-

cation.

Packet Size
Class #1 Class #2 Class #3

Centralized Distributed Centralized Distributed Centralized Distributed

64 bytes 21,334,400 21,339,200 21,334,400 21,313,600 21,334,400 21,347,200
Variable 246,645,653 246,181,428 246,645,603 246,846,529 246,645,515 244,909,002

TABLE V
FAIRNESS COMPARISON BETWEEN CENTRALIZED AND L-DSi. THE BYTES TRANSMITTED PER CLASS AT THE END OF ∼1 MILLION ROUNDS ARE NOTED.

ALL CLASSES HAVE SAME WEIGHT.

VI. DISCUSSIONS AND CONCLUSION

In this paper we first detailed the difficulties that arise when

the WFQ functionality designed for a centralized system is

implemented over a distributed system. We also gave solutions

to each of the issues and implemented a distributed scheduler

for WFQ over three forwarders for three classes of traffic. We

made some comparisons between the WFQ functionality of

a centralized and our distributed solution. We analyzed the

performance issues related to our proposed implementation

and demonstrated further improvements by amortizing com-

munication costs.

The focus of this paper is not to provide the best mechanism

or implementation for a distributed WFQ. Hence, there may

be ways to improve the implementation. Techniques that

improve time synchronization between the STSDR nodes

will hasten synchronization of the globally distributed state

information. Out of band distribution of state information can

allow pipelining of certain functions. The M -DSi approach

can be extended further by using stale information for p

additional rounds. This extension may be acceptable as in-

formation for only one of the N queues needs to be updated

in each forwarder per round. For the rest of the queues, the

information does not change. Using Jumbo Ethernet frames for

DSi packets can allow further improvement in performance

of M -DSi.

ACKNOWLEDGEMENT

This work was supported in part by the Bharti Centre for

Communication at Indian Institute of Technology Bombay.

APPENDIX

For the distributed router STSDR, four PCs each having

a Intel C2D 2.1GHz and DG965RYCK motherboard with

onboard GbE NICs and a Nortel 3510-24T Gigabit switch was

used. The operating system details are as follows. Linux Kernel

Version : 2.6.16-13. Click Version: 1.5.0 for packet generation

and reception. Perl: Perl scripts during test execution and post

processing. The trace files for the fairness comparison was

taken from an intercity router of an ISP from Italy in early

2008 and contained about 1.54 million packets in each trace.

REFERENCES

[1] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High-speed switch
scheduling for local-area networks,” ACM Transactions on Computer

Systems, vol. 11, pp. 319–352, November 1993.
[2] N. Athaide, A. Khan, D. Manjunath, and A. Sahoo, “Trie Partitioning in

Distributed PC Based Routers,” in Proceedings of the First International

Communication Systems and Networks and Workshops(COMSNETS), 5-
10 January 2009, pp. 1–10.

[3] A. Bianco, R. Birke, L. Giraudo, F. Marenko, M. Mellia, A. Khan,
and D. Manjunath, “Control and Management Plane in a Multi-stage
Software Router Architecture,” in Proceedings of the International

Conference on High Performance Switching and Routing, 15-17 May
2008, pp. 235–240.

[4] A. Bianco, J. M. Finochietto, G. Galante, M. Mellia, and F. Neri,
“Open-Source PC-Based Software Routers: A Viable Approach to High-
Performance Packet Switching,” in Proceedings of the 3rd International

Workshop on QoS in Multiservice IP Networks (QoSIP), 2-4 February
2005, pp. 353–366.

[5] A. Bianco, J. M. Finochietto, M. Mellia, , F. Neri, and G. Galante, “Mul-
tistage Switching Architectures for Software Routers,” IEEE Network,
vol. 21, no. 4, pp. 15–21, 2007.

[6] R. Bolla and R. Bruschi, “A high-end Linux based Open Router for
IP QoS networks: tuning and performance analysis,” in Proceedings of

the 3rd International Workshop on Internet Performance, Simulation,

Monitoring and Measurements, March 2005, pp. 203–214.

[7] R. Bolla, R. Bruschi, A. Ranieri, and G. Traverso, Grid Enabled Remote

Instrumentation. Springer, 2008, ch. Analyzing and Optimizing the
Linux Networking Stack, pp. 187–199.

[8] S. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching output
queueing with a combined input/output-queued switch,” IEEE Journal

on Selected Areas in Communication, pp. 1030–1039, 1999.

[9] M. Dobrescu, N. Egi, K. Argyraki, B. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, “Routebricks: Exploiting
parallelism to scale software routers,” in SOSP ’09: Proceedings of the

ACM SIGOPS 22nd symposium on Operating Systems Principles, 2009,
pp. 15–28.

[10] S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: a GPU-
Accelerated Software Router,” in Proceedings of the 2010 ACM SIG-

COMM 2010 Conference, August 2010, pp. 195–206.

[11] A. Khan, R. Birke, D. Manjunath, A. Sahoo, and A. Bianco, “Distributed
PC based routers: Bottleneck analysis and architecture proposal,” in
Proceedings of High Performance Switching and Routing 2008, May
2008.

[12] J. Kleinberg and E. Tardos, Algorithm Design. India: Pearson Educa-
tion, 2005, ch. Introduction: Some representative problems, pp. 1–12.

[13] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek,
“The Click Modular Router,” ACM Transactions on Computer Systems,
vol. 18, no. 3, pp. 263–297, 2000.

[14] N. McKeown, M. Izzard, A.Mekkittikul, W. Ellersick, and M. Horowitz,
“Tiny Tera: a packet switch core,” IEEE Micro, vol. 17, no. 1, pp. 26–33,
1997.

[15] C. . Router, “Technical Specifications for the Cisco 7200,”
7 August 2009. [Online]. Available: http://www.cisco.com/en/US/
products/hw/routers/ps341/products tech note09186a0080094ea3.shtml

[16] D. C. Stephens and H. Zhang, “Implementing distributed packet fair
queueing in a scalable switch architecture,” in Proceedings of INFOCOM

1998. The Seventeenth Annual Joint Conference of the IEEE Computer

and Communications Societies., 1998, pp. 282–290.

[17] I. Stoica and H. Zhang, “Exact emulation of an output queueing
switch by a combined input output queueing switch,” in Proceedings of

IEEE/IFIP Sixth International Workshop on Quality of Service (IWQoS),
1998, pp. 218–224.

[18] N. Vaidya, A. Dugar, S. Gupta, and P. Bahl, “Distributed Fair Scheduling
in a Wireless Lan,” IEEE Transactions on Mobile Computing, vol. 4,
pp. 616–629, 2005.

