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Abstract

This thesis explores Chance-Constrained Programming (CCP) in the context of learning.

It is shown that chance-constraint approaches lead to improved algorithms for three

important learning problems — classification with specified error rates, large dataset

classification and Ordinal Regression (OR). Using moments of training data, the CCPs

are posed as Second Order Cone Programs (SOCPs). Novel iterative algorithms for

solving the resulting SOCPs are also derived. Borrowing ideas from robust optimization

theory, the proposed formulations are made robust to moment estimation errors.

A maximum margin classifier with specified false positive and false negative rates is

derived. The key idea is to employ chance-constraints for each class which imply that

the actual misclassification rates do not exceed the specified. The formulation is applied

to the case of biased classification.

The problems of large dataset classification and ordinal regression are addressed by

deriving formulations which employ chance-constraints for clusters in training data rather

than constraints for each data point. Since the number of clusters can be substantially

smaller than the number of data points, the resulting formulation size and number of

inequalities are very small. Hence the formulations scale well to large datasets.

The scalable classification and OR formulations are extended to feature spaces and

the kernelized duals turn out to be instances of SOCPs with a single cone constraint.

Exploiting this specialty, fast iterative solvers which outperform generic SOCP solvers,

are proposed. Compared to state-of-the-art learners, the proposed algorithms achieve a

speed up as high as 10000 times, when the specialized SOCP solvers are employed.

The proposed formulations involve second order moments of data and hence are
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susceptible to moment estimation errors. A generic way of making the formulations

robust to such estimation errors is illustrated. Two novel confidence sets for moments

are derived and it is shown that when either of the confidence sets are employed, the

robust formulations also yield SOCPs.
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Chapter 1

Introduction

Abstract

This chapter introduces the main theme of thesis and discusses the main contributions. The chapter

also provides a road-map to the thesis which serves as a reader’s guide.

Many learning tasks can be understood as constructing a function f which predicts

the label y of an observation x. Usually, the only information available is a finite set of

examples, D = {(xi, yi), i = 1, . . . ,m}, known as the training set. Real-world learning

applications desire that the generalization error, which is the error in predicting labels

of examples not necessarily in D, is low and acceptable. It is challenging to construct

such a function because the training set is finite and may not represent the underlying

distribution in its entirety. From a pragmatic perspective, the other main challenge is to

develop efficient algorithms for constructing the function f , which are viable even when

the training set size, m, is large.

This thesis explores the possibility of employing Chance-Constrained Programs (CCPs)

for addressing these issues with learning algorithms. The key contribution is to show that

chance-constraint approaches lead to accurate, scalable and robust learning algorithms.

The Chebyshev-Cantelli inequality, which uses the second order moment information, is

exploited in order to pose the CCPs as tractable, convex, optimization problems. It is

1



Chapter 1. Introduction 2

shown that the optimization problems, which are instances of Second Order Cone Pro-

grams (SOCPs), have elegant geometric interpretations and hence can be solved using

efficient iterative schemes. Further, in cases where the SOCPs derived involve a single

cone constraint, novel algorithms which outperform generic SOCP solvers are proposed.

Using robust optimization principles the formulations are made robust from moment

estimation errors. It is shown that the robust formulations are also instances of SOCPs

and hence are tractable.

In the past, chance-constraint approaches were employed for handling uncertainty

in training data [44] and for constructing learners where bounds on error rates are

known [32]. This thesis shows that chance-constraint approaches can also be employed for

achieving scalability, enabling the learning algorithms to handle large datasets involving

millions of examples. It is shown that the chance-constraint based learning algorithms,

when compared to the state-of-the-art, give a speed-up as high as 10000 times in some

cases. The specific learning problems discussed in this thesis and the proposed chance-

constraint approaches for solving them are briefly outlined below.

Real world classification applications desire to obtain a classifier whose actual mis-

classification rate does not exceed the maximum tolerable limit. For instance, in case of

medical diagnosis of cancer [30], it is required that the false negative (FN) rate is low.

Whereas slightly high false positive (FP) rate may be tolerated. This is because the cost

of misclassifying a cancer patient is very high compared to that of misclassifying a nor-

mal patient. In this thesis, a maximum margin classification formulation with specified

false positive and false negative rates is proposed, which has potential to be applied in

cases where classifiers with preferential bias towards a particular class are desired. The

key idea is to employ chance-constraints for each class implying that the actual error

rates do not exceed the specified. Using the Chebyshev-Cantelli inequality and second

order moments of class conditional densities, the resulting CCP is posed as an SOCP.

Large-scale binary classification is another problem discussed in this thesis. Many

real-world classification applications like Intrusion detection, web page classification and

spam filtering involve analyzing millions of data points. However most of the existing
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classification algorithms either require the training data to be in memory or make mul-

tiple passes of the dataset and hence are not attractive for large dataset classification. A

similar problem is that of training an ordinal regressor on large datasets. Ordinal Regres-

sion (OR) problems frequently occur in the areas of Information retrieval, social science,

personalized searches and other ranking based applications. The existing algorithms for

OR do not scale well for reasons same as in case of large-scale classification.

The above mentioned large-scale learning problems are addressed by deriving formu-

lations which employ chance-constraints for clusters in training data rather than con-

straints for each data point. Using the second order moments of clusters, the resulting

CCPs are posed as SOCPs involving one cone constraint and one linear constraint per

cluster. Thus the size of optimization problem which needs to be solved is small even

when the training data size, m, is large. An online clustering algorithm like BIRCH [48]

can be employed to estimate moments of clusters efficiently in O(m) time. Training

time with the new learning scheme, which is the sum of clustering and SOCP solving

times, grows linearly with training set size, as the cone program size depends on number

of clusters rather than on number of data points. The scalable classification and OR

formulations are extended to feature spaces and the duals also turn out to be instances

of single cone-constrained SOCPs. Exploiting this special structure, fast iterative solvers

are proposed, which outperform generic SOCP solvers. It is shown that the training time

with the chance-constraint based scalable formulations, solved using the novel iterative

algorithms, is orders of magnitude less than the state-of-the-art.

The novel SOCP formulations briefed above involve second order moments of training

data and hence are susceptible to moment estimation errors. Using the large dataset

classification formulation as an example, a generic method for introducing robustness

from estimation errors is presented. The method is based on two new confidence sets

for moments — separate and joint confidence sets. It is shown that when either of the

confidence sets is employed, the robust variant of the original formulation also is an

SOCP and hence is tractable.
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1.1 Main Contributions

The thesis concentrates on developing chance-constraint approaches for learning, leading

to improved algorithms. The main contributions are as follows:

• A maximum margin classifier with specified false positive and false negative rates

is proposed. The formulation is posed as an SOCP and is applied to the case of

biased classification. It is shown that the dual turns out to be the problem of

minimizing distance between ellipsoids and an iterative algorithm to solve the dual

efficiently is presented. The formulation is extended to non-linear classifiers and it

is shown that the non-linear, linear formulations have the same form.

• A scalable binary classification formulation which employs chance-constraints for

clusters in training data is proposed. Using second order moments of clusters,

the resulting CCP is posed as a single cone-constrained SOCP involving a small

number of variables and linear inequalities. When an online clustering algorithm

is employed for estimating moments of clusters, the overall training time, which is

the sum of clustering and SOCP solving times, grows linearly with training data

size, m. The key advantage is that the training time is comparable to that with

the state-of-the-art SVM solvers even when the formulation is solved using generic

SOCP solvers. The geometric interpretation of the formulation turns out to be

that of doing a maximum margin classification of spheres centered at means of

clusters and radii proportional to the variances.

• Using similar ideas, a scalable, chance-constraint based ordinal regression formu-

lation for large datasets is also derived. Methodology of extending the scalable

formulation to feature spaces is presented and it is shown that the overall training

time remains to be O(m). Maximum number of support vectors with the non-

linear formulation turns out to be the number of clusters, making it suitable for

situations where fast predictions are desired. Another contribution is to pose the

problem of focused crawling [11] as a large scale ordinal regression problem and

solve efficiently using the proposed OR formulation.
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• Fast iterative algorithms for solving the scalable classification and OR formulations,

which are instances of SOCPs with single cone-constraint, are derived. The new

SOCP solvers scale very well when compared to generic SOCP solvers and are

very simple to code. When such solvers are employed, the chance-constraint based

learning schemes outperform the state-of-the-art in terms of training time.

• Using ideas from robust optimization theory, the proposed formulations are made

robust from moment estimation errors. Two novel confidence sets — separate and

joint confidence sets for moments are derived and it is shown that when either of

the confidence sets are employed, the robust variant of the original formulation is

also an SOCP.

1.2 Thesis Road-Map

This section shows the organization of remainder of the thesis and serves as a road-map

to the reader.

The problem of classification with specified error rates is described in chapter 2.

The chapter begins by motivating the need for employing such a classifier in applica-

tions like biased classification. Section 2.1 reviews past work and discusses issues with

the existing methods. Main contribution of the chapter, maximum margin formulation

with specified FP and FN rates, is presented in section 2.2. Using moments of class-

conditional densities, the formulation is posed as an SOCP. Section 2.3 presents dual of

the formulation. The dual SOCP turns out to be the problem of minimizing distance

between ellipsoids. An iterative algorithm to solve the dual efficiently is presented in

section 2.3.1. Section 2.4 presents non-linear extensions for the proposed formulation.

It is shown that the non-linear formulation has the same form as the linear formulation.

Numerical experiments comparing performance of the non-linear and linear formulations,

solved using generic SOCP solvers and the new iterative algorithm (section 2.3.1), are

presented in section 2.5. Experiments also compare the new formulations with the biased

SVM formulation [3]. The chapter concludes with a brief summary in section 2.6.
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The problem of large dataset classification is discussed in chapter 3. The chapter

starts by discussing the importance of the problem of scalable classification and justifies

the proposed approach of employing a chance-constraint based scheme. In section 3.1

past work done on large dataset classification is presented. The main contribution, maxi-

mum margin classification formulation using chance-constraints for clusters, is presented

in section 3.2. The section also describes the overall classification scheme. In section 3.3

the dual of the clustering based classification formulation is presented. The geometrical

interpretation turns out to be that of classifying spheres centered at means and radii

proportional to variances of the clusters. Section 3.4 presents results of experiments on

large synthetic and real world datasets comparing the proposed scheme and the state-of-

the-art SVM solver, SVM-Perf [26]. The experiments confirm that the chance-constraint

based method compares well, both in terms of training time and accuracy, with SVM-

Perf. In cases where the datasets are very large and do not fit in memory, SVM-Perf fails

to complete training whereas the proposed scheme remains a viable option. Section 3.5

concludes the chapter with a summary.

Chapter 4 discusses the problem of large dataset ordinal regression. Initial discus-

sion of the chapter motivates the need for a scalable, chance-constraint based solution.

The discussion also introduces the problem of focused crawling and suggests that the

focused crawling problem can be posed as a large scale OR problem. In section 4.1 a

brief review of the past work on ordinal regression and focused crawling is presented.

Section 4.2 presents the scalable chance-constraint based OR formulation. The formula-

tion is extended to non-linear feature spaces in section 4.3. This section also derives the

dual of the new OR formulation. Detailed discussion on the focused crawling problem

and the suggested OR based solution are described in section 4.4. In section 4.5, ex-

periments showing scalability of the scalable OR formulation are discussed. The section

also presents experiments comparing the performance of the OR based crawler and the

baseline crawler [11]. The chapter ends with a summary in section 4.6.

In chapter 5, a fast iterative algorithm for solving the scalable OR formulation is

presented. The chapter begins by motivating the need for such a fast solver. Section 5.1
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presents the fast algorithm which exploits the fact that the formulation is an instance of

SOCP with only one cone constraint. Derivations in the chapter can be reproduced for

the scalable classification formulation, as both the formulations are similar in structure

(see appendix B). In section 5.2, experiments which compare scalability of the new iter-

ative SOCP solver and SeDuMi [45], a generic SOCP solver, are presented. Experiments

also show that the scalable OR scheme outperforms the state-of-the-art, when the new

SOCP solver is employed. The chapter concludes with a brief summary in section 5.3.

A common problem with the proposed learning formulations is susceptibility to mo-

ment estimation errors. Chapter 6 deals with the issue of making the formulations robust

to such estimation errors. The methodology is illustrated using the scalable classification

formulation as an example. Section 6.1 describes the generic idea of using confidence sets

for moments in order to introduce robustness. In sections 6.1.1, 6.1.2, two novel confi-

dence sets for means and variances are derived for the special case of normal distribution

of clusters. The sections also present the main contribution of the chapter — proving

that the robust variants of the formulation, when either confidence sets are employed,

are also SOCPs. Experimental results presented in section 6.2 prove the working of the

robust formulations. Experiments also show that such robust formulations are indeed

required. Section 6.3 concludes the chapter with a brief summary.

Chapter 7 concludes the thesis by summarizing main contributions. The chapter also

discusses related issues and directions for future work.



Chapter 2

Classification with Specified

Error Rates

Abstract

This chapter presents a maximum margin classification formulation with specified false positive and false

negative error rates1. The key idea is to employ chance-constraints for each class which imply that the

positive and negative misclassification rates do not exceed the specified limits. The formulation is posed

as an SOCP and is applied to the case of biased classification. An iterative algorithm to solve the dual,

which turns out be the problem of minimizing distance between ellipsoids, is presented. Using the kernel

trick, the formulation is extended to feature spaces.

Real world classification applications require that the misclassification error incurred

by the classifier is less than the tolerable limit. Moreover, in case of applications like

medical diagnosis of cancer [30], tolerable limits on the false-negatives and false-positives

differ. Because the cost of misclassifying a cancer patient is far higher than that of

misclassifying a normal patient, usually low false-negative rates and relatively high false-

positive rates are tolerated in such applications. Hence there is need to design classifiers

that have some bias towards a particular class. Also it is common in such applications

that the number of patients with cancer is far less than those who are normal. Hence

1This work was presented at the SIAM International Conference on Data Mining, 2007.

8
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the training data is highly unbalanced in these applications. Traditional classification

methods like SVM [46] do not address these issues satisfactorily.

This chapter studies the problem in the context of two classes, when data is sum-

marized by the moments of class conditional densities. It is assumed that the maxi-

mum tolerable false-negative and false-positive error rates (η1, η2 respectively) are given.

For instance, in the case of medical diagnosis, one can allow a low η1 and a relatively

high η2. In this way one can model the bias towards the positive class. Employing

chance-constraints for each class, which imply that the maximum false-negative, false-

positive rates do not exceed η1 and η2 respectively, a maximum margin formulation

is derived. Using the Chebyshev-Cantelli inequality cone constraints equivalent to the

chance-constraints are derived and the formulation is posed as an SOCP. As a special

case of convex non-linear optimization, SOCPs have gained much attention in recent

times due to their occurrence in solving many practical problems [34]. The formulation

can be solved using generic SOCP solvers like SeDuMi and has potential to be exploited

in situations where maximum tolerable error rates are known. As a specific application,

the proposed formulation can be used for classification with preferential bias towards a

particular class.

Interestingly, the dual of the formulation leads to an elegant geometric optimization

problem, that of computing the distance between two ellipsoids. This observation imme-

diately leads to a fast iterative algorithm to solve the dual, based on the approach of Lin

and Han [33]. Using kernel methods, the original formulation can be extended to fea-

ture spaces. The kernelized formulation has same structure as its linear counterpart and

hence can be solved using the iterative algorithm for finding distance between ellipsoids.

The chapter is organized as follows: section 2.1 presents a brief review of past work

done on biased classification. The new maximum margin formulation with specified error

rates is presented in section 2.2. In section 2.3, the dual and its fast iterative solver are

presented. Section 2.4 presents feature space extensions for the proposed formulation.

Experimental results with the proposed formulation are detailed in section 2.5. The

chapter concludes with a brief summary in section 2.6.
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2.1 Past Work

Several methods exist in literature which address the problem of classification with pref-

erential bias towards a particular class. Simple sampling techniques which introduce bias

by up-sampling the examples of the important class or down-sampling the less important

class examples or both exist [12, 31]. However down-sampling will lose information, while

up-sampling may introduce noise. Methods which adjust the costs or shift the decision

boundary towards the preferred class also exist [3, 9, 41]. Although such methods work

well in practice, it is usually hard to build direct quantitative connections to the biased

classifier’s performance. These methods therefore fail to provide a rigorous approach to

the task of classification where preferential bias towards one class is needed.

Biased minimax probability machine [24] is a formulation designed specifically for

asymmetric cost classification. In this method, the probability of correctly classifying

positive examples (p1) is maximized, while keeping a lower bound on that for the negative

class (p2). This is done so as to achieve high accuracy for the preferred class while not

having high error on the other class. However, with this method, at the optimum, p1

may turn out to be less than p2. The present formulation avoids such issues by taking

an alternative and novel approach of designing a classifier whose positive and negative

misclassification rates do not exceed the maximum allowed.

2.2 New Classification Formulation

This section presents the novel classification formulation with specified false positive and

false negative error rates. Let D = {(xi, yi)|xi ∈ R
n, yi = {1,−1}, i = 1, . . . ,m} be

the training dataset consisting of data points xi and labels yi. Suppose X1 represents

the random vector that generates examples of the positive class and X2 represents that

of the negative class. Let the mean and covariance of Xi be µi ∈ R
n and Σi ∈ R

n×n

respectively for i = 1, 2. Note that Σ1,Σ2 are symmetric positive semi-definite.
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Assume that w⊤x−b = 0 denotes the discriminating hyperplane and the correspond-

ing positive and negative half spaces are denoted by:

H1(w, b) = {x|w⊤x ≥ b}, H2(w, b) = {x|w⊤x ≤ b}

As mentioned above, a maximum margin classifier such that the false positive and false

negative error rates do not exceed η1 and η2 needs to be constructed. To this end,

consider the following problem:

min
w,b

1
2
‖w‖2

2

s.t. Prob(X1 ∈ H2) ≤ η1

Prob(X2 ∈ H1) ≤ η2

X1 ∼ (µ1,Σ1) X2 ∼ (µ2,Σ2) (2.1)

The chance-constraints Prob(X1 ∈ H2) ≤ η1 and Prob(X2 ∈ H1) ≤ η2 ensure that the

false-negative and false-positive rates do not exceed η1 and η2. As in case of SVMs,

the objective implies minimizing ‖w‖2, leading to good generalization [46]. The chance-

constraints in (2.1) can be re-written as deterministic constraints using the following

theorem:

Theorem 2.1. Let X be an n-dimensional random variable having mean and co-

variance (µ,Σ). Then the following is true for any c ∈ R
n, d ∈ R, 0 ≤ e ≤ 1:

c⊤µ − d ≥ κ
√

c⊤Σ c ⇒ Prob(c⊤X ≥ d) ≥ e (2.2)

where κ =
√

e
1−e

.

Further if X is multivariate normal, then κ = Φ−1(e). Φ is the distribution function2

of uni-variate normal with mean 0 and variance 1.

Refer appendix A for a proof of theorem 2.1. The proof is based on the multivariate

2Φ(z) = 1√
2π

∫ z

−∞ exp
(

−s2/2
)

ds
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generalization of the Chebyshev-Cantelli inequality [36]. Applying the theorem (2.1)

with c = w, d = b, e = 1 − η1 and X = X1 gives Prob(X1 ∈ H2) ≤ η1 if w⊤µ1 − b ≥
κ1

√
w⊤Σ1w where κ1 =

√

1−η1

η1
. Similarly if b−w⊤µ2 ≥ κ2

√
w⊤Σ2w, κ2 =

√

1−η2

η2
, then

Prob(X2 ∈ H1) ≤ η2.

Note that the constraints are positively homogeneous. That is, if w, b satisfy the

constraints then cw, cb also satisfy the constraints, for any positive c. To deal with this

extra degree of freedom, one can impose the constraint that the classifier should separate

the means even if ηi = 1. In other words, w⊤µ1 − b ≥ 1 and b−w⊤µ2 ≥ 1. The problem

(2.1) can now be stated as the following deterministic optimization problem.

min
w,b

1
2
‖w‖2

2

s.t. w⊤µ1 − b ≥ 1 + κ1

√
w⊤Σ1w

b − w⊤µ2 ≥ 1 + κ2

√
w⊤Σ2w (2.3)

Since the matrices Σ1 and Σ2 are symmetric positive semi-definite, there exist square

matrices C1 and C2 such that Σ1 = C1C
⊤
1 and Σ2 = C2C

⊤
2 . Now, (2.3) can be written

as:

min
w,b

1
2
‖w‖2

2

s.t. w⊤µ1 − b ≥ 1 + κ1‖C⊤
1 w‖2

b − w⊤µ2 ≥ 1 + κ2‖C⊤
2 w‖2 (2.4)

Clearly, the optimization problem (2.4) is feasible whenever µ1 6= µ2. This is because one

can choose η1 = η2 = 1, in which case the constraints in (2.4) imply that the hyperplane

w⊤x − b = 0 must separate the means µ1 and µ2. Thus, whenever the means are not

coinciding, the problem (2.4) can be made feasible by choosing appropriate values for η1

and η2. The non-linear constraints in (2.4) are known as second order cone constraints.
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The formulation (2.4) can be written in the following standard SOCP form:

min
w,b,t

t

s.t. t ≥ ‖w‖2

w⊤µ1 − b ≥ 1 + κ1‖C⊤
1 w‖2

b − w⊤µ2 ≥ 1 + κ2‖C⊤
2 w‖2 (2.5)

SOCP problems can be efficiently solved by interior point methods for convex non-linear

optimization [39]. For a discussion on further efficient algorithms and applications of

SOCP see [34]. Once the formulation is solved for w and b, the decision function given

in (2.6) can be used to classify a new data point x.

f(x) = sign
(

w⊤x − b
)

(2.6)

By varying values of the parameters η1 and η2, bias can be introduced into the classifier in

a controlled way. The proposed classifier also has potential to be exploited in applications

where the maximum tolerable error rates are specified.

2.3 Dual and its Iterative Solver

Constraints in the new classification formulation (2.4) have an elegant geometric inter-

pretation. In order to see this, consider the following problem. Suppose

B(µ,C, κ) = {x | x = µ − κCu, ‖u‖2 ≤ 1} (2.7)

represents an ellipsoid centered at µ, whose shape is determined by C, (Σ = CC⊤) and

size by κ. Also assume that C is square full-rank, in which case

B(µ,C, κ) =
{

x | (x − µ)⊤Σ−1(x − µ) ≤ κ2
}

, (2.8)
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Figure 2.1: Illustration showing the geometric intuition behind the constraints of the
proposed formulation

Now consider the problem of constraining all points in the ellipsoid to lie in the

positive half-space, w⊤x − b ≥ 1 (assume that the hyperplane does not intersect the

ellipsoid). Mathematically, this can be written as:

w⊤x − b ≥ 1 ∀ x ∈ B(µ,C, κ) (2.9)

Though this is a set of infinite constraints, one can satisfy them by finding the point in

ellipsoid closest to the hyperplane and then constraining the point to lie in the positive

half-space, w⊤x − b ≥ 1. Finding the closest point, x∗, is easy because of the special

form of the set B(µ,C, κ). Firstly, the point must lie on the boundary of the ellipsoid

and secondly, the direction of normal at x∗ must be opposite to w (see figure 2.1):

2Σ−1x∗ − 2Σ−1µ = ρw (2.10)

where ρ is some negative constant. The value of ρ is obtained by using the fact that x∗
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Figure 2.2: Illustration showing the geometric interpretation of the proposed formulation

lies on the boundary of ellipsoid:

ρ =
−2κ

‖C⊤w‖2

Using this, one can get the value of x∗:

x∗ = µ − κΣw

‖C⊤w‖2

As mentioned earlier, it is enough to constrain that w⊤x∗− b ≥ 1, in order to satisfy the

infinite constraints in (2.9). In other words, w⊤µ− b ≥ 1 + κ‖C⊤w‖2. Note that this is

similar in form to the constraints in (2.4).

Thus geometrical interpretation of the proposed formulation is to find a maximum

margin hyperplane which separates ellipsoids whose centers are the means, shapes are

parametrized by the covariance matrices and sizes depend on the parameters κ1 and

κ2 (see figure 2.2). In the following text, this is derived more rigorously using Duality

theory. The dual norm characterization gives

‖w‖2 = sup‖u‖2≤1u
⊤w,
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Using this, the formulation (2.4) can be re-written as:

min
w,b,u1,u2

1
2
‖w‖2

2

s.t. w⊤µ1 − b ≥ 1 + κ1u
⊤
1 C⊤

1 w,

b − w⊤µ2 ≥ 1 + κ2u
⊤
2 C⊤

2 w,

‖u1‖2 ≤ 1, ‖u2‖2 ≤ 1

Lagrangian of this problem is given by L(w, b, λ1, λ2,u1,u2) ≡

1

2
‖w‖2

2 −λ1(w
⊤µ1 − b − 1 − κ1u

⊤
1 C⊤

1 w)

−λ2(b − w⊤µ2 − 1 − κ2u
⊤
2 C⊤

2 w)

with the constraints ‖u1‖2 ≤ 1, ‖u2‖2 ≤ 1, λ1 ≥ 0 and λ2 ≥ 0. From Karush-Kuhn-

Tucker (KKT) conditions [19], we have ∂L
∂b

= 0, which implies that λ1 = λ2 = λ where

λ ≥ 0 is a Lagrange variable. The optimal w satisfies ∇wL = 0 giving

w = λ(µ1 − κ1C1u1 − µ2 − κ2C2u2) (2.11)

The dual formulation is obtained by maximizing L with respect to dual variables λ ≥
0,u1 ≤ 1 and u2 ≤ 1, subject to the constraints ∂L

∂b
= 0, ∇wL = 0:

max
λ,u1,u2

−1
2
λ2‖z1 − z2‖2

2 + 2λ

z1 = µ1 − κ1C1u1, z2 = µ2 + κ2C2u2

‖u1‖2 ≤ 1, ‖u2‖2 ≤ 1, λ ≥ 0

The objective is maximized when

λ =
2

‖z1 − z2‖2
2

. (2.12)
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and the maximized value is 2
‖z1−z2‖2

2

. Since it is assumed that the ellipsoids are non-

intersecting, z1 − z2 6= 0 at optimality. Using (2.12), the dual can be re-written as

follows:

min
z1,z2

‖z1 − z2‖2
2

z1 ∈ B1(µ1,C1, κ1), z2 ∈ B2(µ2,C2, κ2) (2.13)

where,

Bi(µi,Ci, κi) = {zi|zi = µi − κiCiui, ‖ui‖2 ≤ 1}

The optimization problem (2.13) has an elegant geometric interpretation. The sets

B1(µ1,C1, κ1) and B2(µ2,C2, κ2) are ellipsoids centered at µ1 and µ2 and the parametrized

by the matrices C1 and C2 respectively. Thus the dual optimization problem minimizes

distance between two ellipsoids. The value of w can be obtained by using:

w = 2
z∗1 − z∗2

‖z∗1 − z∗2‖2
2

(2.14)

where, z∗1, z
∗
2 are the optimal variables of (2.13). The KKT conditions of the dual can be

summarized as follows

− κ1C
⊤
1 (z1 − z2) + γ1u1 = 0, γ1(‖u1‖2 − 1) = 0,

−κ2C
⊤
2 (z1 − z2) + γ2u2 = 0, γ2(‖u2‖2 − 1) = 0,

‖u1‖2 ≤ 1, ‖u2‖2 ≤ 1, γ1 ≥ 0, γ2 ≥ 0 (2.15)

Thus, at optimality, C⊤
1 (z1−z2) is parallel to u1 and C⊤

2 (z1−z2) is parallel to u2. Define

θ(u,v) = arccos
(

u⊤v

‖u‖2‖v‖2

)

. Then, at optimality:

θ(C⊤
1 (z1 − z2),u1) = θ(C⊤

2 (z1 − z2),u2) = 0

If Σ1,Σ2 are positive definite or more specifically if z∗1 − z∗2 does not lie in the null space

of C⊤
1 and C⊤

2 , the Lagrange variables γ1 and γ2 are strictly positive, which gives the
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Figure 2.3: Illustration comparing the classifiers obtained with SVM and present method.
The SVM solution is shown in blue, whereas that of the present method is shown in red
(η1 = η2 = 0.1).

conditions ‖u1‖2 = 1 and ‖u2‖2 = 1 at optimality. This implies that the optimal z∗1

and z∗2 are at the boundary of the ellipsoids B1 and B2 respectively. By (2.12), we have

λ > 0, which implies that both the constraints in (2.4) are active, giving two conditions

w⊤z∗1 − b = 1 and w⊤z∗2 − b = −1. This geometrically means that the hyperplanes

w⊤x − b = 1 and w⊤x − b = −1 are tangents to the ellipsoids B1 and B2 respectively.

Using any of these conditions, one can compute b and more precisely

b = 2
z⊤1 (z1 − z2)

‖z1 − z2‖2
2

− 1 (2.16)

It is interesting to note the analogy between SVMs [7] and the proposed formulation. In

case of SVM, the dual turns out to be the problem of minimizing distance between two

convex hulls, whereas in the present case, the dual minimizes distance between ellipsoids.

Figure 2.3 shows the optimal hyperplane as obtained with the formulation (2.4) and that

with SVM on a synthetic dataset. In general, one can observe that if the training data

has small number of noisy examples, then the convex hull solution is more effected than

the ellipsoid solution. To circumvent this problem, the soft-margin SVM was introduced.

However it involves an additional regularization parameter C. The figure also confirms

the equivalence of the primal (2.4) and dual (2.13).
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2.3.1 Iterative Algorithm for Solving Dual

The geometrical insight presented in the previous section gives us a way of solving the

formulation using a simple iterative scheme for finding the distance between two ellip-

soids. Lin and Han [33] provide an iterative, provably convergent algorithm for this

geometric optimization problem. In the following text, application of the same algo-

rithm for solving (2.13) is presented. Suppose the matrices Σi are positive definite, in

which case Ci can be chosen to be square matrices of full rank. Then, the equation of

the ellipsoid Bi(µi,Ci, κi) in the standard form is

qi(zi) ≡
1

2
z⊤i Aizi + b⊤

i zi + ρi ≤ 0,

where Ai = 2Σ−1
i , b⊤

i = −2µ⊤
i Σ−1

i and ρi = µ⊤
i Σ−1

i µi − κ2
i . Once this is done, the

following iterative algorithm can be used to solve the dual:

Input µi, Σi and κi

Output z∗1 and z∗2

Initialization Compute the following:

1. Ai,bi and ρi

2. c1 = µ1 and c2 = µ2 — two interior points in the ellipsoids

General Steps At the kth iteration, having an interior point c1 of B1 and c2 of B2,

1. Find points of intersection of line segment joining c1 and c2 with the ellipsoids:

(a) Represent the line segment using (1 − t)c1 + tc2, 0 ≤ t ≤ 1

(b) Solve for qi((1 − ti)c1 + tic2) = 0, to get ti, i = 1, 2:

1

2
t2i
{

(c1 − c2)
⊤Ai(c1 − c2)

}

−

ti
{

(c⊤1 − c⊤2 )(Aic1 + bi)
}

+
{

1

2
c⊤1 Aic1 + b⊤

i c1 + ρi

}

= 0
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(c) Solve for roots of quadratic, such that 0 ≤ ti ≤ 1 and calculate zk
i =

(1 − ti)c1 + tic2, the points of intersection

(d) If t1 > t2, then the problem is infeasible. Terminate giving an error.

2. If the line segment joining the centers is normal at the points zk
1 and zk

2, then

optimal achieved:

(a) Compute θ1 = θ(zk
2 − zk

1,A1z
k
1 + b1) and θ2 = θ(zk

1 − zk
2,A2z

k
2 + b2)

(b) If θ1 = θ2 = 0, then terminate indicating convergence to optimality

3. Else, compute new interior points c̄1 and c̄2, as centers of spheres that entirely

lie inside the corresponding ellipsoids and touch the ellipsoids at zk
1 and zk

2:

(a) Use c̄i = zk
i − δi(Aiz

k
i + bi)

(b) δi = 1
‖Ai‖2

Note that in the algorithm, the standard form of ellipsoids is used. Hence, Ci need

not be calculated explicitly. Also, for all values of δi, the spheres with center c̄i and

radius δi touch the ellipsoids at zk
i . But only for values of δi ≤ 1

‖Ai‖2
, the spheres will

entirely lie inside the ellipsoids. Hence, we choose δi = 1
‖Ai‖2

to get maximum possible

iterative step size. The algorithm given above will converge to the optimal solution of

(2.13). The outline of the proof of convergence is provided here (refer [33] for details),

assuming that the ellipsoids are separated. The KKT optimality conditions for (2.13)

are (in terms of the ellipsoids in standard form):

z∗1 ∈ Ω(B1), z∗2 ∈ Ω(B2),

θ(z∗2 − z∗1,A1z
∗
1 + b1) = 0, θ(z∗1 − z∗2,A2z

∗
2 + b2) = 0,

where, Ω(Bi) represents the boundary of the ellipsoid Bi. These optimality conditions

say that the optimal (z∗1, z∗2) lie on the boundaries of corresponding ellipsoids and the

line segments joining the optimal points are the normals at those points. Since the

problem is convex and regular, KKT conditions are necessary and sufficient. Note that

these conditions are equivalent to those given in (2.15). This argument justifies step 2
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of the above algorithm. In case of finding distance between two spheres, one can get

the optimal points as the points of intersection of the line segment joining the centers

with the spheres. Thus, this algorithm can be viewed as if the two ellipsoids were being

iteratively approximated locally by spheres. Using the notation given in the algorithm,

‖c̄1 − c̄2‖ ≥ δ1 + δ2 + ‖zk+1
1 − zk+1

2 ‖

Triangle inequality gives:

‖c̄1 − c̄2‖ ≤ ‖c̄1 − zk
1‖ + ‖zk

1 − zk
2‖ + ‖zk

2 − c̄2‖

≤ δ1 + δ2 + ‖zk
1 − zk

2‖

Using these inequalities, we have the following monotonicity property at every step:

‖zk
1 − zk

2‖ ≥ ‖zk+1
1 − zk+1

2 ‖

Therefore, the sequence of distances {‖zk
1 − zk

2‖} is monotone and hence converges. Now

one can also prove that for such a sequence,

lim
k→∞

θ(z∗2 − z∗1,A1z
∗
1 + b1) = 0,

lim
k→∞

θ(z∗1 − z∗2,A2z
∗
2 + b2) = 0,

proving that (zk
1, zk

2) converges to (z∗1, z∗2).

Note that at every step of iteration, two one-dimensional quadratic equations are

solved. However, the initialization cost is high, due to inversion of matrices, which is of

O(n3) time complexity (n is the dimension of zi). In addition to this, at each step of

iteration, the coefficients of the two quadratic expressions need to be computed. This is

of O(n2) time complexity.
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2.4 Non-linear Classifiers

The formulation (2.3) provides a linear classifier and hence cannot deal with non-linearly

separable data. In the following text, the formulation is extended to feature spaces in

order to handle such data. Let T1 be a n × m1 matrix, where each column of T1 is a

positive training data point. Similarly, let T2 be a n × m2 data matrix for the other

class. Let [M1,M2] and [M1;M2] denote the horizontal and vertical concatenation of the

matrices M1 and M2 respectively. The empirical estimates of the mean and covariance

can be written as:

µ1 =
1

m1

T1e1, µ2 =
1

m2

T2e2,

Σ1 = 1
m1

(T1 − µ1e
⊤
1 )(T⊤

1 − e1µ
⊤
1 )

= 1
m1

T1(I1 − e1e
⊤

1

m1
)2T⊤

1 ,

and similarly

Σ2 =
1

m2

T2(I2 −
e2e

⊤
2

m2

)2T⊤
2

where, ei is a vector of ones of dimension mi and Ii is an identity matrix of dimensions

mi × mi.

Since w is a vector in n dimensional space, it can be written as a linear combination

of the training data points and other points in R
n which are orthogonal to the training

data points. Mathematically, this can be written as w = [T1,T2]s + Mr where M is a

matrix whose columns are vectors orthogonal to the training data points and s, r are

vectors of combining coefficients. The columns of T1, T2 and M together span entire

R
n. Now, the terms involving w in the constraints of (2.3) can be written as

w⊤µ1 = s⊤g1, g1 = [
K11e1

m1

;
K21e1

m1

],

w⊤µ2 = s⊤g2, g2 = [
K12e2

m2

;
K22e2

m2

],

w⊤Σ1w = s⊤G1s,
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G1 =
1

m1

[K11;K21](I1 −
e1e

⊤
1

m1

)2[K11,K12]

and

w⊤Σ2w = s⊤G2s,

G2 =
1

m2

[K12;K22](I2 −
e2e

⊤
2

m2

)2[K21,K22]

where the matrices K11 = T⊤
1 T1, K12 = T⊤

1 T2, K22 = T⊤
2 T2 consist of elements which

are dot products of data points, more precisely the ith row jth column entry for the

matrix K12(i, j) = x⊤
1ix2j. Note that the constraints are independent of the matrix M

and the objective to be minimized is 1
2
‖w‖2

2. Hence, the entries in r for the optimal w

must be 0. In other words, the optimal w is a linear combination of the training data

points only. Using this, the formulation (2.3) can be written as:

min
s,b

1
2
s⊤Ks

s.t. s⊤g1 − b ≥ 1 + κ1

√
s⊤G1s,

b − s⊤g2 ≥ 1 + κ2

√
s⊤G2s (2.17)

where, K = [K11,K12;K21,K22]. Note that, in order to solve (2.17), one needs to know

only the dot products of training data points. Thus, one can solve the above problem

in any feature space as long as the dot products in that space are available. One way of

specifying dot products is by using kernel functions which satisfy Mercer conditions [37].

Assuming that such a kernel function, k : R
n × R

n → R, is available, the quantities

g1,g2,G1,G2 and K can be calculated in any feature space. Suppose K is positive

definite, in which case K = L⊤L, L is a full rank square matrix. Now the formulation

(2.17) can be re-written as:

min
v,b

1
2
‖v‖2

2

s.t. v⊤h1 − b ≥ 1 + κ1

√
v⊤H1v,

b − v⊤h2 ≥ 1 + κ2

√
v⊤H2v (2.18)
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where, hi = L−Tgi and Hi = L−TGiL
−1.

Note that the above formulation is similar to the original formulation (2.3). Again,

Hi, being positive semi-definite, can be written as Hi = DiD
⊤
i . (2.18) can be solved

using interior point methods when cast into the following standard SOCP form:

min
v,b,t

t

s.t. t ≥ ‖v‖2

v⊤h1 − b ≥ 1 + κ1‖D⊤
1 v‖2,

b − v⊤h2 ≥ 1 + κ2‖D⊤
2 v‖2 (2.19)

Using the arguments presented in section 2.3, the dual of (2.18) can be written as:

min
z1,z2

‖z1 − z2‖2
2

z1 ∈ B1(h1,D1, κ1), z2 ∈ B2(h2,D2, κ2) (2.20)

and can be solved using the iterative geometric algorithm presented in section 2.3.1. Once

the optimum value of v and b are obtained either by solving the SOCP problem (2.19)

or by the iterative algorithm, one can classify a new data point x using the following

decision function.

f(x) ≡ sign(w⊤x − b) = sign(s⊤Kx − b) (2.21)

where, s = L−1v and Kx is the vector of kernel values of all training data points with

the new data point x.

In practical experiments, it may well happen that the positive/negative error rate

computed on the test set is greater than η1/η2. This is because estimated moments are

employed in cone constraints instead of the true, unknown moments. Validity of the

cone constraint depends on how accurate the estimates are. Chapter 6 discusses this

issue and suggests methods for introducing robustness to moment estimation errors.
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Table 2.1: Results on benchmark datasets, comparing the performance of NL-SOCP,
NL-ITER, L-SOCP, L-ITER algorithms.

η1 η2 NL-SOCP NL-ITER L-SOCP L-ITER

% err +ve -ve +ve -ve +ve -ve +ve -ve

Breast Cancer 0.9 0.3 12.74 00.56 12.74 00.56 16.98 00.00 16.04 00.84
m = 569, n = 30, 0.7 0.3 10.85 01.12 10.85 01.12 13.68 00.00 13.21 01.40

m1 = 212,m2 = 357, 0.5 0.3 04.72 01.96 04.72 01.96 05.19 00.84 07.55 02.24
ζ = 0.032 0.3 0.3 03.30 02.24 03.30 02.24 03.77 02.80 03.77 03.08

0.1 0.3 02.36 04.20 02.36 04.48 × × × ×
Ring Norm 0.9 0.7 30.14 31.94 30.14 31.94 × × × ×

m = 400, n = 2, 0.7 0.7 20.57 36.65 20.57 36.65 × × × ×
m1 = 209,m2 = 191, 0.5 0.7 12.44 41.89 12.92 41.36 × × × ×

ζ = 3 0.3 0.7 10.05 46.07 10.53 45.03 × × × ×
0.1 0.7 07.66 47.12 07.66 48.17 × × × ×

Two Norm 0.9 0.3 10.15 01.28 10.53 01.28 09.02 00.43 09.02 00.43
m = 500, n = 2, 0.7 0.3 06.39 01.71 07.52 01.71 06.77 00.43 06.77 00.43

m1 = 266,m2 = 234, 0.5 0.3 05.26 02.56 06.02 02.56 04.51 01.28 04.51 01.28
ζ = 20 0.3 0.3 05.64 04.27 05.64 04.27 03.38 01.71 03.38 01.71

0.1 0.3 07.52 05.98 05.26 07.26 × × × ×
Heart Disease 0.9 0.9 14.60 22.50 14.60 22.50 18.99 14.38 18.99 14.38

m = 297, n = 13, 0.7 0.9 13.14 27.50 13.14 28.13 17.52 17.50 17.52 17.50
m1 = 137,m2 = 160, 0.5 0.9 11.68 32.50 11.68 32.50 13.14 21.88 13.14 21.88

ζ = 0.16 0.3 0.9 10.95 30.00 11.69 34.38 10.22 36.25 10.22 36.25
0.1 0.9 10.95 30.00 10.95 36.25 × × × ×

2.5 Numerical Experiments

This section presents experimental results comparing the performance of the proposed

non-linear (2.19) and linear (2.5) classification formulations, solved using SeDuMi software

(denoted by NL-SOCP and L-SOCP respectively) and the iterative algorithm for dual

(denoted by NL-ITER and L-ITER respectively). Recall that the iterative algorithm

required that the matrices Σi and Hi to be positive definite (section 2.3.1). However,

in practice, Σi or Hi can be ill-conditioned. To handle such cases, regularization Σi =

Σi + ǫI and Hi = Hi + ǫI has been used. ǫ being a small positive quantity, regularization

does not effect the final classifier much. Gaussian kernel k(xi,xj) = exp{−ζ‖xi −xj‖2
2},

with parameter ζ, is used to evaluate dot products in the feature space. The first set

of experiments have been done to show that:

• Varying η1 and η2 different classifiers are obtained, whose false positive and false

negative error rates vary accordingly.
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Table 2.2: Results on benchmark datasets, comparing the errors obtained with L-SVM
and L-SOCP.

Dataset Method C+/η1 C−/η2 % err

PIMA L-SVM 5.5 4.5 22.53
L-SOCP 0.1 0.5 23.44

B. Cancer L-SVM 5 5 5.1
L-SOCP 0.76 0.76 2.99

Table 2.3: Results on benchmark datasets, comparing the risk obtained with L-SVM
and L-SOCP.

Dataset Method C+/η1 C−/η2 risk

PIMA L-SVM 13.333 6.667 255
L-SOCP 0.085 0.515 256

B. Cancer L-SVM 5 5 45
L-SOCP 0.76 0.76 26

• The classifiers NL-SOCP, NL-ITER are equivalent. Similarly L-SOCP, L-

ITER are equivalent.

• If data is non-linearly separable, then non-linear classifiers perform better than the

linear classifiers.

Table 2.1 shows the results on some benchmark datasets. The Breast Cancer and Heart

Disease datasets have been acquired from UCI-ML repository [8]. These datasets are un-

balanced and the cost of misclassifying positive examples is higher than cost of misclas-

sifying negative examples. The Two Norm and Ring Norm datasets have been generated

using the standard dataset generation scripts got from Delve-Benchmark repository3.

The table shows the dimensions of each dataset and the value of ζ used for non-linear

classifiers. For each dataset, the actual false-negative and false-positive rates obtained,

with all the 4 classifiers, are shown. The error values represent the 3-fold cross validation

errors averaged over 3 cross validation experiments. The value ‘×’ in the table represents

infeasibility of the problem. In order to show the nature of dependency of % error on

the values of ηi used for each dataset, the value of η2 is kept constant and η1 is varied.

3available at http://www.cs.toronto.edu/∼delve/data/datasets.html

http://www.cs.toronto.edu/~delve/data/datasets.html
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Observe that, in general, as η1 value is decreased the false-negative error decreases, the

false-positive error increases and the errors are less than the specified limits. This shows

the potential of the proposed classifiers in classification applications with asymmetric

costs for misclassification. The Ring Norm dataset is not linearly separable, in fact,

µ1 ≈ µ2. Hence, for all values of ηi shown, the classifiers L-SOCP and L-ITER fail.

However, the classifiers NL-SOCP and NL-ITER work well.

The second set of experiments have been done to show that the proposed classifiers

achieve accuracies and risks comparable to the state-of-the-art classifiers, SVMs where

C+, C− are varied [3]. Such variants of the traditional SVMs replace the term C
∑

i ξi in

the objective by C+

∑

yi=1 ξi + C−
∑

yi=−1 ξi, allowing for biased classification. Experi-

ments on two Datasets are shown: PIMA Indian Diabetes dataset (m = 768, n = 8,m1 =

268,m2 = 500) and Breast Cancer dataset from UCI-ML repository. These datasets are

highly unbalanced, the cost of misclassifying the positive class is higher than the other

and in general, linear classifiers work well on them. Table 2.2 summarizes the results

that compare the cross validation error obtained with Linear SVMs (L-SVM) and the

proposed classifier L-SOCP. The values of parameters are chosen to be the tuned set of

parameters that gave the least cross validation error. Table 2.3 summarizes the results

that compare the risk of L-SOCP and L-SVM. The risk shown in the table is computed

assuming that the cost of misclassifying positive class is twice that of the other. Thus

if e+ and e− are the cross validation errors, then the risk is 2e+ + e−. Again results are

shown for the tuned set of parameters only. Results confirm that the proposed classifier

achieves performance comparable to that of SVMs. The advantage being that the error

rates are now guaranteed to be less than the tolerable limits.

2.6 Summary

A maximum margin classifier whose probability of misclassification, on each of the two

classes, is bounded above by a specified value was presented. Chance-constraints for

each class were employed to achieve the task. Using the Chebyshev’s inequality and
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second order moments of class-conditional densities, the resulting CCP was posed as

an SOCP. The dual problem turns out to be that of finding the distance between two

ellipsoids and the optimal hyperplane is perpendicular to the line joining the minimum

distant points. An iterative algorithm to solve the dual was presented which avoids

use of any optimization routines. An extension of the original formulation for feature

spaces using kernel methods was also presented. As in the linear classifier case, the

feature space classifier can be solved by posing as an SOCP or by using the iterative

algorithm. Experimental results on benchmark datasets show that the false-negative and

false-positive rates are less than the specified and in general achieve similar generalization

as the SVMs.



Chapter 3

Scalable Maximum Margin

Classification

Abstract

In this chapter we propose a novel chance-constraint based SOCP formulation1 which scales well for

large datasets. The key idea is to derive a maximum margin classification formulation which minimizes

training error by employing second order moment based chance constraints for clusters rather than

constraints for individual data points. An online clustering algorithm is used to estimate the moments

of clusters. It is shown that the training time is comparable with the state-of-the-art linear time SVM

solvers even when generic SOCP solvers are used to solve the formulation. Further improvement in

training time can be achieved by employing fast solvers for the new SOCP formulation.

Recent advances in technology have enabled efficient generation, collection and stor-

age of huge amounts of data. As a result many of the real-world binary classification

applications involve analyzing millions of data points. Intrusion detection, web page

classification and spam filtering applications are a few of them. Most of the existing

classification algorithms either require the training data to be in memory or make mul-

tiple passes of the dataset and hence are not attractive for large dataset classification.

1This work was presented at the 12th ACM SIGKDD conference, 2006.

29
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Support Vector Machines are one of the most successful classifiers that achieve good

generalization in practice. SVMs owe their success to the fact that they perform maxi-

mum margin classification of data points. SVMs (soft-margin SVMs) pose the classifica-

tion problem as a convex quadratic optimization problem of size m+n+1, where m is the

number of training data points and n is their dimensionality. The optimization problem

has a quadratic objective function and O(m) linear inequalities. Though problem size

in case of the SVMs scales with m, they have emerged as useful tools for classification

in practice primarily because of the availability of efficient algorithms like SMO [40] and

chunking [25], which solve the dual of the SVM formulation. However, these algorithms

are known to be at least O(m2) in running time (see [40, 47]) and hence not scalable to

large datasets.

The key idea in this work is to perform maximum margin classification as in case of

the SVMs, however, a novel convex optimization formulation, whose size is independent

of the training set size, is employed to achieve the task. The class conditional densities

are assumed to be modeled using mixture models with spherical covariances. An online

clustering algorithm is employed to estimate the second order moments of components

of the mixture models, (µj, σ
2
j I). The proposed formulation minimizes training error

by employing chance constraints for clusters rather than constraints for individual data

points. Using the Chebyshev’s inequality and second order moments of clusters, cone

constraints equivalent to the chance constraints are derived. A maximum margin clas-

sification formulation, similar in spirit to the SVMs, is then proposed using the derived

cone constraints. The formulation is posed as an SOCP problem of size k (number of

clusters/components), having k linear constraints, one cone constraint and can be solved

using generic SOCP solvers like SeDuMi. Since the formulation size is independent of

the training dataset size, the proposed classification scheme can be employed for large

datasets.

Estimation of the moments of the component distributions can be done using an

efficient clustering scheme, such as BIRCH [48]. BIRCH, in a single pass over the data

constructs a CF-tree (Cluster Feature tree), given a limited amount of resources. CF-tree
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consists of the sufficient statistics for the hierarchy of clusters in the data. BIRCH also

handles outliers effectively as a by-product of clustering. The experiments presented in

the chapter show that the overall training time, which is sum of the clustering and SOCP

solving times, is comparable to the that of the state-of-the-art linear time SVM solvers

even when generic SOCP solvers are used to solve the new classification formulation.

This is because the problem size for the new formulation is number of clusters and that

for the SVMs is number of data points. By employing fast solvers which are tuned

for the SOCP formulation, further improvement in training time can be achieved (see

chapter 5).

The remainder of the chapter is organized as follows. In section 3.1 we present a brief

review of the past work on large dataset classification. The chance-constraint based,

scalable classification scheme is presented in section 3.2. The geometric interpretation

and dual of the proposed formulation are presented in section 3.3. Section 3.4 presents

the experiments on synthetic and real world datasets which show the scalability of the

new classification scheme. Section 3.5 concludes the chapter with a brief summary.

3.1 Past Work on Large Dataset Classification

As discussed in the previous section, SVMs achieve good generalization in practice, but

their utility in large dataset classification is limited by non-availability of scalable solvers.

Hence most of the past work on large dataset classification concentrated on developing

fast SVM solvers [18, 20, 26, 28, 35]. We take an orthogonal approach of making the

formulation itself scalable, while still performing maximum margin classification. Fur-

ther scalability can be achieved by employing fast algorithms for solving the proposed

formulation.

Clustering before computing the classifier is an interesting strategy for large scale

problems. CB-SVM [47] is an iterative, hierarchical clustering based SVM algorithm,

which handles large datasets. The algorithm thrives on the fact that the SVM opti-

mization solution depends only on a small set of data points called support vectors that
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lie near the optimal classification boundary. The authors, in their paper, show that

the algorithm gives accuracies comparable to SMO with a very small run-time. The

proposed classification method also uses clustering as a pre-processing step for classi-

fication. However, the method does not proceed in an iterative fashion and does not

require hierarchical clustering of the training set. It uses both mean and variance of

clusters in order to build the classifier, which is in contrast to CB-SVM as it uses the

mean information only.

SVM-Perf [26] is a linear time solver for a formulation equivalent to the SVM. The

authors in their paper show that the algorithm achieves generalization comparable to

that of SVMs but with very less training time. However the SVM-Perf algorithm is not

online in nature and needs to store the training dataset in memory, hence making it

unsuitable for very large datasets. The experiments presented in this chapter confirm

that the proposed clustering based scheme is comparable to SVM-Perf, both in training

time as well as in accuracy, and is also a viable option in cases where datasets do not fit

in memory.

3.2 Scalable Classification Formulation

This section presents the novel SOCP formulation for large-scale classification. Let Z1

and Z2 represent the random variables that generate the data points of the positive and

negative classes respectively. Assume that the distributions of Z1 and Z2 can be modeled

using mixture models, with component distributions having spherical covariances. Let

k1 be the number of components in the mixture model of positive class and k2 be that

in the negative class. k = k1 + k2 is the total number of clusters. Let Xj, j = 1, . . . , k1

represent the random variable generating the jth component of the positive class and

Xj, j = k1 + 1, . . . , k represent that generating the (j − k1)
th component of the negative

class. Let Xj have the second order moments (µj, σ
2
j I). The probability density functions

(pdfs) of Z1 and Z2 can be written as fZ1
(z) =

∑k1

j=1 ρjfXj
(z), fZ2

(z) =
∑k

j=k1+1 ρjfXj
(z)

where, ρj are the mixing probabilities (ρj ≥ 0,
∑j=k1

j=1 ρj = 1 and
∑j=k

j=k1+1 ρj = 1).
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Any good clustering algorithm will correctly estimate the second order moments of the

components. BIRCH is one such clustering algorithm, that scales well for large datasets.

Given these estimates of second order moments, an optimal classifier that generalizes

well must be built.

Let w⊤x− b = 0 be the discriminating hyperplane and w⊤x− b = 1, w⊤x− b = −1

be the corresponding set of supporting hyperplanes. The constraints w⊤Z1 − b ≥ 1 and

w⊤Z2 − b ≤ −1 ensure that the training set error is low. Since Z1 and Z2 are random

variables, the constraints cannot be satisfied always. Thus, we ensure that with high

probability, the events w⊤Z1 − b ≥ 1 and w⊤Z2 − b ≤ −1 occur:2:

P (w⊤Z1 − b ≥ 1) ≥ η, P (w⊤Z2 − b ≤ −1) ≥ η

Z1 ∼ fZ1
, Z2 ∼ fZ2

(3.1)

where, η is a user defined parameter. η lower bounds the classification accuracy. Since

the distribution of Zi is a mixture model, in order to satisfy (3.1), it is sufficient that

each of the components/clusters satisfy the following chance-constraints:

P (w⊤Xj − b ≥ 1) ≥ η, j = 1, . . . , k1

P (w⊤Xj − b ≤ −1) ≥ η, j = k1 + 1, . . . , k

Xj ∼ fXj
, j = 1, . . . , k (3.2)

For η 6= 0 the constraints (3.2) are consistent only if the means of the components are

linearly separable. Thus, in order to handle the case of outliers and almost linearly sep-

arable datasets, the chance-constraints in (3.2) can be relaxed using some slack variables

(ξi) and suitably penalizing the relaxation. This leads to the following maximum margin

classification formulation similar in spirit to SVMs:

2Zi ∼ fZi
denotes Zi has the pdf fZi
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min
w,b,ξj

1
2
‖w‖2

2 + C
∑k

j=1 ξj

s.t. P (w⊤Xj − b ≥ 1 − ξj) ≥ η, j = 1, . . . , k1,

P (w⊤Xj − b ≤ −1 + ξj) ≥ η, j = k1 + 1, . . . , k,

ξj ≥ 0, Xj ∼ fXj
, j = 1, . . . , k (3.3)

The objective function (3.3) minimizes ‖w‖2 in order to achieve good generalization. C

is a user defined regularization parameter. The constraints in the optimization problem

(3.3) are chance-constraints and hence need to be written as deterministic constraints in

order to be able to solve the formulation. Using theorem 2.1, it can be shown that the

chance-constraints for positive class are satisfied if the following constraints hold:

w⊤µj − b ≥ 1 − ξj + κ σj‖w‖2 (3.4)

where, κ =
√

η

1−η
. Similarly the set of constraints on the negative class can be obtained.

Let yj, j = 1, . . . , k represent the labels of the components (clusters). Thus yj = 1

for j = 1, . . . , k1 and yj = −1 for j = k1 + 1, . . . , k. Using this notation, (3.3) can be

written as the following deterministic optimization problem:

min
w,b,ξj

1
2
‖w‖2

2 + C
∑k

j=1 ξj

s.t. yj(w
⊤µj − b) ≥ 1 − ξj + κ σj‖w‖2, ξj ≥ 0, j = 1, . . . , k (3.5)

The formulation in (3.5) can be written in the following equivalent form:

min
w,b,ξj ,t

1
2
t2 + C

∑k

j=1 ξj

s.t. yj(w
⊤µj − b) ≥ 1 − ξj + κ σj‖w‖2, ξj ≥ 0, j = 1, . . . , k, ‖w‖2 ≤ t (3.6)
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Now the constraints in (3.6) which involve ‖w‖2 can be written as:

yj(w
⊤µj − b) − 1 + ξj

κ σj

≥ ‖w‖2, j = 1, . . . , k

t ≥ ‖w‖2

Thus, the optimization problem (3.5) can be written in the following final form:

min
w,b,ξj ,t

1
2
t2 + C

∑k

j=1 ξj

s.t. yj(w
⊤µj − b) ≥ 1 − ξj + κ σjt, ξj ≥ 0, j = 1, . . . , k, ‖w‖2 ≤ t (3.7)

The scalable classification formulation (3.7), henceforth denoted by CBC-SOCP, is an

SOCP with only one cone constraint. This problem can be solved using open source

SOCP solvers like SeDuMi to obtain the optimal values of w and b. The overall classifi-

cation algorithm can be summarized as follows:

• Using a scalable clustering algorithm cluster the positive and negative data points.

• Estimate the second order moments of all the clusters.

• Solve the optimization problem (3.7), using SOCP solvers. This gives optimum

values of w and b.

• The label of a new data point x is given by sign(w⊤x − b).

Observe that when σij = 0, the standard SVM formulation and the present formula-

tion are same. In other words, if each data point is considered to be a cluster, then both

the formulations are exactly the same. However, the SVM formulation involves 2m linear

inequalities whereas the proposed formulation involves only 2k inequalities. Thus, the

new formulation is expected to scale very well to large datasets. The time-complexity of

clustering algorithm like BIRCH is O(m) and that of the optimization is independent of

m. Thus, the overall algorithm is expected to have a training time of O(m). Another

key advantage is that the new classification scheme does not require to store training

data in the memory.
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3.3 Dual and Geometrical Interpretation

The constraints in (3.7) have an elegant geometric interpretation. In order to see this,

consider the problem of classifying the points lying in the sphere centered at µ, with ra-

dius κσ (denote sphere by B(µ, κσ)) onto the positive side of the w⊤x−b = 1 hyperplane

(allowing for slack variables):

w⊤x − b ≥ 1 − ξ, ∀ x ∈ B(µ, κσ) (3.8)

Theorem 3.1. The constraints (3.8) are equivalent to the following cone constraint:

w⊤µ − b ≥ 1 − ξ + κ σ‖w‖2 (3.9)

Proof. Geometrically, (3.8) says that all points that belong to B(µ, κσ) must lie on

the positive half space of the hyperplane w⊤x− b = 1 − ξ. This geometric picture (also

see [44]) immediately shows that the constraint (3.8) can be satisfied just by ensuring

that the point in B(µ, κσ) which is nearest to the hyperplane w⊤x− b = 1−ξ lies on the

positive half space. Thus (3.8), which actually represents infinite number of constraints,

can be written as the following single constraint:

z ≥ 1 − ξ, z = min
x ∈ B(µ,κσ)

w⊤x − b (3.10)

Finding the minimum distant point on a sphere to a given hyperplane is simple. Drop

a perpendicular to the hyperplane from the sphere’s center. The point at which the

perpendicular intersects the sphere gives the minimum distant point (x∗). Note that x∗

is the optimum solution of (3.10). Using this geometrical argument, x∗ can be calculated

using: x∗ − µ = −ρw, x∗ ∈ B(µ, κσ). This gives x∗ = µ− κσw

‖w‖2
. Now, (3.8) is satisfied

if w⊤x∗− b ≥ 1− ξ. Substituting the value of x∗, (3.9) is got. This completes the proof.
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Observe that (3.9) has the same form as (3.4). Hence, geometrical interpretation of the

constraints in (3.7) is to restrict the discriminating hyperplane to lie such that most of

the spheres B(µj, κσj) are classified correctly. Figure 3.1 shows this geometric picture.

All the spheres in the figure expect the one at (5, 5) satisfy the constraint with ξj = 0.

It is interesting to study the dual of the formulation (3.7). Using the dual norm

definition, ‖w‖2 = sup‖u‖2≤1u
⊤w and Lagrange multiplier theory, the dual can be written

as:

min
αj ,λ

1
2
(λ −

∑

j κσjαj)
2 −

∑

j αj

s.t. ‖∑j αjyjµj‖2 ≤ λ,
∑

j αjyj = 0, 0 ≤ αj ≤ C (3.11)

and the necessary and sufficient Karush-Kuhn-Tucker (KKT) conditions can be written

as:

∑

j

αjyjµj = λu,
∑

j αjyj = 0, αj + βj = C, t +
∑

j

κσjαj = λ

αj(1 − ξj + κσjt − yj(w
⊤µj − b)) = 0, βjξj = 0

λ(w⊤u − t) = 0, αj ≥ 0, βj ≥ 0, λ ≥ 0, ‖u‖2 ≤ 1 (3.12)

where αj, βj, λ are the Lagrange multipliers. Suppose 0 < αj < 1 and λ > 0 then,

from the KKT conditions it can be seen that ξj = 0, ‖w‖2 = t and yj(w
⊤µj − b) =

1 + κσj‖w‖2. These conditions imply that the supporting hyperplanes are tangent to

B(µj, κσj). Extending the terminology used in case of SVMs, such spheres may be called

as non-bound support spheres. Similarly the bounded support spheres can be defined as

the spheres with αj = 1. Also, note that αj = 1 ⇒ ξj > 0. In figure 3.1, the spheres

marked with ‘o’ are non-bound support spheres and hence are tangent to the supporting

hyperplanes. Note that the dual involves only dot products of data points. This is

because,

‖
∑

j

αjyjµj‖2 =

√

√

√

√

(

∑

i

∑

j

αiαjyiyjµ⊤
i µj

)
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Figure 3.1: Illustration showing geometric interpretation of the constraints. Clusters
marked with ‘×’ have positive labels and those marked ‘♦’ have negative labels. The
radii of spheres are proportional to κσj.

and the estimate of σ2
j is 1

mj

∑mj

k=1(xk − µj)
⊤(xk − µj) where, xk are the mj data points

that belong to jth cluster. Since the formulation (3.11) involves only the dot products

of the data points, it can be extended to arbitrary feature spaces using Mercer kernels

(see appendix B for details).

For linearly separable datasets, the following hard-margin variant of (3.7) can be

written:

min
w,b

1
2
‖w‖2

2,

s.t. yj(w
⊤xj − b) ≥ 1 + κσj‖w‖2 ∀ j (3.13)

Interestingly, the dual of the problem (3.13) turns out to be that of finding distance

between the convex hulls formed by the negative and positive spheres (B(µj, κσj)). This

is analogous to the case of SVMs, where dual is the problem of finding distance between

the convex hulls formed by the negative and positive data points [7].
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3.4 Numerical Experiments

This section presents experiments comparing testset accuracy and training time with

the proposed classification scheme (denoted by CBC-SeDuMi3) and SVM-Perf [26],

which is state-of-the-art linear time SVM algorithm. Datasets used in experiments are:

D1 Synthetic dataset with m = 4, 500, 000 and n = 2. Generated using 9 Gaussian

distributions with σ = 0.5 and centers on a 3 × 3 square grid (fig. 3.1). Equal

number of points (500, 000) were generated from each cluster. A testset (m =

450, 000) was also generated using the same Gaussian distributions.

D2 Synthetic dataset with m = 4, 500, 000 and n = 38, such that projection of D2 onto

the first two dimensions gives D1. Testset for D2 was also generated independently.

IDS KDD 1999 Intrusion Detection Dataset4, m = 4, 898, 430, n = 41. The classifica-

tion task is to build a network intrusion detector, a predictive model capable of

distinguishing between “bad” connections, called intrusions or attacks, and “good”

normal connections. This dataset has 7 categorical features and 3 of them take

string values. Since the proposed classifier and the SVMs work for numerical data,

these three features were removed from the training data. Hence, the final training

data has 38 dimensions.

Web-Page This dataset5 has m = 49, 749 data points in n = 300 dimensions. The

classification task is “Text categorization”: classifying whether a web page belongs

to a category or not.

IJCNN1 IJCNN1 dataset6 has m = 49, 990 data points in n = 22 dimensions.

All experiments were carried on Athlon64 Dual Core 4200 machines with 2GB mem-

ory. The results are shown in table 3.1 for the tuned set of parameters which gave

3Implementation can be downloaded from http://mllab.csa.iisc.ernet.in/downloads/cbclassifier.html.
4Training and testset available at http://www.ics.uci.edu/∼kdd/databases/kddcup99/kddcup99.html
5Training and testset available at http://research.microsoft.com/∼jplatt/smo.html
6Training and testset available at http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html

http://mllab.csa.iisc.ernet.in/downloads/cbclassifier.html
http://www.ics.uci.edu/~kdd/databases/kddcup99/kddcup99.html
http://research.microsoft.com/~jplatt/smo.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Table 3.1: Results on some large datasets, comparing the performance of CBC-SeDuMi
and SVM-Perf.

Dataset m Accuracy % Total Time (sec)
CBC-SeDuMi SVM-Perf CBC-SeDuMi SVM-Perf

Web-page 49, 749 97.40 98.77 5(2) 4(4)
IJCNN1 35, 000 90.50 91.60 1(1) 3(2)

IDS 4, 898, 430 92.00 91.89 63(1) 100(30)
D1 4, 500, 000 88.88 88.85 21(1) 43(23)
D2 4, 500, 000 88.88 × 56(1) ×

the best testset accuracy for the respective classifier when trained with the full train-

ing data. A ‘×’ mark in a table represents the failure of the corresponding classifier to

complete training due to lack of memory (thrashing). The column “Total Time” shows

the sum of loading, pre-processing, formulation solving times. Thus for CBC-SeDuMi

Ttotal = Tclust +TSOCP and for SVM-Perf Ttotal = Tload +TQP . The figures in the brack-

ets represent the formulation solving time alone i.e. TSOCP for CBC-SeDuMi and TQP

for SVM-Perf. The table shows that, in all cases, CBC-SeDuMi and SVM-Perf

are comparable both in terms of training time and testset accuracy. However, since

CBC-SeDuMi employs an online clustering algorithm for pre-processing, it makes only

a single pass of the dataset and does not store the training data in memory. Thus though

SVM-Perf failed to complete training with D2, CBC-SeDuMi successfully completed

training. The Figures 3.2, 3.3 and 3.4 summarize the scaling experiments done on the

D1, D2 and IDS datasets. The figures show that both schemes scale almost linearly

with training data size.

3.5 Summary

A classification method which is scalable to very large datasets has been proposed, using

SOCP formulations. Assuming that the class conditional densities of positive and nega-

tive data points can be modeled using mixture models, the second order moments of the

components of mixture are estimated using a scalable clustering algorithm like BIRCH.

Using the second order moments, an SOCP formulation is proposed which ensures that
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Figure 3.2: Graph showing scaling results on D1. Solid line represents SVM-Perf and
dashed line CBC-SeDuMi.
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Figure 3.3: Graph showing scaling results on D2. Solid line represents SVM-Perf and
dashed line CBC-SeDuMi.
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Figure 3.4: Graph showing scaling results on IDS. Solid line represents SVM-Perf and
dashed line CBC-SeDuMi.

most of the clusters are classified correctly. The geometric interpretation of the formu-

lation, is to classify spheres B(µj, κσj) with as little error as possible. Experiments on

synthetic and real world datasets show that the proposed method achieves good accuracy

with O(m) training time.

As pointed in section 3.3, the optimization formulation can be extended to feature

spaces (appendix B provides the details). The appendix chapter also presents a fast

iterative solver for the scalable SOCP formulation (3.7). Employing such a solver will

result in further decrease of training time. Also, the formulation (3.7) uses estimated

moments of clusters instead of the unknown, true moments, and hence is susceptible

to estimation errors. The issue of making the formulation robust from such errors is

discussed in chapter 6.



Chapter 4

Large-Scale Ordinal Regression and

Focused Crawling

Abstract

This chapter extends the chance-constraint based, scalable classification approach to the important prob-

lem of large-scale ordinal regression1. The chapter also shows how the formulation can be extended to

feature spaces using the kernel trick. As in case of classification, the new OR scheme scales linearly with

the number of training data points. Experiments on non-linear benchmark datasets show working of the

kernelized formulation. Another contribution of the chapter is to pose focused crawling as a large-scale

OR problem, solved efficiently using the new scalable scheme. This removes inefficiencies of the existing

focused crawlers.

Ordinal regression problems frequently occur in the areas of information retrieval,

social science, personalized searches etc [14, 22, 23, 43]. Given a training dataset labeled

with a set of ranks, the task of Ordinal Regression (OR) is to construct a function that

predicts the rank of new data points. In contrast to metric regression problems, these

ranks are of finite types and the metric distances between the ranks are not defined.

Also the existence of the ordering information among the classes makes an OR problem

different from a multiclass classification problem. Because of its wide applicability in

1This work was presented at the 24th International Conference on Machine Learning, 2007.

43
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ranking, there is considerable interest in solving large-scale OR problems. In this work,

we consider the large margin formulation given by [13] as the baseline OR formulation.

Due to the increasing usage of Internet and growth of web, the need for fast training

and prediction algorithms in the domains of Information retrieval and personalized search

is increasing. Existing OR formulations require that the number of constraints in the

formulation grow with the number of data points, m. In this chapter, a formulation

which minimizes training error by employing chance-constraints for clusters rather than

constraints for individual data points is presented. Since the number of clusters could

be substantially smaller than the number of data points, the proposed formulation has

better scaling properties. The moments of clusters can be estimated efficiently using

an online algorithm like BIRCH and the formulation can be solved using generic SOCP

solvers like SeDuMi. Experiments show that training time for the new OR scheme is

far less than that with the baseline, even when generic SOCP solvers are employed.

Scalability of the proposed OR scheme can be further improved by employing the fast

solver presented in chapter 5.

A simple way of extending the proposed large-scale OR scheme to feature spaces is

also presented. The number of support vectors with the kernelized formulation can at

the maximum be k, the number of clusters, whereas that for the baseline is m. Another

key advantage is that the kernelized scheme also scales linearly with m, even though it

works with feature spaces. Hence the chance-constraint based OR scheme has potential

to be exploited in cases where fast training and fast predictions are desired.

Focused crawling [11] is an efficient mechanism for finding web-pages relevant to a

particular topic. The idea is to traverse and retrieve a part of the web which is relevant

to a particular topic, starting from a seed set of topic relevant pages. Focused crawlers

make efficient usage of network bandwidth, storage capacity and hence provide a viable

mechanism for frequent updation of search engine indexes. They have also been useful

in applications like distributed processing of the web.

In the past, various learning formulations for the problem of focused crawling were

proposed and have shown good performance. However, the major drawback with them is
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that they require topic taxonomy for constructing a set of topic-irrelevant (negative set)

web-pages for training. This chapter shows that posing focused crawling as a large-scale

ordinal regression problem avoids such problems and leads to efficient crawling schemes.

The outline of this chapter is as follows: in section 4.1, brief review of the past work

on ordinal regression and focused crawling is presented. Section 4.2 presents the chance-

constraint based OR formulation. In section 4.3, the proposed OR scheme is extended

to feature spaces using the kernel trick. The methodology of focused crawling using

OR is described in section 4.4. Section 4.5 details the experiments done on non-linear

benchmark datasets comparing performance of the chance-constraint based and baseline

OR schemes. The section also presents crawling experiments to show benefits of the

OR-based focused crawler. Section 4.6 concludes the chapter with a brief summary.

4.1 Past Work

This section presents a brief review of the past work on ordinal regression (section 4.1.1)

and the problem of focused crawling (section 4.1.2).

4.1.1 Ordinal Regression

Given a data set D = {(xi
j, yi) | xj

i ∈ R
n, i = 1, · · · , r, j = 1, · · · ,mi}, where yi is

the rank of the data point, r is the number of ranks, mi is the number of data points

having rank ‘i’ and m =
∑r

i=1 mi is the total number of data points, the task of ordinal

regression is to construct a function f : R
n → {1, . . . , r} such that f(xj

i ) = yi. Such

formulations find ready appeal in many ranking applications [23]. The OR problem is

very similar to the problem of multiclass classification. However the main difference is

that the classes in case of OR are ranked. Hence a data point belonging to class ‘1’

and misclassified as ‘2’ is penalized less than when it is misclassified as class ‘3’. In

case of multiclass classification all misclassifications are treated equally. Because of the

ordinal relation among classes, several evaluation metrics exist for OR problems. Two

of the important evaluation metrics are: mean absolute error (MAE) and mean zero-one
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error (MZE). MAE is the average deviation of the predicted class from the true class,

assuming the ordinal classes are consecutive integers. MAE = 1
M

∑M

i=1 |ŷj − yj|, where

ŷj are the predicted classes and yj are the true classes. MZE is the fraction of incorrect

predictions. In this work we use the MZE evaluation measure.

Several approaches exist to solve the problem of ordinal regression. However, in this

thesis, we restrict ourselves to maximum margin approaches, which in general achieve

good generalization. The work by Herbrich et.al [23] is one such approach which applies

the maximum margin theory. However the formulation size is a quadratic function of the

training set size, m. Shashua and Levin [43] extended the support vector formulation

for ordinal regression by representing the r ordered classes as r consecutive intervals on

the real line. However the problem with their formulation is that there are no specific

constraints which imply the ordering among the classes. This omission may lead to wrong

results in some unfortunate cases. Including the ordinal constraints on classes, Chu and

Keerthi [13] proposed a large margin formulation which we consider as the baseline OR

formulation in this thesis. In the following text, the baseline formulation is described in

brief:

The baseline OR formulation finds a set of hyperplanes w⊤x−bi = 0, i = 1, . . . , r−1,

which separate the data points belonging to the r ordinal classes in a maximum margin

sense. One can define b0 = −∞, br = ∞ and constrain that the data points of class

‘i’ must lie between w⊤x − bi−1 = 0 and w⊤x − bi = 0. In addition, constraints on

the thresholds, bi, are put in order to specify the ordinal relation among the classes

(bi − bi−1 ≥ 0, i = 2, . . . , r − 1). The baseline OR formulation hence can be written as:

min
w,b,ξ

j
i ,ξ

∗j
i

1

2
‖w‖2

2 + C

r
∑

i=1

mi
∑

j=1

ξj
i + ξ∗ji

s.t. w⊤xj
i − bi ≤ −1 + ξj

i , ξj
i ≥ 0,

w⊤xj
i − bi−1 ≥ 1 − ξ∗ji , ξ∗ji ≥ 0, ∀ i, j

bi − bi−1 > 0, i = 2, . . . , r − 1 (4.1)

where b is the vector containing bi, i = 1, . . . , r − 1.
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The above formulation can be shown to be equivalent to:

min
w,b,ξ

j
i ,ξ

∗j
i

r
∑

i=1

mi
∑

j=1

ξj
i + ξ∗ji

s.t. w⊤xj
i − bi ≤ −1 + ξj

i , ξj
i ≥ 0, ξ∗ji ≥ 0,

w⊤xj
i − bi−1 ≥ 1 − ξ∗ji , ∀ i, j, ‖w‖2 ≤ W,

bi − bi−1 > 0, i = 2, . . . , r − 1 (4.2)

The Quadratic Program (QP) in (4.1) is similar to the SVM formulation and the SOCP

(4.2) is similar to the generalized optimal hyperplane formulation [46]. However both the

formulations are equivalent. The standard SVM formulation has gained popularity over

its SOCP counterpart primarily because of the existence of fast SVM solvers like SMO.

The key advantage of the SOCP formulation is interpretation of the parameter W . 2
W

is

the lower bound on margin. However such an interpretation for the parameter C in case

of the QP formulation does not exist. In this work, the SOCP in (4.2) is considered as

the baseline OR formulation.

The baseline formulation size is 2m+n+r−1 and has O(m+r) linear inequalities. The

problem size and number of inequalities can be drastically reduced by employing chance-

constraints for clusters in training data rather than having constraints for individual

data points. Exploiting this, a novel chance-constrained based, large-scale OR scheme is

proposed. The proposed scheme can also be extended to non-linear feature spaces using

the kernel trick.

4.1.2 Focused Crawling

Focused crawling is an efficient resource discovery system for the web [11]. The aim of

any focused crawler is to start from a seed set of pages relevant to a given topic and

traverse specific links to collect pages about the topic without fetching pages unrelated to

the topic. The fraction of relevant pages fetched is called the harvest rate [10]. In other

words, if N denotes the total number of pages crawled and NR the number of relevant
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pages, then the harvest rate is defined as NR

N
. Higher the harvest rate, better the focused

crawler. The first focused crawler, developed by Chakrabarti et.al [11], had three main

components – web crawler, classifier and distiller. The classifier and distiller are used to

define the strategy of the crawl. An existing document taxonomy is employed to define

the topics of interest and irrelevant topics. Classifiers are learned at each internal node of

the tree, which give the probability of a web-page belonging to a particular topic. Since

probability is assigned to a web-page and all URLs in the page have equal priority in the

crawl. The URLs to be crawled are queued and fetched according to their priority. The

distiller improves performance of the crawl by prioritizing the URLs in hubs [29]. An

improved variant was proposed in [10] which prioritizes the URLs within a web-page by

using a classifier called the apprentice. Intelligent crawling [1] is a method that allows

users to specify arbitrary predicates for measuring relevance and uses reinforcement based

learning.

The major drawback with existing focused crawlers is the use of topic taxonomy. As

mentioned above, classifiers are trained at each internal node of the topic taxonomy,

using the corresponding topic, sub-topic documents as positive examples and the others

as negative examples. Because of this, the negative class is too diverse. In this work, we

take an alternate approach where the link structure in the web is exploited to define the

degree of topic relevance. Focused crawling is posed as an OR problem, where ordinal

classes represent the degree of relevance. This avoids the need for topic taxonomy and

related issues.

Diligenti et.al. [16] proposed a related work, where a context graph is created using

link information in the web. However, the problem of focused crawling is posed as a

multiclass classification problem. During a crawl, the web-pages assigned to a particular

class are preferred over the web-pages assigned to other classes. Thus inherently it is

assumed that the classes are ranked. But the ranking information is not considered

during training of the multiclass classifier. The present method attempts to pose the

problem as a ranking problem, and OR is employed; it being more suited for ranking

than multiclass classification.
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4.2 Large-Scale OR Formulation

This section presents the scalable, chance-constraint based OR scheme. Let Zi be the

random variable that generates the data points of rank ‘i’. Assume that the distributions

of Zi can be modeled using mixture models. Let ki be the number of components of Zi

where each component distribution has spherical covariance. Let Xj
i , j = 1, · · · , ki be

the random variable generating the jth component of Zi whose second order moments

are given by (µj
i , σ

j
i

2
I). Given these estimates of second order moments, an optimal

regressor that generalizes well needs to be built.

As mentioned above, the data points that belong to class ‘i’ must lie between the

hyperplanes w⊤x − bi−1 = 0 and w⊤x − bi = 0 with high probability. This can be

mathematically expressed as: P (w⊤Zi−bi ≤ −1+ξj
i ) ≥ η, P (w⊤Zi−bi−1 ≥ 1−ξ∗ji ) ≥ η

where η is user defined parameter. η lower bounds the classification accuracy. Following

the arguments given in section 3.2, and using the formulation (4.2), one can derive the

following large margin OR formulation (henceforth denoted by CBOR-SOCP):

min
w,b,ξ

j
i ,ξ

∗j
i

r
∑

i=1

ki
∑

j=1

ξj
i + ξ∗ji

s.t. w⊤µj
i − bi ≤ −1 + ξj

i − κσj
i W,

w⊤µj
i − bi−1 ≥ 1 − ξ∗ji + κσj

i W,

ξj
i ≥ 0, ξ∗ji ≥ 0, ∀ i, j, ‖w‖2 ≤ W,

bi − bi−1 > 0, i = 2, . . . , r − 1 (4.3)

where κ =
√

η

1−η
. The ordinal regression formulation (4.3) is an SOCP and can can be

solved using generic SOCP solvers like SeDuMi to obtain the optimal values of w and b.

Note that the number of constraints for each rank ‘i’ in (4.3) is ki, compared to mi in (4.1).

Thus the CBOR-SOCP formulation scales better than the baseline formulation (4.1).

The overall training scheme, CBOR-SeDuMi, is to cluster the data points using any

online clustering algorithm like BIRCH, which provides second order moment estimates

of clusters and then solve the SOCP problem (4.3) using SeDuMi.
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4.3 Feature Space Extension

This section extends the proposed OR formulation (4.3) to feature spaces. As discussed

in section 3.3, the geometric interpretation of the inequalities in (4.3) is that of separating

spheres centered at µj
i and radius κσj

i , in a maximum margin sense. Now suppose that

a non-linear mapping, φ, maps the means µj
i to φ(µj

i ). Assume the mapping has the

property that “closer data points remain close and farther data points remain far”.

The mapping implicitly achieved by Gaussian kernel K(x1,x2) = exp {−ζ‖x1 − x2‖2
2},

where ζ is the Gaussian kernel parameter, is in fact one such mapping. Though the

following discussion holds for any such mapping, we restrict ourselves to the case of

Gaussian kernel, in order to keep the equations simple. One can easily verify that if

‖x − µj
i‖2 ≤ κσj

i , then ‖φ(x) − φ(µj
i )‖2 ≤ rj

i where rj
i =

√

2
(

1 − exp
{

−ζ
(

κσj
i

)2
})

.

Using this, one can rewrite the OR formulation (4.3) as:

min
w,b,ξ

j
i ,ξ

∗j
i

r
∑

i=1

mi
∑

j=1

ξj
i + ξ∗ji

s.t. w⊤φ(µj
i ) − bi ≤ −1 + ξj

i − rj
i W,

w⊤φ(µj
i ) − bi−1 ≥ 1 − ξ∗ji + rj

i W,

ξj
i ≥ 0, ξ∗ji ≥ 0, ∀ i, j, ‖w‖2 ≤ W,

bi − bi−1 > 0, i = 2, . . . , r − 1 (4.4)

The dual of the above formulation turns out to be

max
α,α∗,ρ

d⊤ (α + α∗) − ρW

s.t.
√

(α∗ − α)⊤K(α∗ − α) ≤ ρ,

0 ≤ α ≤ 1, 0 ≤ α∗ ≤ 1,

s∗i ≤ si, ∀ i = 1, . . . , r − 2, s∗r−1 = sr−1 (4.5)

where, α = {α1
1, . . . , α

m1

1 , . . . , α1
r , . . . , α

mr
r }⊤ and αj

i are the Lagrange multipliers for the

inequalities w⊤φ(µj
i ) − bi ≤ −1 + ξj

i − rj
i W . Similarly α∗ is the vector containing the
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Lagrange multipliers α∗j
i for the inequalities w⊤φ(µj

i ) − bi−1 ≥ 1 − ξ∗ji + rj
i W and ρ

is the Lagrange multiplier for the inequality ‖w‖2 ≤ W . d is the vector containing

1 + rj
i W as its entries, K is the matrix containing dot products of φ(µj

i ) with each

other, si =
∑i

k=1

∑mk

j=1 αj
k and s∗i =

∑i+1
k=2

∑mk

j=1 α∗j
k (please refer Appendix C for a short

derivation of the dual).

Parameters of the formulation (4.5) are K,d,W . The parameter W , which is an

upper bound on ‖w‖2, is user given. Parameters K,d can be computed using the dot

products of means, variances in input space and the Gaussian kernel parameter, ζ. The

ith decision function fi(x) = w⊤x − bi can be written as (assuming non-trivial case

ρ 6= 0):

fi(x) ≡ w⊤x − bi =
W

ρ
K⊤

x
(α∗ − α) − bi (4.6)

The class to which a new test example x belongs to is given by argmaxi=0,...,r−1

(

I{fi(x)>0}
)

+

1. The discussion shows that solving (4.5) and predicting labels of new examples involve

dot products of means and variance information only. Thus training and prediction of

labels with the proposed OR scheme can be done in any feature space using the kernel

trick. The key advantage is that the training time still scales linearly with the number

of data points.

Equation (4.6) shows that the decision functions depend on the set of training exam-

ples for which αj
i − α∗j

i 6= 0. Extending the terminology of SVMs, such data points can

be named as “support vectors”. Clearly the maximum number of support vectors for the

new OR formulation is the no. clusters, whereas that for the baseline OR formulation

(4.2) is the no. training data points. Thus the proposed OR formulation can be applied

in cases where fast prediction algorithms are desired.

4.4 Focused Crawling as an OR problem

In this section, we pose focused crawling as an OR problem and discuss its merits. A

focused crawler usually consists of the following basic components: a page fetcher, a

priority queue and a scoring function. The fetcher gets the web-page pointed to by
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the URL at the head of the queue. Once the page is fetched, the scoring function

determines the relevance of the web-page and the likelihood/probability of the links on

the page leading to a web-page of interest. It then inserts these links in the priority queue

based on this likelihood/probability. Most of the existing focused crawlers use a topic

hierarchy to define the topics of interest and irrelevant topics. Classifiers are learned at

each internal node of the hierarchy, which give the probability of the web-page belonging

to the node (topic). Also, with such a model, for any topic, the negative training set

becomes very large and diverse, which makes the classifiers difficult to construct.

To overcome these problems, the proposed crawling strategy uses the inherent link

structure of the web for constructing a training set from the given seed set of relevant

pages. Any web-page is semantically closer to web-pages hyperlinked with it, than to

web-pages which are not [15, 21]. For instance, pages which are one link away are

semantically closer to seed pages than pages that are two or three links away. Thus

the web is modeled as a layered graph, with the pages relevant to the seed pages/topic

forming the first layer. Similarly, pages which have links to topic pages form the second

layer, pages having links to these second layer pages forming the third layer and so on.

The idea is to crawl the links in seed set and rank the fetched web-pages based on their

link distance to the seed pages. Using this set as training data, an ordinal regressor is

trained, which would predict the degree of relevance of a web-page to the given topic.

The overall crawling strategy is same as the baseline, except that an ordinal regressor

is trained in place of a classifier. During the actual crawl, links on level i pages are

given higher priority than those on level i + 1. That is, links on a page are prioritized

depending on how quickly these links would lead to topic page, where time is measured

in terms of number of links that need to be crawled.

4.5 Numerical Experiments

The section presents two sets of experiments: the first set of experiments look at the

performance and scalability of the CBOR-SeDuMi scheme (section 4.2). The second
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set of experiments compare the performance of the proposed OR based crawler and the

baseline crawler.

4.5.1 Scalability of CBOR-SeDuMi

In this section, scaling experiment results on two large, non-linear benchmark datasets,

comparing scalability of CBOR-SeDuMi and the baseline solved using the SMO algo-

rithm [13] (denoted by SMO-OR), are presented. The two benchmark datasets used are

California Housing dataset2 and Census dataset3. California Housing dataset has 20, 640

data points in 8 dimensions and Census dataset has 22, 784 data points in 16 dimensions.

The benchmark datasets were randomly partitioned into training and test datasets of

different sizes in order to compare scalability of the algorithms. In all cases the results

shown are for the tuned parameters that gave best accuracy on the test set. In case of

CBOR-SeDuMi and SMO-OR, the Gaussian kernel always performed better than the

linear kernel since the benchmark datasets are essentially non-linear. Table 5.1 summa-

rizes the scaling experiment results. Note that the training time for CBOR-SeDuMi

is TCBOR−SeDuMi = Tclust + TSOCP , where Tclust is the time required to cluster the data

using BIRCH and TSOCP is the time required to solve (4.5) using SeDuMi. A ‘×’ in the

table implies that the corresponding algorithm failed to complete training, due to lack

of memory. Results show that the average error rate on the test sets, in case of both

datasets, with CBOR-SeDuMi and SMO-OR are comparable. In all the cases where

SeDuMi completed training, CBOR-SeDuMi has very less training time than SMO-

OR. This can be attributed to the fact that size of the optimization problem solved

by CBOR-SeDuMi is very small when compared to SMO-OR. Hence even though

SeDuMi is a generic solver and SMO is specialized to solve (4.2), the training time for

CBOR-SeDuMi is less. However, in cases where the number of clusters themselves is

large (around 2000), SeDuMi failed to converge due to lack of memory. In chapter 5, a

specialized solver for the OR formulation (4.5), which outperforms SeDuMi in terms of

2http://lib.stat.cmu.edu/datasets/
3http://www.liacc.up.pt/∼ltorgo/Regression/DataSets.html

http://lib.stat.cmu.edu/datasets/
http://www.liacc.up.pt/~ltorgo/Regression/DataSets.html
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Table 4.1: Comparison of training times (in sec) with CBOR-SeDuMi and SMO-OR
on benchmark datasets. The test set error rate is given in brackets. (CH-California
Housing, CS-Census datasets).

S-Size SMO-OR CBOR-SeDuMi
sec (err) sec (err)

5,690 893 (.128) 20.4 (.109)
11,393 5281.6 (.107) 108.8 (.112)

CS 15,191 9997.5 (.107) 271.1 (.108)
22,331 × 435.7 (.119)

10,320 551.9 (.619) 112 (.623)
13,762 1033.2 (.616) 768.8 (.634)

CH 15,482 1142 (.617) ×
17,202 1410 (.617) ×

Table 4.2: Datasets: Categories and training set sizes

Category Seed 1 2 3 4

NASCAR 1705 1944 1747 1464 1177
Soccer 119 750 1109 1542 3149
Cancer 138 760 895 858 660
Mutual Funds 371 395 540 813 1059

solving time, is presented. Employing such a solver boosts the scalability of the proposed

OR scheme.

4.5.2 Performance of Focused Crawler

This section presents experiments comparing harvest rates of the baseline and OR-based

crawlers. Nalanda iVia crawler4, which implements the baseline [11], was used in the

experiments. It employs a logistic regression based binary classifier.

The topics chosen for crawl were mutual funds, NASCAR, soccer, and cancer. These

topics posed challenge to the baseline crawler and are considered to be ‘difficult’. A

set of seed pages was collected for each topic, from sources like Wikipedia and links

returned by general purpose search engines. Using the seed pages, training set for the

4http://ivia.ucr.edu/

http://ivia.ucr.edu/
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Table 4.3: Table comparing harvest rates of BL-Crawl and OR-Crawl. #R(#I) is
the number of relevant (irrelevant) web pages crawled by BL-Crawl. It indicates the
difficulty in crawling these categories.

Dataset #R/#I BL-Crawl OR-Crawl
NASCAR 11530/19646 0.3698 0.6977
Soccer 10167/9131 0.3400 0.4952
Cancer 6616/12397 0.4714 0.5800
Mutual Fund 9960/10992 0.5260 0.5969

ordinal regressor, with 5 levels of relevance, was created (see section 4.4). Each web-

page was represented by a vector of 4000 features. The sizes of seed and training sets

are shown in the Table 4.2. Level ‘0’ (seed set pages) represents the most relevant pages

and level ‘4’ represents the least relevant pages for the given topic.

The CBOR-SeDuMi scheme was then used to train the ordinal regressor efficiently.

The parameters η, ζ and W were tuned using grid search on a subset of the training

set (validation set). During the crawling phase, for each newly crawled web-page, the

relevance level was predicted using the ordinal regressor. If a page was marked as level

0, 1, 2, or 3, the links from the pages were added to the priority queue; any page marked

as level 4 was discarded.

Table 4.3 compares harvest rates with the proposed OR-based focused crawler (OR-

Crawl) and the baseline crawler (BL-Crawl). For harvest rate calculation, the number

of relevant pages crawled, NR, was taken to be the number of web-pages belonging to

levels 0, 1, or 2. As seen, OR-Crawl performs better than BL-Crawl even on categories

which are considered to be difficult.

4.6 Summary

A novel chance-constraint based OR scheme, which works with feature spaces and scales

linearly with the training set size was presented. The proposed formulation involves

few support vectors and hence has potential to be employed in applications where fast
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predictions are desired. An ordinal regression formulation for the focused crawling prob-

lem which removes the need for a topic taxonomy was presented. The chance-constraint

based OR scheme was used to solve the formulation efficiently. As seen from experimen-

tal results, the OR-based crawler performs better than the baseline even on topics which

are considered difficult.



Chapter 5

Fast Solver for Scalable

Classification and OR Formulations

Abstract

This chapter presents a fast iterative algorithm to solve the large-scale OR formulation (4.3)1. The algo-

rithm exploits the formulation’s special structure, that it is a single cone constrained SOCP, and performs

a projected gradient descent. The iterative algorithm scales very well when compared to generic SOCP

solvers and is very easy to implement. The algorithm can also be derived for the scalable classification

formulation (3.7), since it is again an instance of single cone constrained SOCP.

In chapters 3, 4 it is shown that the chance-constraint based learning formulations

scale better than traditional large margin formulations and also achieve good general-

ization. The scalability of such schemes can be owed to the fact that the no. clusters in

the training data will be very less compared to the no. training data points. However

the experiments in section 4.5.1 showed that when the no. clusters themselves is large,

generic SOCP solvers like SeDuMi fail. The main contribution of this chapter is a fast

iterative algorithm, CBOR-Iter, that can efficiently handle large number of clusters

and in-turn very large number of data points. CBOR-Iter exploits the fact that the

large-scale OR formulation (4.3) has only one cone constraint and efficiently solves the

1This work was presented at the 24th International Conference on Machine Learning, 2007.
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dual formulation. This removes the necessity of employing generic optimization software

like SeDuMi.

Erdougan and Iyengar [17] show that algorithms which exploit the specialty of hav-

ing single cone constraint perform better than generic SOCP solvers. The authors in

their paper derive an active set method which is more efficient than SeDuMi in solving

single cone constrained SOCPs. In this work, we further exploit the special structure

of the formulation (4.3) and derive a fast, easy to implement, projected gradient based

algorithm, which is similar in spirit to the SMO algorithm. Experimental results show

that the fast algorithm outperforms SeDuMi in solving (4.3).

The fast iterative algorithm presented here can also be derived for the scalable classi-

fication formulation (see appendix B). This is because both the formulations are similar

in structure.

5.1 Large-Scale OR Solver

This section presents a fast iterative solver for the dual of the chance-constraint based

OR formulation (4.5). The constraints in (4.5) imply a lower bound on ρ and objective

implies minimizing ρ. Hence at optimality, ρ =
√

(α∗ − α)⊤K(α∗ − α). Using this

condition, the dual can be re-written as:

min
α,α∗

W
√

(α∗ − α)⊤K(α∗ − α) − d⊤ (α + α∗)

s.t. 0 ≤ α ≤ 1, 0 ≤ α∗ ≤ 1

s∗i ≤ si, ∀ i = 1, . . . , r − 2, s∗r−1 = sr−1 (5.1)

From the KKT conditions (C.2) and the optimal value of ρ (assuming ρ 6= 0), one can

calculate the value of w as W
ρ

∑r

i=1

∑mi

j=1

(

α∗j
i − αj

i

)

φ(µj
i ). The decision function can be

written as:

f(x) ≡ w⊤x − b = g(x) − b, g(x) =
W

ρ
K⊤

x
(α∗ − α) (5.2)
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where Kx is the vector of dot products of φ(x) and φ(µj
i ). Thus neither for solving the

dual (4.5), nor for calculating f(x), φ is explicitly needed; dot products are enough. The

optimal values of b1, . . . , br−1 can be computed using the KKT conditions (C.2):

αj
i = 0 g(µj

i ) + 1 + rj
i W ≤ bi

0 < αj
i < 1 g(µj

i ) + 1 + rj
i W = bi

αj
i = 1 g(µj

i ) + 1 + rj
i W ≥ bi

α∗j
i+1 = 0 g(µj

i+1) − 1 − rj
i W ≥ bi

0 < α∗j
i+1 < 1 g(µj

i+1) − 1 − rj
i W = bi

α∗j
i+1 = 1 g(µj

i+1) − 1 − rj
i W ≤ bi (5.3)

Let blow
i, bup

i denote the greatest lower bound, least upper bound on bi. Hence we have

the conditions blow
i ≤ bi ≤ bup

i, i = 1, . . . , r− 1. The KKT conditions (C.2) also indicate

that for i = 2, . . . , r − 1, bi−1 ≤ bi and if si−1 > s∗i−1 then bi−1 = bi. Thus the overall

optimality conditions can be written as Blow
i ≤ bi ≤ Bup

i where

Blow
i =







B̃i+1
low if si > s∗i

B̃i
low otherwise

(5.4)

and

Bup
i =







B̃i−1
up if si−1 > s∗i−1

B̃i
up otherwise

(5.5)

and B̃i
low = max{blow

k : k = 1, . . . , i}, B̃i
up = min{bup

k : k = i, . . . , r − 1}. Note

that blow, bup represent the conditions at every hyperplane due to neighboring class data

points; whereas Blow, Bup represent the conditions over all hyperplanes.

The proposed CBOR-Iter algorithm starts with some feasible solution. Then at

every iteration, Blow
i, Bup

i ∀ i are calculated. If Blow
i ≤ Bup

i ∀ i, then the optimal

solution is found and the algorithm terminates. Else the index i for which Blow
i ≤ Bup

i

is most violated is calculated: I = arg maxi{i : Blow
i − Bup

i > 0}. Using (5.4) and
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(5.5) the maximum KKT violating pair can be calculated. Now the following cases exist:

Case 1 The most violating pair is αjp
p and αjq

q , Case 2 The most violating pair is α∗jp
p

and α∗jq
q , Case 3 The most violating pair is αjp

p and α∗jq
q , Case 4 The most violating

pair is α∗jp
p and αjq

q , where p ≤ q. The equality constraint sr−1 = s∗r−1 must hold. So

for Case 1,2 one can update the variables by adding ∆α to jpth variable and subtracting

∆α from jqth variable. In Case 3,4 both variables must be incremented by ∆α (∆α can

also take negative values).

Now let G1 ≡ W
√

(α∗ − α)⊤K(α∗ − α)−d⊤ (α + α∗) denote the dual objective with

current values of α, α∗. Let G2 denote the value of dual objective after appropriately

incrementing the variables α, α∗ with ∆α. We wish to find that value of ∆α for which

G2 − G1 is minimized. This can be written as the following 1-d minimization problem:

min
∆α

√

a(∆α)2 + 2b(∆α) + c − e∆α

s.t. lb ≤ ∆α ≤ ub (5.6)

where a = W 2(K(jp, jp) − 2K(jp, jq) + K(jq, jq)), b = W 2l1((Kjq − Kjp)
⊤(α∗ − α)),

c = W 2(α∗−α)⊤K(α∗−α) and e = (d(jp)− l2d(jq)). The values of l1, l2 depend on the

Case to which update belongs to. l1 = 1 for Case 1,3 and l1 = −1 for Case 2,4. l2 = 1

for Case 1,2 and l2 = −1 for Case 3,4. lb, ub denote the tightest lower and upper bounds

on ∆α got from the inequality constraints in (5.1).

The optimum value of ∆α that minimizes (5.6) is given by

∆α =



























































e

r

ac−b2

a−e2
−b

a





ub

lb

if ac − b2 > 0, a − e2 > 0

−b
a

]ub

lb
if ac − b2 = 0, a − e2 > 0

ub if e −√
a ≥ 0

lb if e +
√

a ≤ 0
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where ∆α]ub

lb denotes max(lb, min(ub, ∆α)). Once the optimum value of ∆α is calculated,

then the values of α and α∗ are updated accordingly and the procedure is repeated in

the next iteration.

The CBOR-Iter algorithm can be summarized as follows:

1. Initialize α and α∗ with some non-trivial, feasible values.

2. Calculate Bi
low, Bi

up ∀ i. If KKT conditions are satisfied i.e., Bi
low ≤ Bi

up ∀ i then
terminate, else continue.

3. Identify the maximum KKT violating pair using (5.4) and (5.5).

4. Solve (5.6) to get the optimal value of ∆α. Update Lagrange multipliers of the
maximum KKT violating pair and repeat step 2.

5.2 Numerical Experiments

This section supplements the experiments presented in section 4.5. The previous ex-

periments compared CBOR-SeDuMi and SMO-OR. Here we present results with the

clustering based OR formulation (5.1) solved using the fast iterative solver, CBOR-Iter.

Note that the training time for CBOR-Iter is TCBOR−Iter = Tclust + TSMO where Tclust

is the time required to cluster the data using BIRCH and TSMO is the time required to

solve the dual (5.1). Table 5.1 compares the three methods CBOR-Iter, SMO-OR and

CBOR-SeDuMi. A ‘×’ in the table implies that the corresponding algorithm failed to

complete training, due to lack of memory. The results clearly show that the training time

with CBOR-Iter is very less when compared to SMO-OR and CBOR-SeDuMi. Also

the average error rate on the test sets with CBOR-Iter on California Housing dataset is

0.6221 and on Census dataset is 0.1122. These are comparable to the average error rates,

0.6184 and 0.1172, given by SMO-OR on the benchmark datasets. This shows that the

CBOR-Iter algorithm achieves similar generalization as SMO-OR, but requires very

less training time.

In order to show that the CBOR-Iter algorithm can scale up to very large datasets

containing millions of data points, we present scaling results on a large synthetic OR

dataset in 2 dimensions having 5 classes. The data points of each class were generated
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Table 5.1: Comparison of training times (in sec) with CBOR-Iter, SMO-OR and
CBOR-SeDuMi on benchmark datasets. The test set error rate is given in brackets.
(CH-California Housing, CS-Census datasets).

S-Size CBOR-Iter SMO-OR CBOR-SeDuMi
sec (err) sec (err) sec

10,320 .5 (.623) 551.9 (.619) 112
13,762 1.5 (.634) 1033.2 (.616) 768.8

CH 15,482 8.4 (.618) 1142 (.617) ×
17,202 14.3 (.621) 1410 (.617) ×
20,230 10.4 (.62) 1838.5 (.62) ×
5,690 .3 (.109) 893 (.128) 20.4

11,393 .7 (.112) 5281.6 (.107) 108.8
CS 15,191 1 (.108) 9997.5 (.107) 271.1

22,331 1.5 (.119) × 435.7

Table 5.2: Comparison of training times in sec with CBOR-Iter and SMO-OR on
synthetic dataset.

S-Rate S-Size CBOR-Iter SMO-OR

0.002 10,000 1 182
0.0025 12,500 1 260
0.003 15,000 1 340

0.3 1,500,000 9 ×
1 5,000,000 36 ×

using a GMM with 5 components. Thus the size of problem for CBOR-Iter is 25,

whereas that for SMO-OR it is the size of the whole training set. Table 5.2 presents

results of the scaling experiment. As shown in the table, CBOR-Iter scales well even

for datasets containing millions of data points. Figure 5.1 summarizes experiments com-

paring the scalability of CBOR-Iter and SeDuMi. The experiments were done on a

synthetic ordinal regression dataset with 5 class, assuming each data point is a cluster.

As the figure shows, CBOR-Iter algorithm solves the SOCP with a run time under

1 minute even with few thousands of clusters; whereas SeDuMi fails if the number of

clusters are more than around 2000.
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Figure 5.1: Dashed line represents training time with CBOR-SeDuMi and continuous
line that with CBOR-Iter on a synthetic dataset.

5.3 Summary

This chapter presented a fast, easy to implement, iterative solver for the chance-constraint

based, large-scale OR formulation. The iterative solver scales very well when compared

to generic SOCP solvers like SeDuMi and further improves scalability of the large-scale

OR scheme. The solver can also be developed for the scalable classification formulation,

as both formulations can be posed as SOCPs having similar structure.



Chapter 6

Robustness to Moment Estimation

Errors

Abstract

This chapter deals with the important issue of handling moment estimation errors1. As shown in the

chapter, validity of the constraints/formulations derived in previous chapters critically depend on how

close the estimated moments are to the unknown, true moments. Using the scalable classification formu-

lation as an example, generic procedure of making the formulations robust to moment estimation errors

is presented. The main contribution is to show that robust variants of the formulation, built using two

novel confidence sets, are also SOCPs and hence are tractable.

The discussion in chapters 3 and 4 showed how summarizing the data using clusters

and then employing chance-constraints for clusters can lead to very scalable classifica-

tion and ordinal regression formulations. In both cases, online clustering algorithms like

BIRCH was used to estimate moments of clusters. However, the moments estimated may

not be exact, and as a result the maximum misclassification probability incurred by the

separating hyperplane may well be less than the required probability, 1 − η. To protect

against this dangerous consequence of inexact moments estimation we employ here the

robust optimization methodology of [4, 5] and references therein. In this methodology,

1This work was submitted to the Journal of Machine Learning Research.
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the uncertain (inexact) parameters of an optimization problem are assumed to lie in a

bounded convex uncertainty set and the constraints are required to hold for all possi-

ble realizations of the parameters in the uncertainty set. Two such novel uncertainty

sets (confidence sets) are presented in this chapter for the case of multivariate normal

distribution for the components: 1) confidence set for mean and variance is derived as

the Cartesian product of individual confidence sets for the moments, 2) an asymptotic

approximate joint confidence set for both mean and variance together. A new constraint

is derived which when satisfied implies that the original cone constraint is satisfied for all

values of moments in the confidence set. We illustrate the methodology using the cone

constraints in (3.7) and the corresponding SOCP formulation (denoted by CBC-SOCP).

Similar methodologies can be developed for various cone constraints presented in this

thesis.

One of the key results presented in this chapter is to show that, when either confi-

dence sets are employed, the robust variant of the original cone constraint is also a cone

constraint (see theorems 6.1, 6.2). Using these robust cone constraints, variants of the

CBC-SOCP formulation are then proposed (RCBC1-SOCP and RCBC2-SOCP). Exper-

imental results show that in most cases, test set error exceeds 1−η when the original cone

constraints are employed, whereas it does not when the robust variants are employed.

The experiments also show that the cone constraint derived using separate confidence

set is more pessimistic (conservative) than the one derived using joint confidence set.

The organization of this chapter is as follows: the robust variants of CBC-SOCP are

presented in section 6.1. Section 6.2 presents experiments comparing the robust, non-

robust cone constraints and formulations. The chapter concludes with a brief summary

in section 6.3.

6.1 Robust Classifiers for Large Datasets

As discussed earlier, the moments in the CBC-SOCP formulation are estimated using

fast clustering algorithms like BIRCH. Hence the moment estimates are prone to be
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erroneous. Assuming that the estimated moments of the clusters are (µ̂, σ̂2I), the CBC-

SOCP formulation (3.7) can be written as follows:

min
w,b,ξj ,t

1
2
t2 + C

∑k

j=1 ξj

s.t. yj(w
⊤µ̂j − b) ≥ 1 − ξj + κ σ̂jt, ξj ≥ 0, j = 1, . . . , k,

‖w‖2 ≤ t (6.1)

As stated previously, if X ∼ (µ, σ2I) is the random vector generating a cluster, the cone

constraint y(w⊤µ − b) ≥ 1 − ξ + κ σ‖w‖2 implies P (y(w⊤X − b) ≥ 1 − ξ) ≥ η where

κ = Φ−1(η) if components are Gaussian and κ =
√

η

1−η
otherwise. However the CBC-

SOCP formulation (6.1) uses estimates of moments (µ̂, σ̂2I), in place of true moments

(µ, σ2I). Hence validity of the cone constraints will be in question if estimated moments

are not accurate.

Suppose the actual moments, (µj, σ
2
j ), with confidence c = 1−δ, lie in a set R((µ̂j, σ̂

2
j ), δ).

Then the robust CBC-SOCP formulation can be written as follows:

min
w,b,ξj ,t

1
2
t2 + C

∑k

j=1 ξj

s.t. yj(w
⊤µj − b) ≥ 1 − ξj + κ σjt, j = 1, . . . , k, ∀ (µj, σ

2
j ) ∈ R((µ̂j, σ̂

2
j ), δ)

‖w‖2 ≤ t, ξj ≥ 0, j = 1, . . . , k, (6.2)

In the following text, for the special case of multivariate spherical normal distribution

for the clusters, expressions for R((µ̂j, σ̂j
2), δ) are derived and later it is shown that the

robust variants of the CBC-SOCP formulation also turn out to be SOCPs.

6.1.1 Separate Confidence Sets for Moments

In this section, the robust cone constraint developed using separate confidence sets for

the moments is presented. Suppose the unbiased estimates of (µj, σ
2
j I) are (µ̂j, σ̂

2
j I) and

that the clusters are normally distributed. Let mj, n denote the number of training data

points belonging to jth cluster and the dimension of training data respectively. Hotelling’s
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T 2 statistic is the standard tool for inference about the mean of a multivariate normal

distribution (refer [27], page 227). According to this statistic, with confidence c = 1− δ,

‖µj − µ̂j‖2
2 ≤ p2

j(c), p2
j(c) =

(mj − 1)n

(mj − n)mj

σ̂2
j Fn,mj−n(c) (6.3)

where Fn,mj−n(c) is the value at c = 1− δ of the inverse cumulative distribution function

of the standard F distribution with n,mj −n degrees of freedom for the χ2 distributions

in the numerator and denominator of the F-distribution respectively. The confidence set

for variance can be obtained using Cochran’s theorem (refer [42], page 419), according

to which (mj − 1)
σ̂2

j

σ2
j

∼ χ2
mj−1. Hence the confidence interval for variance turns out to be

q2
j (c) ≤ σ2

j ≤ r2
j (c)), q2

j (c) =
mj − 1

χ2
mj−1(1 − 1−c

2
)
σ̂2

j , r2
j (c) =

mj − 1

χ2
mj−1(

1−c
2

)
σ̂2

j (6.4)

From these individual confidence sets the following confidence set for both the moments

can be derived:

R1

(

(µj, σ
2
j ), δ

)

=
{

(µ, σ2) | ‖µ − µ̂j‖2
2 ≤ p2

j(
√

c), σ2 ∈ (q2
j (
√

c), r2
j (
√

c))
}

(6.5)

The original cone constraints (3.4) can be made robust to moment estimation errors

if yj(w
⊤µj − b) ≥ 1 − ξj + κσj‖w‖2 for all (µj, σ

2
j ) lying in the confidence set described

by (6.5). To this end consider the following theorem:

Theorem 6.1. The constraints (6.6) and (6.7) are equivalent to each other:

y(w⊤µ − b) ≥ 1 − ξ + κσ‖w‖2, (µ, σ2) ∈ R1((µ̂, σ̂2), δ) (6.6)

y(w⊤µ̂ − b) ≥ 1 − ξ +
(

p(
√

c) + κr(
√

c)
)

‖w‖2 (6.7)

where the values of p, q, r are given by (6.3) and (6.4).
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Proof. It is easy to see that (6.6) is satisfied for all (µ, σ2) ∈ R1((µ̂, σ̂2), δ) iff:

(

min‖µ−µ̂‖2
2
≤p2(

√
c), σ2 ∈ (q2(

√
c),r2(

√
c)) yw⊤µ − κσ‖w‖2

)

≥ yb + 1 − ξ

⇔
(

min‖µ−µ̂‖2
2
≤p2(

√
c) yw⊤(µ − µ̂)

)

+ yw⊤µ̂ − κr(
√

c)‖w‖2 ≥ yb + 1 − ξ

⇔ −p(
√

c)‖w‖2 + yw⊤µ̂ − κr(
√

c)‖w‖2 ≥ yb + 1 − ξ

which is same as (6.7). This completes the proof.

Interestingly (6.7) is also a cone constraint. Using theorem 6.1, a robust scalable SOCP

formulation (RCBC1-SOCP), similar in spirit to CBC-SOCP (3.7), can be derived:

min
w,b,ξj ,t

1
2
t2 + C

∑k

j=1 ξj

s.t. yj(w
⊤µ̂j − b) ≥ 1 − ξj + (pj(

√
c) + κrj(

√
c)) t, j = 1, . . . , k

‖w‖2 ≤ t, ξj ≥ 0, j = 1, . . . , k (6.8)

6.1.2 Joint Confidence Sets for Moments

In this section, the robust cone constraint developed using joint confidence sets for the

moments is presented. It is well known (see, for example, [38], page 211) that the

multivariate Maximum Likelihood Estimate (MLE), θ̂(m), for θ, a (n × 1) vector of

parameters, is asymptotically normal in the sense that

θ̂(m) ≈ N (n)

(

θ,
1

m
Σ(θ)

)

(6.9)

where m is number of samples used for estimation, Σ−1(θ) is the matrix containing the

entries σkl(θ) ≡ −E
[

∂2

∂θk∂θl
(log fX(x; θ))

]

. Here fX(x; θ) denotes the pdf of the data

distribution with the actual parameters θ.

For the case of spherical normal distribution for clusters, the vector of parameters

of the jth cluster, θj, is





µj

σj
2



 and the pdf, fX(x; θj), is Nn(µj, σ
2
j I). Now the entries
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σkl(θj) can be written as follows:

σkl(θj) =































1
σ2

j

if k = l, l = 1, . . . , n

0 if k 6= l, l = 1, . . . , n

0 if k 6= l, k = n + 1 or l = n + 1

n
2σ4

j

if k = l = n + 1

(6.10)

Recall that mj, n denote the number of training data points belonging to jth cluster

and the dimension of training data respectively. With a slight abuse of notation let

(µ̂j, σ̂
2
j I) denote the MLE moment estimates of the jth cluster. Using (6.10), for the case

of spherical normal distribution for clusters, (6.9) can be re-written as follows:





µ̂j

σ̂j
2



 ≈ Nn+1









µj

σ2
j



 ,
1

mj





diagn(σ2
j ) 0n×1

01×n
2σ4

j

n







 (6.11)

Now since (µ̂j, σ̂j
2) approximately follows Normal distribution,

Uj =
mj

σ2
j

‖µj − µ̂j‖2
2 +

nmj

2σ4
j

(σ2
j − σ̂j

2)2

will approximately follow chi-square distribution. Thus, for large mj, the set R((µ̂j, σ̂
2
j ), δ) =

{(µj, σ
2
j ) : Uj < χ2

n+1(1 − δ)} is an approximate 1 − δ confidence set for (µj, σ
2
j ). Here

χ2
n+1(1 − δ) denotes the inverse of the chi-square cumulative distribution function with

n + 1 degrees of freedom and at the value 1 − δ.

As discussed in [2], for large enough mj,

Vj =
mj

σ̂j
2‖µj − µ̂j‖2

2 +
nmj

2σ̂j
4 (σ2

j − σ̂j
2)2 ≈ χ2

n+1 (6.12)

Thus for large mj, the set R((µ̂j, σ̂
2
j ), δ) = {(µj, σ

2
j ) : Vj < χ2

n+1(1 − δ)}, which is an

ellipse in ‖µj − µ̂j‖2 and (σ2
j − σ̂j

2), is also an approximate 1 − δ confidence set for

(µj, σ
2
j ). In fact, the authors in their experiments show that this approximate confidence

set performs well even in cases where the normal distribution assumption fails.



Chapter 6. Robustness to Moment Estimation Errors 70

To summarize, the discussion shows that the actual moments of jth cluster, with

confidence 1 − δ, lie in an ellipse described by Vj ≤ χ2
n+1(1 − δ)(= f, say). Hence the

joint confidence interval can be written as:

R2

(

(µ̂j, σ̂
2
j ), δ

)

=

{

(µj, σ
2
j ) :

mj

σ̂j
2‖µj − µ̂j‖2

2 +
nmj

2σ̂j
4 (σ2

j − σ̂j
2)2 ≤ f

}

(6.13)

Now coming back to the classification problem, one needs to ensure that cone constraints

of the form y(w⊤µ − b) ≥ 1 − ξ + κσ‖w‖2 are satisfied for all values of (µ, σ2) lying in

the ellipse described by V ≤ f . To this end, consider the following theorem:

Theorem 6.2. The constraints (6.14) and (6.15) are equivalent to each other:

y(w⊤µ − b) ≥ 1 − ξ + κσ‖w‖2, (µ, σ2) ∈ R2((µ̂, σ̂2), δ) (6.14)

y(w⊤µ̂ − b) ≥ 1 − ξ + (κσ∗ + g∗σ̂)‖w‖2 (6.15)

where, g∗ =
√

2nfσ∗2

m(2nσ∗2+κ2σ̂2)
and σ∗2 is a particular root of the cubic (6.20)

Proof. In order to satisfy the cone constraint y(w⊤µ − b) ≥ 1 − ξ + κσ‖w‖2 where

(µ, σ2) lies in the ellipse described by V ≤ f , it is enough to constrain that y(w⊤µ∗−b) ≥
1 − ξ + κσ∗‖w‖2, where (µ∗, σ∗2) is the solution of the following minimization problem:

min
(µ,σ2)

yw⊤µ − κσ‖w‖2

s.t. m
σ̂2‖µ − µ̂‖2

2 + nm
2σ̂4 (σ

2 − σ̂2)2 ≤ f (6.16)

The Lagrangian of (6.16) turns out to be L = yw⊤µ− κσ‖w‖2 + λ(V − f), λ ≥ 0 where

λ is the Lagrange multiplier. KKT conditions are as follows:

∇µL = 0 ⇒ yw +
2λm

σ̂2
(µ − µ̂) = 0 ⇒ λ 6= 0 (6.17)

∂L
∂σ2

= 0 ⇒ −κ‖w‖2

2σ
+

λmn

σ̂4
(σ2 − σ̂2) = 0 ⇒ σ2 ≥ σ̂2 (6.18)

λ(V − f) = 0, λ 6= 0 ⇒ m

σ̂2
‖µ − µ̂‖2

2 +
nm

2σ̂4
(σ2 − σ̂2)2 − f = 0 (6.19)

Substituting the values of (µ − µ̂) from (6.17) and (σ2 − σ̂2) from 6.18 in (6.19), we
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get

λ =
σ̂‖w‖2

2
√

fm

√

(

1 +
κ2σ̂2

2nσ2

)

Substituting this λ expression in (6.18), we get the following cubic in z = σ2:

(2mn2)z3 + mnσ̂2(κ2 − 4n)z2 + 2mnσ̂4(n − κ2)z + κ2σ̂6(nm − 2f) = 0 (6.20)

Claim 1. Given κ, f > 0, ∃ a unique root z∗ of cubic (6.20) in the interval (σ̂2,∞).

Proof. Let the cubic in (6.20) be represented by p(z). The following observations are

true:

• p(σ̂2) = −2κ2f < 0.

• p
′

(σ̂2) = 0.

• p
′

(z) = mn2 [6(z − σ̂2)2 + 4σ̂2(z − σ̂2)] + 2mnκ2σ̂2(z − σ̂2). Implying p
′

(z) >

0, ∀ z > σ̂2. So p(z) is strictly increasing in the interval [σ̂2,∞).

The above three properties prove the claim.

Hence the cubic (6.20) can be solved for the particular root, z∗ = σ∗2, which is ≥ σ̂2.

Now

yw⊤µ∗ = yw⊤µ̂ − g∗σ̂‖w‖2

where g∗ =
√

2nfσ∗2

m(2nσ∗2+κ2σ̂2)
. Thus the final constraint turns out to be (6.15). This

completes the proof.

Using theorem 6.2, a robust scalable SOCP formulation (RCBC2-SOCP), similar in spirit

to CBC-SOCP (3.7), can be derived:

min
w,b,ξj ,t

1
2
t2 + C

∑k

j=1 ξj

s.t. yj(w
⊤µ̂j − b) ≥ 1 − ξj + (κσ∗

j + g∗
j σ̂j)t, j = 1, . . . , k

‖w‖2 ≤ t, ξj ≥ 0, j = 1, . . . , k (6.21)
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Note that RCBC2-SOCP is indeed an SOCP formulation, with the form exactly same as

its non-robust counterpart, CBC-SOCP. Geometrically, the only difference in the CBC-

SOCP and RCBC2-SOCP formulations is the size of spheres (refer section 3.3). For a

fixed η, in case of CBC-SOCP, the sphere sizes are proportional to σ̂j, whereas, in case of

RCBC2-SOCP, the sizes are proportional to κσ∗
j + g∗

j σ̂j. For RCBC1-SOCP, the sphere

sizes are proportional to pj(
√

c) + κrj(
√

c). Experiments show that the cone constraints

derived using separate confidence sets are more conservative than the ones derived using

joint confidence sets, which is as expected.

6.2 Numerical Experiments

This section presents experiments that compare performance of the cone constraints

derived in sections 3.2, 6.1. Comparison is done for the following four cone constraints,

all of which imply P (y(w⊤X − b) ≥ 0) ≥ η where X ∼ (µ, σ2I) and y is its label (see

theorem 2.1):

y(w⊤µ − b) ≥ κσ‖w‖2 (6.22)

y(w⊤µ̂ − b) ≥ κσ̂‖w‖2 (6.23)

y(w⊤µ̂ − b) ≥
(

p(
√

c) + κr(
√

c)
)

‖w‖2 (6.24)

y(w⊤µ̂ − b) ≥ (κσ∗ + g∗σ̂)‖w‖2 (6.25)

(6.22), (6.23) were presented in section 3.2 and represent the standard cone constraint

with true and estimated moments respectively. Let these cone constraints be denoted

by T-SOC and E-SOC respectively. (6.24), (6.25) were derived in section 6.1 and

represent the robust cone constraints derived using separate confidence intervals and

joint confidence intervals for moments respectively. Let these cone constraints be denoted

by R1-SOC and R2-SOC respectively. The experiments in section 6.2.2 compare the

objective value and averaged test set accuracy for the CBC-SOCP and RCBC2-SOCP

formulations.
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6.2.1 Comparison of the Cone Constraints

The discussion in the previous sections showed that if (6.22) is satisfied, then with

probability η, the data generated by the moments (µ, σ2I) will lie on the correct side of

the separating hyperplane, w⊤x − b = 0. If there are no or very less estimation errors,

then (6.23) also implies the same as (6.22). However if the estimation errors are not

negligible, then the cone constraints need to be robust. (6.25) and (6.24) are two such

robust variants which imply that the data generated by the moments (µ, σ2I) will lie on

the correct side of the separating hyperplane, w⊤x− b = 0, even if the estimation errors

are not negligible. This section presents results that compare the four cone constraints:

T-SOC, E-SOC, R1-SOC, R2-SOC.

In order to illustrate the effect of error in moment estimation on the correctness of the

cone constraints, the following experiment was done: in each run of the experiment, 100

training examples and 10000 test examples were generated from a normal distribution

with fixed moments
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. As per (6.23), if

b is chosen as w⊤µ̂−κσ̂‖w‖2, where the moments were estimated using the 100 training

examples, then on any testset not more than 1 − η fraction of the examples will lie in

the negative half space of w⊤x − b = 0. Similarly, as per (6.25), b needs to be chosen

as w⊤µ̂− (κσ∗ + g∗σ̂)‖w‖2 and for (6.24), b = w⊤µ̂− (p(
√

c) + κr(
√

c)) ‖w‖2. For each

run of the experiment, the same training and test set was used to compare the four cone

constraints. Of the 20000 runs of the experiment, the % of runs in which the testset error

was greater than 1 − η (denoted by pη), for various values of η, is shown in table 6.1.

The values eη,mη represent the average and maximum test set error in the 20000 runs.

Ideally, pη must be 0 and eη,mη must be equal to 1 − η. Also, lesser their value, more

is the robustness towards moment estimation errors. In order to have a baseline for

comparison, the case b = w⊤µ − κσ‖w‖2, where (µ, σ2) are the true moments, is also

reported in the table under the column T-SOC.

Firstly, pη ≫ 0 and mη ≫ 1 − η for E-SOC showing that validity of the original

cone constraint (3.4) is indeed in question when moment estimation errors are present.
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Secondly, the values of pη, eη,mη are less for R1-SOC and R2-SOC, showing that the

corresponding cone constraints are robust to moment estimation errors. The fact that

values of mη for R1-SOC are less than 1 − η and less than those for R2-SOC show

that (6.24) unnecessarily ensures a tighter constraint than required in order to make the

constraint robust. Thus R2-SOC is robust and also not very pessimistic, and hence has

more practical utility. Figure 6.1 is a histogram for η = 0.9 and δ = 0.9. A group of

3 bars at x represents the number of experiment runs where testset error was between

(x − 0.5)% and (x + 0.5)% with E-SOC, T-SOC, R1-SOC, R2-SOC. Ideally, the

histogram must be a single peak at x = 10% and zero elsewhere. T-SOC behaves

nearest to the ideal since true moments are used in the cone constraint. Also R1-SOC,

R2-SOC have least number of experiments with testset error greater than 1−η (= 10%

here) showing that they are robust towards moment estimation errors. The figure again

confirms that R1-SOC is more pessimistic than R2-SOC. The histogram also shows

that in almost half the number of experiment runs E-SOC violated the misclassification

error bound of 1 − η.

Table 6.2 compares the values of pη, eη,mη for E-SOC and R2-SOC with η = 0.9, δ =

0.9 for synthetic datasets generated from various distributions other than normal. U,

B represent datasets generated from distributions where each dimension is generated

from independent uniform, beta (parameters α, β = 2)2 random variables respectively

and shifted appropriately to have µ = [1 0]⊤. E, G represent datasets with double

exponential distribution (λ = 1, µ = [1 0]⊤)3 and double gamma distribution (k = 2, θ =

2, µ = [1 0]⊤)4 respectively for each dimension. The means are shifted appropriately.

The table clearly shows that R2-SOC performs better than E-SOC even when the

distribution assumption of normal is not valid.

2Beta: f(x) = 1
B(α,β)x

α−1(1 − x)β−1, 0 ≤ x ≤ 1
3Double Exponential: f(x) = λ

2 exp (−λ|x − µ|)
4Double Gamma: f(x) = |x−µ|k−1

2

exp−( |x−µ|
θ )

θkΓ(k)
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Table 6.1: Results on synthetic data, comparing E-SOC, T-SOC, R1-SOC, R2-SOC.

η eη

E-SOC T-SOC R1-SOC R2-SOC

0.9 0.10302 0.09999 0.04257 0.06020
0.8 0.20267 0.20001 0.11148 0.13601
0.7 0.30164 0.29994 0.19662 0.21927
0.6 0.40108 0.39999 0.29442 0.30867

η mη

E-SOC T-SOC R1-SOC R2-SOC

0.9 0.21220 0.11140 0.08520 0.14270
0.8 0.35730 0.21410 0.16220 0.27740
0.7 0.45240 0.31800 0.26080 0.35920
0.6 0.55320 0.42160 0.33790 0.46600

η pη%
E-SOC T-SOC R1-SOC R2-SOC

0.9 52.93 50.41 0.00 1.25
0.8 51.78 50.40 0.00 0.99
0.7 50.33 49.28 0.00 0.96
0.6 50.74 49.46 0.00 0.83
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Figure 6.1: Histogram of % experiment runs vs. testset error % at η = 0.9 for E-SOC,
T-SOC, R1-SOC, R2-SOC.
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Table 6.2: Results on synthetic data generated from U, B, E, G distributions comparing
E-SOC, T-SOC, R2-SOC at η = 0.9.

eη mη pη%
E-SOC R2-SOC E-SOC R2-SOC E-SOC R2-SOC

U 0.13215 0.04855 0.26090 0.18150 84.64 5.48
B 0.11998 0.06193 0.26080 0.18910 77.77 4.24
E 0.08441 0.05615 0.16890 0.12300 17.36 0.17
G 0.09108 0.05766 0.17560 0.12270 29.93 0.44

6.2.2 Comparison of CBC-SOCP and RCBC2-SOCP

This section presents results comparing the CBC-SOCP formulation (3.7) and its robust

counterpart, RCBC2-SOCP (6.21). Two synthetic dataset templates were constructed

with fixed number of clusters, means and variances. Training and test samples were gen-

erated from these templates 1000 times and in each case, the moments were estimated

using the training data. Since the true moments are known, the 1000 experiments can

be arranged according to the value of V in (6.12) i.e. according to how much the true

and estimated moments differed. The top few experiments where the true moments and

estimated moments differed the maximum are considered and summarized in table 6.3

below. This was done to show that in such cases, where really the moments are erro-

neously estimated, the robust counterpart performs better though its objective value is

higher. The objective value of RCBC2-SOCP is higher because the constraints are more

tighter. One can also observe from the table that as 1− δ value decreases, the objective

values of RCBC2-SOCP and CBC-SOCP become closer, which is expected.

6.3 Summary

Learning algorithms which use the estimated means and variances are prone to infeasibil-

ity i.e., the portion of misclassified data points may be larger than the required one, and

the chance of this happening can be as high as 50%. The robust classification scheme,

which uses ellipsoidal confidence sets centered around the estimated mean and variance,

indeed succeed to achieve feasibility with high fidelity. The joint confidence set performs
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Table 6.3: Results on synthetic datasets, comparing the performance of CBC-SOCP and
RCBC2-SOCP.

η 1 − δ CBC-SOCP RCBC2-SOCP
Acc.(%) Obj. Acc.(%) Obj.

0.9 0.9 98.39 0.918 98.39 2.733
0.9 0.5 98.15 0.938 98.21 1.652
0.9 0.1 98.26 0.977 98.28 1.274
0.7 0.9 97.99 0.298 98.21 0.438

DS-1 0.7 0.5 97.97 0.309 98.14 0.382
0.7 0.1 98.18 0.279 98.27 0.307
0.52 0.9 98.00 0.180 98.16 0.231
0.52 0.5 98.03 0.191 98.12 0.223
0.52 0.1 97.90 0.189 97.92 0.204

0.9 0.9 98.47 0.534 98.81 0.850
0.9 0.5 98.65 0.646 98.85 0.888
0.9 0.1 98.67 0.646 98.77 0.752
0.7 0.9 98.28 0.263 98.67 0.350

DS-2 0.7 0.5 98.01 0.237 98.29 0.278
0.7 0.1 98.40 0.268 98.52 0.291
0.52 0.9 98.06 0.180 98.47 0.227
0.52 0.5 97.85 0.172 98.17 0.196
0.52 0.1 98.03 0.177 98.18 0.189
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better than the one built using individual confidence sets for mean and variance, and

hence expected to give better values of the objective function. We also note that for

large enough datasets, good results are obtained by the robust classifiers, even when the

underlying distribution is not Normal.

In this thesis, bounds on the misclassification probability for the case of non-normal

distributions are based on the Chebyshev’s inequality. Better bounds may be used in

the future, which are based on partial information of the underlying distribution (see for

e.g. [6]). This will result in less conservative classification schemes, but perhaps at the

cost of less tractable optimization problems.



Chapter 7

Conclusions

Abstract

In this final chapter we summarize the main contributions and discuss related issues, open problems and

possible directions for future work.

This thesis presented ideas to leverage existing learning algorithms using chance-

constrained programs. Traditionally, chance-constraint approaches were employed for

handling uncertainty in training data. A key idea presented in the thesis was to employ

chance-constraints for developing scalable learning formulations. It was shown that CCP

based approaches lead to accurate, fast, as well as robust, learning algorithms. The pro-

posed CCP based formulations give insights into important quantities like generalization

error and also are tractable. Using second order moment information, the CCPs were

posed as SOCPs, which are well studied convex optimization problems. It was shown

that the duals turn out to be geometric optimization problems involving ellipsoids and

spheres. The thesis also presented simple iterative solvers which further increase scalabil-

ity of the large-scale classification and OR formulations. The methodology for handling

moment estimation errors was also discussed.

The problem of classification with specified error rates was solved by employing

chance-constraints for each class which ensure that the actual false-negative and false-

positive rates do not exceed the specified limits. Using second order moments of class

79
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conditional densities, the resulting CCP was posed as an SOCP. An efficient algorithm to

solve the dual SOCP, which is the problem of minimizing distance between ellipsoids, was

also presented. The formulation when extended to feature spaces also yields an SOCP.

Important problems like medical diagnosis, fault detection and other classification prob-

lems where preferential bias towards a particular class is desired, can be efficiently solved

with the novel formulation. The formulation achieves generalization comparable to that

with existing biased classification methods and additionally guarantees that the gener-

alization error is less than the specified limit.

Employing chance-constraints for clusters in training data, scalable maximum margin

formulations for classification and OR were developed. Using second order moments of

clusters, the CCPs were posed as SOCPs involving one cone constraint and one linear

constraint per cluster. Since the SOCPs involve substantially smaller number of vari-

ables and constraints than the corresponding baseline formulations, the training times

are comparable to those for the state-of-the-art solvers, even when generic solvers are

employed to solve the SOCPs. The scalability of the proposed training schemes can

further be improved by employing novel projected co-ordinate descent based algorithms

for solving the SOCPs. The speed-up achieved with such solvers is shown to be as

high as 10000 times when compared to the state-of-the-art. Thus the thesis also throws

light on the importance of solving some special cases of SOCP, like SOCPs with a sin-

gle cone constraint, more efficiently. The scalable classification and OR formulations

were extended to feature spaces using the kernel trick. It was shown that the training

times grow linearly with the training set size even though the formulations work in fea-

ture spaces. Large-scale classification problems like intrusion detection, spam filtering,

web-page classification and large ranking problems like focused crawling, personalized

searches, information retrieval can be efficiently solved with the scalable learning algo-

rithms.

The thesis also throws light on the issue of making the learning formulations robust

to estimation errors. Experiments were detailed showing that in as high as 50% cases

the constraints can actually be violated if estimate moments are employed instead of
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the true moments. Using joint confidence sets for moments a robust, non-conservative

and tractable formulation for the large-scale classification problem was derived. It was

shown that constraints in the robust formulation imply feasibility even when estimated

moments are erroneous.

In this thesis the Chebyshev-Cantelli inequality, which is based on second order mo-

ment information, was exploited in order to pose the CCPs as convex optimization prob-

lems. However Chebyshev’s inequality models the worst-case behaviour — it is valid

for all distributions having the specified moments. Therefore alternate concentration

inequalities which are less conservative need to be explored. Also in cases where the

second order moment information is not available, for e.g., interval data, or in cases

where the second order moments are hard to estimate, for e.g., micro-array data where

low samples of high dimensional vectors are available, the Chebyshev’s inequality cannot

be employed. The work by Ben-Tal and Nemirovski [6] is a good manuscript which dis-

cusses such situations. However the question whether such inequalities lead to tractable

algorithms needs to be answered. Thus an important direction of future research is to

explore various ways of modeling the chance-constraints leading to non-conservative and

tractable formulations.

The dual of biased classification formulation (2.4) turns out to be the problem of

minimizing distance between ellipsoids and that of the scalable classification formulation

(3.7) is minimizing distance between convex hulls of spheres. It is easy to see that such

geometric problems involving spheres and ellipsoids arise due to the cone-constraints.

This throws light on the importance of developing scalable algorithms for solving geo-

metric optimization problems involving spheres and ellipsoids. Efficient algorithms for

such problems would further enhance the SOCP-based learning algorithms.

As shown in the experimental results (section 6.2), the formulations need to be robust

from moment estimation errors. Two such robust variants were presented in the thesis

and it was shown that the variant which employs the joint confidence set is robust and

less conservative. Another important direction of future work is to derive confidence sets

which are non-conservative and also lead to tractable learning algorithms.



Appendix A

Casting Chance-Constraint as

Cone-Constraint

This section presents the proof of theorem 2.1. To this end consider the Chebyshev-

Cantelli inequality [36]:

Theorem A.1. Let Z be a random vector and (µ, σ2) its second order moments.

Then for any t > 0,

Prob(Z − µ ≥ t) ≤ σ2

σ2 + t2

Now let X be an n-dimensional random variable with moments (µ, Σ). Applying the-

orem A.1 to the random variable −c⊤X, c ∈ R
n, which has moments

(

−c⊤µ, c⊤Σc
)

and with t = c⊤µ − d, we get

Prob(−c⊤X ≥ −d) ≤ c⊤Σc

c⊤Σc + (c⊤µ − d)2
(A.1)

As per theorem 2.1, we need to ensure Prob(c⊤X ≥ d) ≥ e. In other words, we need to

ensure Prob(−c⊤X ≥ −d) ≤ 1 − e. Using (A.1), it is easy to see that this constraint is

ensured if:
c⊤Σc

c⊤Σc + (c⊤µ − d)2
≤ 1 − e

Re-arranging terms in the above inequality gives (2.2).
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Now if X is multivariate normal and Φ is the distribution function of univariate

normal with 0 mean and unit variance, then

Prob(c⊤X ≥ d) = Φ(
c⊤µ − d√

c⊤Σc
) ≥ e

leading to the inequality c⊤µ − d ≥ Φ−1(e)
√

c⊤Σc. This completes the proof.



Appendix B

Fast Solver for Scalable

Classification Formulation

This section derives fast algorithm for solving the chance-constraint based scalable clas-

sification formulation (3.7). We begin by re-writing the formulation in the following

equivalent form [46]:

min
w,b,ξj

∑k

j=1 ξj

s.t. yj(w
⊤µj − b) ≥ 1 − ξj + κ σjW, j = 1, . . . , k

W ≥ ‖w‖2, ξj ≥ 0, j = 1, . . . , k (B.1)

The parameters C in (3.7) and W in (B.1) are related (see section 4.1.1 a for discussion).

Using the arguments presented in section 4.3, the formulation (B.1) can be extended to

feature spaces:

min
w,b,ξj

∑k

j=1 ξj

s.t. yj(w
⊤φ(µj) − b) ≥ 1 − ξj + rjW, j = 1, . . . , k

W ≥ ‖w‖2, ξj ≥ 0, j = 1, . . . , k
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where rj =
√

2
(

1 − exp
{

−ζ (κσj)
2}) and ζ is the Gaussian kernel parameter. The dual

of the above formulation can be written as:

min
α

W
√

α⊤Qα − d⊤α

s.t. 0 ≤ α ≤ 1,y⊤α = 0 (B.2)

where α is a vector of k Lagrange multipliers (one for each inequality in (B.1)), Q is

the matrix whose (i, j)th element is yiyjK(i, j) (K is the kernel function), d is the vector

containing entries 1 + κσjW and y denotes the vector containing the cluster labels yj.

The decision function f(x) = w⊤x − b can be written in the following form:

f(x) = g(x) − b, g(x) =
W

√

α⊤Qα
Q⊤

x
α (B.3)

where Qx represents the vector of dot products φ(x)⊤φ(µj). Note that both the dual

(B.2) and f(x) involve only dot products of the means of clusters. Hence classification

can be done in any feature space using the kernel trick. The necessary and sufficient

KKT conditions can be summarized as follows:

αj = 0, yj = 1 g(µj) − 1 − rjW ≥ b

αj = 0, yj = −1 g(µj) + 1 + rjW ≤ b

0 < αj < 1, yj = 1 g(µj) − 1 − rjW = b

0 < αj < 1, yj = −1 g(µj) + 1 + rjW = b

αj = 1, yj = 1 g(µj) − 1 − rjW ≤ b

αj = 1, yj = −1 g(µj) + 1 + rjW ≥ b

(B.4)

Using these conditions, one can easy compute blow, bup, which are the greatest lower

bound and the least upper bound on b. The proposed projected co-ordinate descent

based algorithm starts with some set of feasible αj. At every iteration blow, bup are
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calculated. If blow ≤ bup, then the KKT conditions are satisfied and hence the algorithm

terminates. Else the maximum KKT violating pair, (l,m) is chosen and the values of

αl, αm are updated such that the updation results in maximum decrease of the objective

function: if yl = ym then both αl, αm need to be incremented by ∆α else αl is incremented

by ∆α and αm is incremented by −∆α in order to satisfy y⊤α = 0. The constraints

0 ≤ α ≤ 1 give bounds on ∆α i.e., ∃ lb, ub ∋ lb ≤ ∆α ≤ ub. As mentioned earlier, ∆α

is chosen such that we get maximum decrease in objective function. This can be written

as the following 1-d minimization problem:

min
∆α

√

a(∆α)2 + 2b(∆α) + c − e∆α

s.t. lb ≤ ∆α ≤ ub (B.5)

where a = W 2(Q(l, l) + 2sQ(l,m) + Q(m,m)), b = W 2α⊤(Ql + sQm), c = W 2α⊤Qα

and e = dl + sdm. s = 1 if yl = ym and s = −1 otherwise. As shown in section 5.1,

the minimization problem has an analytic solution. Once the optimum value of ∆α is

calculated, α is updated accordingly and the procedure is repeated in the next iteration.

The iterative algorithm can be summarized as follows:

1. Initialize α with some feasible values.

2. Calculate blow, bup. If KKT conditions are satisfied i.e., blow ≤ bup then terminate,
else continue.

3. Identify the maximum KKT violating pair (l,m).

4. Solve (B.5) to get the optimal value of ∆α. Update Lagrange multipliers of the
maximum KKT violating pair and repeat step 2.



Appendix C

Dual of Large-Scale OR Formulation

This section derives dual of the primal formulation (4.4). Using the dual norm ‖w‖2 =

sup‖u‖2≤1 w⊤u, the Lagrangian function can be written as:

L =
r
∑

i=1

mi
∑

j=1

{

ξj
i + ξ∗ji + αj

iC
j
i

+ α∗j
i C∗j

i − βj
i ξ

j
i − β∗j

i ξ∗ji

}

−
r
∑

i=1

γi(bi − bi−1) + ρ(w⊤u − W ) (C.1)

where the Lagrange multipliers satisfy αj
i ≥ 0, α∗j

i ≥ 0, βj
i ≥ 0, β∗j

i ≥ 0, γi ≥ 0, ρ ≥
0, ‖u‖2 ≤ 1 and Cj

i = w⊤φ(µj
i )− bi +1− ξj

i +rj
i W,C∗j

i = 1− ξ∗ji +rj
i W + bi−1−w⊤φ(µj

i ).

The KKT conditions for optimality can be summarized as follows:

∇wL = 0 ⇒ ρu =
r
∑

i=1

mi
∑

j=1

(

α∗j
i − αj

i

)

φ(µj
i )

∂L
∂bi:1≤i≤r−1

= 0 ⇒
mi+1
∑

j=1

α∗j
i+1 + γi+1 =

mi
∑

j=1

αj
i + γi

∂L
∂ξj

i

= 0,
∂L
∂ξ∗ji

= 0 ⇒ αj
i + βj

i = 1, α∗j
i + β∗j

i = 1

87
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Complimentary Slackness ⇒ αj
iC

j
i = 0, α∗j

i C∗j
i = 0

⇒ βj
i ξ

j
i = 0, β∗j

i ξ∗ji = 0

⇒ γi(bi − bi−1), ρ(w⊤u − W ) (C.2)

Since b0 = −∞, br = ∞, the complimentary slackness conditions immediately show that

at optimality α∗j
1 = αj

r = γ1 = γr = 0 ∀ j. With these boundary conditions, one can

easily eliminate the γi multipliers from the KKT conditions using ∂L
∂bi

= 0, giving the

following conditions: s∗i ≤ si, ∀ i = 1, . . . , r − 2, s∗r−1 = sr−1 where si =
∑i

k=1

∑mk

j=1 αk
i

and s∗i =
∑i+1

k=2

∑mk

j=1 α∗k
i . Now let us denote the column vector containing the αj

i by α

and that containing α∗j
i by α∗. We once again note that the entries corresponding to

i = 1 are zero in α∗ and those corresponding to i = r are zero in α. Also let us denote

the vector containing 1 + rj
i W with d and the matrix containing the dot products of

centers φ(µj
i ) with each other as K. Using this notation, one can write the dual of the

clustering based OR formulation as given in (4.5).
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