
Master’s Dissertation on

Communication Efficient Distributed
Optimization for Regularized Risk

Minimization

Submitted in partial fulfillment of the requirements for the
degree of

Masters of Technology

by

Laxman Vemula
Roll No: 123059011

under the guidance of

Prof. J. Saketha Nath

Department of Computer Science and Engineering
Indian Institute of Technology, Bombay

July 2014

Acknowledgement

I would like to express my sincere gratitude to my guide Prof. J. Saketha
Nath, for his continuous guidance and support throughout the project. He
played a key role in keeping me on the right track and helped me whenever
I was clueless on what to do next. I would like to thank Prof. Soumen
Chakrabarti, for giving me access to the cluster to run my experiments. I
am thankful to Ms. Uma Savant, for helping me to set-up the cluster for
experiments and for being there whenever there is an issue with the cluster.
I am thankful to my friends and family and all the people who supported me
to complete this project work.

Abstract

Distributed learning is now-a-days a widely used framework for training ma-
chine learning algorithms on a very large-scale. Distributed learning suffers
high communication delay for high-dimensional datasets because very large
parameter vectors are to be shared. In this project, we consider distributed
learning for the cases where the cost of communication between machines
is very high. We propose a formulation that solves the distributed learn-
ing problems approximately with low communication cost. We started by
introducing partial consensus in Alternating Direction Method of Multipli-
ers (ADMM) which incurs low communication cost but gives approximate
solutions. We improved it further by generalizing it to Primal Block Coor-
dinate Descent (ADMM-BCD). We have evaluated our algorithms on high-
dimensional datasets and performed a comparison with other existing meth-
ods like CoCoA[1], ADMM-Dual Coordinate Ascent (DCA)[2]. The empiri-
cal evaluations show that ADMM-BCD performs well in initial iterations but
overall ADMM with DCA as local solver is the best method for optimization
on high-dimensional datasets.

Contents

1 Introduction 1
1.0.1 Organization of Report . 2

2 Background 3
2.1 Linear Binary Classification . 3
2.2 Regularized Risk Minimization . 4
2.3 Distributed Learning . 4

2.3.1 Formulation . 4

3 Related Work 6
3.1 Existing Methods . 6

3.1.1 One-shot Averaging . 6
3.1.2 Map Reduce-based Optimization 7

3.1.2.1 Gradient Descent 7
3.1.3 All Reduce-based Optimization 8
3.1.4 Alternating Direction Method of Multipliers 9

3.1.4.1 Consensus Optimization using ADMM 9
3.1.5 ADMM using Dual Coordinate Ascent 11

3.1.5.1 Hot Start . 13
3.1.6 CoCoA: Communication Efficient Distributed Dual Coordi-

nate Ascent . 13
3.2 Motivation . 15
3.3 Problem Statement . 15

4 Proposed Method 16
4.1 Partial Consensus . 16

4.1.1 Implementation . 17
4.1.1.1 Solving the sub-problem 17

4.1.2 Effect of free parameters . 18
4.1.2.1 Analysis . 18
4.1.2.2 What if the free parameters are fixed? 19

4.2 Primal Block Coordinate Descent using ADMM (ADMM-BCD) . . 20

i

5 Experiments 25
5.1 Framework . 25
5.2 Datasets . 25
5.3 Methods evaluated . 25

5.3.1 ADMM . 26
5.3.1.1 HotStart . 26

5.3.2 Primal Block Coordinate Descent using ADMM (ADMM-
BCD) . 26

5.3.3 CoCoA . 26
5.4 Results . 27

5.4.1 Metrics used for comparison 27
5.4.2 Analysis . 27

5.4.2.1 Effect of the Block Size 27
5.4.2.2 Suboptimality Vs Time 29
5.4.2.3 Test Accuracy Vs Time 31
5.4.2.4 F1-Score Vs Time 33
5.4.2.5 Suboptimality Vs Communication Rounds 35

6 Conclusion 37

ii

List of Figures

1 Effect of free parameters . 20

3 Effect of Block-Size in ADMM-BCD 28
5 Suboptimality Vs. Time . 29
7 Test Accuracy Vs. Time . 31
9 F1-Score Vs. Time . 33
11 Suboptimality Vs. Communication Rounds 35

iii

List of Tables

5.1 Datasets used for empirical evaluation 26

iv

Chapter 1

Introduction

Numerical optimization plays a key role in training various Machine Learning
algorithms. With increasing volume of the training data, both in terms of
no. of samples and no. of features, learning became a challenging task.

Various distributed learning methodologies were employed to tackle this
problem efficiently. These methods generally split the training data across
multiple machines. A naive way is to solve each of the sub-problems indepen-
dently and get the average of the parameters. There are methods which solve
the original problem exactly by achieving consensus on the parameters across
the machines. In these methods, each machine iteratively communicates with
other machines until consensus is achieved.

For most of the iterative distributed methods, communication cost per
iteration is O(d), where d is the feature dimension of the training data. This
cost becomes an overhead when d is very large. This incurs a significant delay
in communication where the machines spend more time for communication
rather than computation.

In this project, we considered distributed learning through consensus-
based optimization. In this setting, a set of machines in a network, collabo-
ratively minimize their corresponding objective while having a consensus on
the parameters across the machines. We attempt to devise formulations for
consensus-based learning that gives approximate solutions with significantly
low communication cost. We started with basic idea of Partial Consensus Op-
timization and improved it upon by proposing the Primal Block Coordinate
Descent method using ADMM. We evaluated our algorithms by performing
experiments on high-dimensional real world datasets. Also, we have per-
formed a comparative study on various distributed optimization algorithms
to see which performs best.

1

1.0.1 Organization of Report

The report is organized as follows. In Chapter 2, we discuss the basic concepts
relevant to the problems considered in the project. In Chapter 3, we discuss
the existing approaches for the distributed consensus learning problem. We
present our methods in Chapter 4 and the empirical results are discussed in
Chapter 5.

2

Chapter 2

Background

2.1 Linear Binary Classification

Binary classification is defined as task of separating given set of points into
two classes based on various attributes possessed by the points. It is called
linear binary classification if the separation is done by using simple hyper-
plane.

Formally, for a given point xi, we assign a label yi ∈ {−1,+1}, using the
hyperplane defined by wTx+ b = 0, as follows:

yi = sign(wTxi + b)

Here the hyperplane (w, b) is called as the classifier or the classification
model.

Training

Given a set of points with associated labels (also called training set) as

{(xi, yi)|xi ∈ Rn, yi ∈ {−1,+1}, i = 1, 2, . . .m}

the process of calculating a classification model (w, b) is called the training.
There are various types of classifiers named based on how they are trained.
In this project we consider training linear binary classifier through statistical
learning process called empirical risk minimization. This process builds a
model that minimizes the no. of mis-classified points in the training dataset.
This can be achieved by solving a convex optimization problem which is
discussed in the next section.

3

2.2 Regularized Risk Minimization

Regularized risk minimization is a generic formulation used to learn most of
the machine learning models. This formulation builds a model that minimizes
a given loss function over the training dataset while keeping the model as
simple as possible.

Let D = {(xi, yi)|xi ∈ Rn, yi ∈ {−1,+1}, i = 1, 2, . . .m} be a given set of
m labelled instances, each instance having n features. The regularized risk
minimization for linear binary classification is defined as follows:

min
w∈Rn

1

2
||w||2 + C

m∑
i=1

l(wTxi, yi) (2.1)

where l is the loss function which incurs a penalty when an instance is
misclassified. w is the parameter vector that defines the linear model. C
is the hyper-parameter that controls the trade-off between the loss and the
model complexity.

We get the Support Vector Machine (SVM) formulation if we use hinge
loss or square hinge loss. We get the logistic regression formulation if we use
logistic loss.

2.3 Distributed Learning

Many technological fields like finance, biology and trading etc, are now-a-
days generating data in enormous amounts. It has become essential to do
data analysis through statistical processes on very large datasets.

Due to emerging distributed file systems like Hadoop[3] and increasing
sizes of training data, distributed learning methods are explored recently.
These methods take advantage of the data locality in distributed file system
where single dataset is partitioned across many machines.

2.3.1 Formulation

Under the distributed setting, the formulation 2.1 can be redefined as follows:

min
w1,w2,...,wk∈Rn

1

2k

k∑
i=1

||wi||2 + C

k∑
i=1

mi∑
j=1

l(wTi xij , yij)

s.t. wi = z,∀i = 1, 2, . . . , k

z ∈ Rn

(2.2)

4

Where k is the number of machines in the distributed system and mi

is the number of instances in each machine. wi corresponds to the model
parameters for ith node. The equality constraint on the model parameters
across the nodes makes this formulation equivalent to 2.1.

In the next chapter, we discuss various methods used to solve this prob-
lem.

5

Chapter 3

Related Work

In this chapter, we discuss the existing methods from the literature which
are most suitable to solve the problem 2.1. Then the key challenges in these
methods are highlighted to motivate our approach.

3.1 Existing Methods

Here we focused on the synchronous distributed learning methods, where the
optimization is operated by a master node by issuing commands to worker
nodes with necessary parameters and collecting the results at each iteration.
There exist asynchronous methods, in which all the machines communicate
with neighbours asynchronously. We did not consider these methods because
they are not suitable for the big data platforms like Hadoop.

3.1.1 One-shot Averaging

One-shot averaging is a naive and straight-forward method that approxi-
mately optimizes the original objective. In this method, all the nodes locally
solve the sub-problem and the end results are averaged to get the final model
parameters. This method requires only one time communication of the pa-
rameters.

For the Regularized Risk Minimization problem, we solve the following
optimization on each of the nodes locally,

wi = argmin
wi

1

2k
||wi||2 + C

mi∑
j=1

l(wTi xij , yij) ∀i = 1, 2, . . . , k (3.1)

6

and compute the average of the parameters to get the result,

w̄ =
1

k

k∑
i=1

wi

Though this method gives a good approximation when no. of nodes is
small, it tends to perform poorly as the no. of nodes increases. Also when
the data distribution is skewed among the nodes, this approach gives bad
results. For example, consider a case of two nodes where all the positive
class instances are in one node and the negative class instances are in the
other node. We can not guarantee that the averaged result in close to the
optimal. This limitation makes it necessary to perform more iterations by
collecting information about all other nodes.

3.1.2 Map Reduce-based Optimization

Map-Reduce is the functional abstraction provided by distributed file sys-
tems like Hadoop. This model is inspired by two key abstractions used in
functional programming languages namely, Map and Reduce. In the map-
step, we apply some function on all the individual nodes. In reduce-step, the
results are collected and combined at the master node.

The map-reduce paradigm is best suited for gradient descent based meth-
ods.

3.1.2.1 Gradient Descent

Gradient descent is an iterative algorithm used to minimize convex functions.
In 2.1, if the loss function is convex and differentiable, the overall formulation
becomes convex and differentiable and we can use gradient descent method
to minimize the objective.

To simplify the notation, lets define the cumulative loss corresponding to
ith node as follows,

fi(w) =

mi∑
j=1

l(wTxij , yij) (3.2)

Then the gradient of the above function can be written as,

∇fi(w) =

mi∑
j=1

l′(wTxij , yij)xij

7

Where l is a differentiable convex loss function (e.g., Square Hinge loss).
The gradient of the overall objective becomes,

∇F (w) = w + C

k∑
i=1

∇fi(w)

The gradient vector represents the direction of maximum increase at a
particular point. The gradient descent method iteratively updates the pa-
rameter vector w in the negative direction of gradient as follows,

wt+1 ← wt − λ∇F (wt)

Where λ is called the step size or learning rate, which is used to specify
the length of the step to be taken in negative gradient direction.

In distributed setting, it can be observed that the quantity ∇F (w) de-
composes over the nodes in the cluster. Hence, this computation is done in
parallel by using one map-reduce iteration. In the map-step, the gradient is
computed across all the nodes locally, and the results are collected and added
up in the reduce-step at the master node. Here, the optimization happens
only in the master node, but computation of the required quantities is done
in parallel. Hence, the convergence rate of the algorithm remains same as
that of gradient descent method. But, there is a per-iteration communication
cost of O(n) for worker nodes and O(nk) for the master node where n is the
dimension of the parameter vector and k is the no. of nodes.

3.1.3 All Reduce-based Optimization

All Reduce[4] is similar to the Map Reduce method except that the way the
nodes communicate with each other is different. This method imposes a tree
structure over the nodes in the cluster with master as the root. The nodes
are arranged according to their physical proximity. Now the communication
from a node happens only with its parent node and the child nodes.

The intuition here is to reduce the high communication cost at the master
i.e., O(nk). While collecting the gradient vectors, each node collects the
gradient vectors from it’s children and adds them up along with it’s local
gradient vector and passes the result up to the parent. The master node gets
the cumulative gradient which is used to take the update step. The updated
parameter vector is broadcasted down the tree for the next iteration.

In this method, the per-iteration communication cost at a node is O(nd),
where d is the number of children of the node. This method is particularly
suitable for a very large cluster, in which the no. of nodes is in the order of
thousands.

8

Apart from gradient descent, All Reduce can be used for any method
which requires accumulation of quantities from all the nodes in the cluster.
This method improves the communication cost at the master but it is still
in the order of dimension of the parameter vector.

3.1.4 Alternating Direction Method of Multipliers

Alternating direction method of multipliers[5](ADMM) is a distributed opti-
mization method based on the concepts of dual decomposition and method
of multipliers. This algorithm solves the problems in multiple variables in
which the objective can be split into functions of individual variables with
global constraints on the variables. The problem can be defined as follows:
Let f and g be two convex functions,

min
x,z

f(x) + g(z)

s.t. Ax+Bz = c

Where x ∈ Rn, z ∈ Rm, A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp. The
augmented Lagrangian function for the above problem is defined as follows:

Lρ(x, z,λ) = f(x) + g(z) + λT (Ax+Bz − c) +
ρ

2
||Ax+Bz − c||2 (3.3)

Where ρ is called the penalty parameter and λ is the dual variable. Using
the concepts of dual decomposition and method of multipliers, this function
is minimized using the following update rules:

xt+1 = argmin
x

Lρ(x, z
t,λt)

zt+1 = argmin
x

Lρ(x
t+1, z,λt)

λt+1 = λt + ρ(Ax+Bz − c)

(3.4)

Here, the optimization is performed by minimizing the augmented La-
grangian alternatively w.r.t. the two primal variables x and z. The dual
variable is updated in each iteration after z-variable update. This method
can be easily applied to the consensus optimization problem 2.2.

3.1.4.1 Consensus Optimization using ADMM

The consensus optimization problem for regularized risk minimization 2.2
can be restated as follows:

9

min
w1,w2,...,wk∈Rn

k∑
i=1

gi(wi)

s.t. wi = z,∀i = 1, 2, . . . , k

z ∈ Rn

(3.5)

Where gi(wi) = 1
2k
||wi||2 +C

∑mi

j=1 l(w
T
i xij , yij), corresponds to the local

objective at ith node. Here z is the global variable to ensure equality among
the parameter vectors across all the nodes.

In lines of the ADMM formulation stated above, we can define the aug-
mented Lagrangian function for 3.5 as follows. For convenience, we used
scaled form of ADMM formulation as discussed in [5].

Lρ(w1,w2, . . . ,wk, z,λ1,λ2, . . . ,λk) =
k∑
i=1

gi(wi)+
ρ

2
||wi−z+λi||2 (3.6)

Here λis are the dual variables corresponding to each of the nodes. It is
easy to see that this objective is decomposable w.r.t. wi for a fixed z. The
update rules for the consensus optimization can be written as,

wt+1
i = argmin

wi

gi(wi) +
ρ

2
||wi− zt + λti||2

zt+1 =
1

k

k∑
i=1

(wt+1
i + λti)

λt+1
i = λti +wt+1

i − zt+1

(3.7)

These rules can be further simplified as follows:

Let w̄t = 1
k

∑k
i=1w

t
i and λ̄t = 1

k

∑k
i=1 λ

t
i be the average values of the

primal and dual variables respectively over all the nodes at tth iteration.
Then, from the above rules, we can write

zt+1 = w̄i
t+1 + λ̄t

λ̄t+1 = λ̄t + w̄t+1
i − zt+1

From these two equations we can conclude that λ̄t+1 = 0, that implies
that the dual variables will always have the average value zero. Using this
result in the update rules above, we can eliminate the variable z. The update
rules for the consensus optimization problem are,

10

wt+1
i = argmin

wi

gi(wi) +
ρ

2
||wi− w̄t + λti||2

λt+1
i = λti +wt+1

i − w̄t+1
(3.8)

In each iteration, the wi minimization is performed in parallel at all the
worker nodes. The master collects all the parameter vectors and computes
the average w̄ and is sent back to the worker nodes. The worker nodes update
their respective dual variables before moving on to the next iteration.

The wi minimization can be solved using any convex minimization algo-
rithm like gradient descent. For the case of SVM, we can use efficient dual
methods such as dual coordinate accent methods.

In this algorithm, the per iteration communication cost is O(n) at the
worker nodes and O(nk) at the master node. This is equivalent to gradient
descent but the no. of iterations required for gradient descent is relatively
high when compared to ADMM.

3.1.5 ADMM using Dual Coordinate Ascent

It can be observed from the ADMM updates shown in 3.7 that the local
problem to solve wt+1

i is very much similar to Linear SVM formulation. This
can be efficiently solved in dual by using Dual Coordinate Ascent (DCA).
We use the solver presented in [6], to solve the local problem for the case of
Square Hinge loss SVM formulation.

As discussed in 3.1.4, the admm updates for Square Hinge loss SVM
formulation on i th machine, are as follows.

wt+1
i = argmin

wi

gi(wi) +
ρ

2
||wi− w̄t + λti||2

λt+1
i = λti + (wt+1

i − w̄t+1)
(3.9)

Where gi(wi) = 1
2k
||wi||2 + C

∑mi

j=1 max(1 − yijwTi xij , 0)2, corresponds

to the local objective at ith node.
Now the problem to be solved in each iteration at each node is,

argmin
wi

1

2k
||wi||2 +C

mi∑
j=1

max(1− yijwTi xij , 0)2 +
ρ

2
||wi− w̄t +λti||2 (3.10)

The equivalent dual form for the above objective is,

11

min
α

f(α) =
h

2
αT (QTQ+D)α+ ρh(w̄t− λti)TQα− 1Tα

subject to 0 ≤ αj ≤ ∞, ∀j
(3.11)

Where,

h =
k

1 + ρk

Q is matrix with yijxij as columns

D is diagonal matrix with Dii = 1/2C

The primal and dual variables are related by,

wi = hQα+ ρh(w̄t− λti) (3.12)

Now, the gradient of the above objective w.r.t α is,

∇f = QT (hQα+ ρh(w̄t− λti)) +Dα− 1

Which becomes,

∇f = QTwi +Dα− 1 (3.13)

Gradient w.r.t one coordinate αj is,

∇jf = yjw
T
i xj +Djjαj − 1 (3.14)

Using this result, we can efficiently calculate the gradient w.r.t. one
coordinate if we have the wi consistent with the dual variables at any inter-
mediate stage. This can be maintained by updating wi as soon as any dual
variable gets updated using the following relation.

wt+1
i = wt

i + (αnewj − αoldj)hyjxj (3.15)

Using this relationship, we maintain both, the primal and dual variables
(wi, α) in memory, consistent with each other and perform coordinate ascent
w.r.t αi chosen at random. The algorithm is presented in Algorithm 1 which
is very similar to that given in [6] with few additional terms added due to
the penalty term induced by ADMM method.

12

Algorithm 1 Local Dual Coordinate Descent Solver (LocalDCA)

Input: α, w̄ and λ
Data: Local training data D = {(xi, yi)}mi=1

Initialize α0 = α and w0 = h
∑m

i=1 αiyixi + ρh(w̄− λ)
t = 0
while αt is not optimal do

for i = 1 . . .m do
t = t+ 1
Gi = yiw

Txi +Diiαi − 1

PGi =

{
min(0, Gi) if αi = 0,

Gi Otherwise.

if PGi 6= 0 then
αt+1
i = max(αti −Gi/(hx

T
i xi), 0)

wt+1 = wt + (αt+1
i − αti)hyixi

else
αt+1 = αt

wt+1 = wt

end if
end for

end while
∆α = αt −α0

∆w = wt − w̄
return (∆α,∆w)

3.1.5.1 Hot Start

In the equation 4.19, α is updated while solving the local problem using
Dual Coordinate Ascent and w̄ and λ are updated after getting updates
from other nodes.

So, for each iteration, instead of starting the local solver with α set to
zero, we can use the primal-dual variables (w,α) from previous iteration
and use it as a starting point. This helps to converge faster, especially in the
later iterations of ADMM as the parameters do not change much.

The ADMM algorithm with Hot Start optimization is shown in Algorithm
2.

3.1.6 CoCoA: Communication Efficient Distributed Dual
Coordinate Ascent

This method has been proposed by Jaggi et al. [1]. This is a stochastic

13

Algorithm 2 ADMM using Dual Coordinate Ascent

Data: Training data D = {(xi, yi)}mi=1 split across k machines
Initialize α0

i = 0, w̄0 = 0, w0
i = 0 and λi = 0,∀i = 1 . . . k

t = 0
while w̄t is not optimal do

for all i = 1 . . . k do in parallel
(∆αi,∆wi) = LocalDCA(αti, w̄

t,λti)
αt+1
i = αi + ∆αi

wt+1
i = w̄t + ∆wi

end for
w̄t+1 = w̄t + 1

k

∑k
i=1 ∆wi /* Collect using All-Reduce */

//Broadcast w̄t to all nodes
λt+1
i = λti + wt+1

i − w̄t+1 ∀i = 1 . . . k /* Update dual variables in
parallel */
t = t+ 1

end while
return w̄t

Algorithm 3 CoCoA

Input: T ≥ 1 and Scaling parameter βk (Default βk = 1)
Data: Training data D = {(xi, yi)}mi=1 split across k machines
Initialize α0

i = 0, w0 = 0 ∀i = 1 . . . k
for t = 1 . . . T do

for all i = 1 . . . k do in parallel
(∆αi,∆wi) = LocalDCA(αti,w

t)
αt+1
i = αi + βk

k
∆αi

end for
wt+1 = wt + βk

k

∑k
i=1 ∆wi /* Collect using All-Reduce */

t = t+ 1
end for
return wt

distributed method and uses the Dual Coordinate Ascent method shown
in Algorithm 1 as the local solver in each node. The difference between
this method and other methods is, the dual variables α maintained in this
algorithm correspond to the global objective rather than the local objective.
After each iteration, The primal parameter vectors are averaged and updated
to each node. The dual variables also updated so as to agree with the primal
variables.

This primal-dual relationship is maintained throughout the process. The

14

authors claim that the method is communication efficient. We have included
this method here to evaluate this against our methods.

The Algorithm 3 contains the algorithm used by CoCoA solver.

3.2 Motivation

In all the distributed learning methods, the per-iteration communication cost
is directly proportional to the feature dimension of the input dataset. When
the feature dimension is very large, the communication and accumulation of
the parameter vectors incur significant delay. In this scenario, the distributed
system spends more time in communicating while the processors being idle.
It is hence desirable to reduce the amount of data shared among the nodes
in the cluster to speed up the learning process.

This issue motivated us to consider the distributed learning for the cases
where the communication cost is high. Here the intuition is that it might
not be necessary to share some of the parameters which do not make much
difference to the overall objective. Hence, the key is to identify and share only
the most important information that is required to get close to the optimal
solution of the original problem.

3.3 Problem Statement

The goal of this project is to devise formulations and algorithms for dis-
tributed optimization problems that perform way better than one-shot av-
eraging and give near-accurate solutions, with low communication overhead.
In other words,

Objective:

• Speed up the distributed learning process by reducing the per-iteration
communication cost.

• Provide the theoretical guarantees with necessary assumptions for the
proposed approach.

• Evaluate the proposed algorithms by performing empirical analysis on
real world datasets and establish a trade-off between the sub optimality
and the improvement in communication cost.

15

Chapter 4

Proposed Method

4.1 Partial Consensus

Motivated by the observations discussed in the previous chapter, we at-
tempted to solve the distributed learning problem 2.2, with a modification to
the global constraints. It is easy to verify that in 2.2 the no. of parameters
shared across nodes is equal to the number of constraints. The intuition here
is that depending upon the distribution of data among the nodes, some of the
parameters may agree with each other even without the constraint. Here we
reduce the no. of global constraints and there by reducing the communication
cost.

The formulation for distributed learning using partial consensus can be
formally defined as follows:

min
w1,w2,...,wk∈Rn

1

2k

k∑
i=1

||wi||2 + C
k∑
i=1

mi∑
j=1

l(wTi xij , yij)

s.t. Awi = z, ∀i = 1, 2, . . . , k

z ∈ Rr

A ∈ Rr×n, r ≤ n

(4.1)

Here instead of imposing equality constraint on all the parameters across
the nodes, we impose equality constraint on r linear combinations on subsets
of parameters using the matrix A. This will ensure that the communication
cost is O(r). It is desirable to set r << n to get a significant improvement
in communication. If A = In×n then this formulation is equivalent to 2.2.

Here it is obvious that this formulation will not solve the original problem
exactly unless r = n. But with the right choice of the matrix A we can come
up with a near-accurate solution.

16

After solving the problem, the parameters across all the nodes may not be
equal. So, the average of final parameter vectors is considered as the result.

4.1.1 Implementation

The formulation 4.1 can be efficiently solved using ADMM as discussed in
Section. 3.1.4. The augmented Lagrangian function for the formulation 4.1
can be written as follows:

Lρ(w1,w2, . . . ,wk, z,λ1,λ2, . . . ,λk) =
k∑
i=1

gi(wi) +
ρ

2
||Awi− z + λi||2

(4.2)
Where gi(wi) = 1

2k
||wi||2 + C

∑mi

j=1 l(w
T
i xij , yij) and λi ∈ Rr.

Using the similar argument presented in 3.1.4, the following update rules
for the distribution optimization are derived.

wt+1
i = argmin

wi

gi(wi) +
ρ

2
||Awi− zt + λti||2

λt+1
i = λti +Awt+1

i − zt+1
(4.3)

Where zt = 1
k

∑k
i=1Aw

t
i, is the average of the parameters at tth iteration

left multiplied by the matrix A. The first rule above is local to each node
and can be performed in parallel.

4.1.1.1 Solving the sub-problem

The sub-problem to be solved at each node in each iteration is,

wt+1
i = argmin

wi

gi(wi) +
ρ

2
||Awi− zt + λti||2 (4.4)

This objective is convex in wi and can be solved using any convex min-
imization algorithm. For our implementation, we used gradient descent
method.

Similar to the argument presented in Section. 3.1.2.1, the gradient of the
above function is,

∇F (wt
i) = g′i(wi) + ρAT (Awi− zt + λti) (4.5)

we can write the equation for update step for parameter wi as follows,

17

wt+1
i ← wt

i − s∇F (wt
i)

Where s is the step-size which is chosen using the Barzilai and Borwein
rule [7]

4.1.2 Effect of free parameters

In the partial consensus problem defined above, the parameters that do not
participate in the equality constraint are called unconstrained parameters.
In this problem, after the optimization is performed, these unconstrained
parameters take different values in different nodes. So, we take an average
to get the final parameter vector. In the following section we discuss the
theoretical bounds that we were able to achieve.

4.1.2.1 Analysis

Lets analyse this scenario by assuming k machines having the input dataset
split across them. Let Ri be the objective due to ith node.

Let w∗ be the minimizer of the global objective and r∗ be the optimum
objective value i.e.,

w∗ = argmin
w

k∑
i=1

Ri(w); r∗ =
k∑
i=1

Ri(w
∗) (4.6)

Let w∗i be the minimizer of the local objective at ith node. Let r0 be the
sum of the local optimum objectives.

w∗i = argmin
w

Ri(w); r0 =
k∑
i=1

Ri(w
∗
i) (4.7)

Let w̄ be one-shot averaging solution and r̄ be the global objective due
to one-shot average parameters.

w̄ =
1

k

k∑
i=1

w∗i ; r̄ =
k∑
i=1

Ri(w̄) (4.8)

Clearly by definition, the following holds,

r0 ≤ r∗ ≤ r̄ (4.9)

Let w̄p be the partial consensus solution and let rp be the corresponding
global objective and r1 =

∑k
i=1Ri(w

p
i) is sum of local objectives under

partial consensus

18

Assuming each Ri be α-strongly convex and β-smooth, the difference
in the objective due to averaging the parameters can be upper and lower
bounded by the following inequalities.

α

2

k∑
i=1

‖w∗i − w̄‖2 ≤ (r̄ − r0) ≤ β

2

k∑
i=1

‖w∗i − w̄‖2 (4.10)

α

2

k∑
i=1

‖wpi − w̄
p‖2 ≤ (rp − r1) ≤ β

2

k∑
i=1

‖wpi − w̄
p‖2 (4.11)

In order to ensure that rp < r̄, the following condition needs to be
satisfied.

r1 +
β

2

k∑
i=1

‖wpi − w̄
p‖2 < r0 +

α

2

k∑
i=1

‖w∗i − w̄‖2 (4.12)

In 4.12, the right hand side of the inequality is a constant and the left
hand side varies. It is difficult to ensure that this inequality holds because
in general β ≥ α and it depends on the variance in the parameters. This
motivated us to see if we can fix the free parameters which makes the variance
in the parameters zero after the optimization.

4.1.2.2 What if the free parameters are fixed?

Now consider another vector w =
[
w1 w2

]T
and we fix w2 to the one-shot

parameter average and we optimize the global objective w.r.t w1.

w̃ = argmin
[w1w2]T ;w2=w̄2

k∑
i=1

Ri(w) (4.13)

Now the global objective calculated at w̃ should be better than the ob-
jective due to one-shot average.

k∑
i=1

Ri(w
∗) ≤

k∑
i=1

Ri(w̃) ≤
k∑
i=1

Ri(w̄) (4.14)

Hence, if we fix the free parameters, and perform distributed consensus
on the other parameters, it is guaranteed that we get a solution which is
better than the one-shot average. However, this kind of guarantee cannot be
ensured if we do not fix the free parameters. This behaviour is observed in
experiments also.

19

Figure 1: Effect of free parameters

From the empirical evaluations, we realized that the variance in the un-
constrained parameters increased after the optimization is performed. Hence,
the final average of these unconstrained parameters among the nodes might
not be close to the optimal parameters.

The results of this experiment turned out to be better than the partial
consensus problem. The results for one dataset are shown in the figure 1.
This result motivated us to try Block Coordinate Descent method which is
discussed in next section.

4.2 Primal Block Coordinate Descent using

ADMM (ADMM-BCD)

Based on the analysis from previous section, we implemented this method.
In this method, we select a block of parameters and perform distributed
optimization w.r.t that block while keeping the remaining parameters fixed.
This is repeated for various choices of the blocks in cyclic fashion. This is
analogous to Coordinate Descent but instead of optimizing w.r.t one variable,
we select a set of variables. The communication cost in each iteration will
be equal to the size of the block chosen.

Let w ∈ Rn be the parameter vector and w =
[
wv wc

]T
such that

wv ∈ Rr and wc ∈ Rn−r.

20

Now the optimization problem can be defined as follows:

min
wv

1 ,w
v
2 ,...,w

v
k∈R

n,z∈Rr

k∑
i=1

(
1

2k
||wvi ||2 + C

mi∑
j=1

ξ2
ij)

s.t. yijw
T
i xij ≥ 1− ξij,∀i = 1, 2, . . . , k,∀j = 1, 2, . . . ,mi

wvi = z,∀i = 1, 2, . . . , k

wci = b,∀i = 1, 2, . . . , k

b ∈ Rn−r

(4.15)
Where, z is the global variable which ensures equality among the param-

eters wv
i , across the nodes. The other n − r parameters remain fixed and

equal to the vector b in all the nodes.
This optimization can be solved using ADMM and in the similar lines of

derivation in 3.1.5. The ADMM update rules are as follows.

w
v(t+1)
i = argmin

wv
i

1

2k
||wvi ||2 + C

mi∑
j=1

ξ2
ij +

ρ

2
||wi− zt + λti||2

s.t. yijw
T
i xij ≥ 1− ξij,∀j = 1, 2, . . . ,mi

zt+1 =
1

k

k∑
i=1

w
v(t+1)
i

λt+1
i = λti +w

v(t+1)
i − zt+1

(4.16)

The constraint in the above local problem can be written as,

yijw
vT
i x

v
ij ≥ 1− cij − ξij (4.17)

Where xij =
[
xvij xcij

]T
is split according to the indices of wv

i and
wc
i . cij = yijw

cT
i x

c
ij is the constant throughout the optimization and can be

precomputed for efficiency.
The equivalent dual form for the above objective is,

min
α

f(α) =
h

2
αT (QTQ+D)α+ ρh(zt− λti)TQα+ cTi α− 1Tα

subject to 0 ≤ αj ≤ ∞,∀j
(4.18)

21

Where,

h =
k

1 + ρk

Q is matrix with yijx
v
ij as columns

D is diagonal matrix with Dii = 1/2C

The primal and dual variables are related by,

wvi = hQα+ ρh(zt− λti) (4.19)

Now, the gradient of the above objective w.r.t α is,

∇f = QTwvi +Dα+ ci − 1 (4.20)

Gradient w.r.t one coordinate αj is,

∇jf = yjw
vT
i x

v
j +Djjαj + cij − 1 (4.21)

This result is similar to that of 3.1.5 and we can use Dual Coordinate
Ascent to solve this problem. The Local Solver algorithm for Primal Block
Coordinate Descent is given in Algorithm 4. Here it can be observed that
the optimization happens w.r.t only r parameters and all other parameters
are fixed. The terms involving the fixed parameters are precomputed and
can be reused efficiently.

The distributed algorithm for Primal Block Coordinate descent is given
in Algorithm 5. Here, we start with the one-shot average parameter vector
in each node. At each iteration, we choose a set of parameters and optimize
for equality on those parameter while minimizing the objective function.

This process is repeated multiple times by choosing different blocks in
cyclic fashion. The key advantage of this method is that ADMM requires
less iterations when the no. of constraints is less. Also the communication
delay is also relatively less as only r variables are shared in each iteration.

22

Algorithm 4 Local Dual Coordinate Descent Solver for ADMM-BCD (Lo-
calBCD)

Input: α, z,λ and c
Data: Local training data D = {(xvi , yi)}mi=1

Initialize α0 = α and wv0 = h
∑m

i=1 αiyix
v
i + ρh(z− λ)

t = 0
while αt is not optimal do

for i = 1 . . .m do
t = t+ 1
Gi = yiw

vTxvi +Diiαi + ci − 1

PGi =

{
min(0, Gi) if αi = 0,

Gi Otherwise.

if PGi 6= 0 then
αt+1
i = max(αti −Gi/(hx

vT
i x

v
i), 0)

wv(t+1) = wv(t) + (αt+1
i − αti)hyixvi

else
αt+1 = αt

wv(t+1) = wv(t)

end if
end for

end while
∆α = αt −α0

∆wv = wv(t) − z
return (∆α,∆wv)

23

Algorithm 5 ADMM - Primal Block Coordinate Descent

Data: Training data D = {(xi, yi)}mi=1 split across k machines
Initialize α0

i = 0, w̄0 = w0
i = wos, zt = 0 and λti = 0,∀i = 1 . . . k

for p = 1 . . . T do
/*Choose block of coordinates from w. Let wv be variable part and wc

be the fixed part */

wi =
[
wv
i wc

i

]T
,∀i = 1 . . . k

for all i = 1 . . . k do in parallel
/* Precompute the constant part ci in parallel */
cij = yijw

cT
i x

c
ij , ∀j = 1 . . .mi

end for
t = 0
while zt is not optimal do

for all i = 1 . . . k do in parallel
(∆αi,∆w

v
i) = LocalBCD(αti, z

t,λti, ci)
αt+1
i = αi + ∆αi

w
v(t+1)
i = zt + ∆wvi

end for
zt+1 = zt + 1

k

∑k
i=1 ∆wvi /* Collect using All-Reduce */

//Broadcast zt+1 to all nodes

λt+1
i = λti +w

v(t+1)
i − zt+1 ∀i = 1 . . . k /* Update dual variables in

parallel */
t = t+ 1

end while
end for
return wi

24

Chapter 5

Experiments

5.1 Framework

We have performed the empirical evaluation on Apache Spark [8] cluster,
with input dataset stored in Hadoop file system which exists on the same
cluster. The cluster has 23 nodes of which one is used as a master and the
remaining 22 nodes are used as slaves. Each node in the cluster has 16GB
RAM and 8-core 2.0 GHz processor.

The worker processes are launched by driver program at the master using
map-step. By default, Spark doesn’t support storing state at the worker
node after an iteration, but this is required by our algorithm. Hence, for
communicating the parameters and updating the average of parameters, we
have used custom implementation of akka actors, a distributed message-
passing system.

For a better communication throughput, the nodes are arranged in the
form of a tree and All-Reduce is used for aggregating the updates from nodes
and broadcasting the average to the workers.

5.2 Datasets

We have used the following datasets collected from the Libsvm repository
[9]. The details of the datasets are shown in the following table.

5.3 Methods evaluated

We have evaluated the following methods on the above mentioned datasets
by solving L2-Regularized Square Hinge loss SVM.

25

Name #Features #Instances (Train/Test)
url 3,231,961 1,677,291/718,839
kdda 20,216,830 8,407,752/510,302
splice-site 11,725,480 500,000/231,390
news20 1,355,191 11,996/8,000
rcv 47236 677399/20242

Table 5.1: Datasets used for empirical evaluation

5.3.1 ADMM

The ADMM method has been implemented using Dual Coordinate Ascent
(DCA) as the local solver for each worker. This solver is adopted from
LibLinear package.

5.3.1.1 HotStart

This is an improvement to the traditional ADMM method with some runtime
optimizations. Since, the local problem is solved in dual, we can retain both
the primal and dual variables from previous iteration and use them as a
starting point for current iteration. This speeds up the local solver.

5.3.2 Primal Block Coordinate Descent using ADMM
(ADMM-BCD)

This method is an attempt to solve the problem with less communication
cost. Here we solve the distributed optimization w.r.t only few selected
coordinates while keeping others constant. This results in reduction of the
vector length that is shared across nodes in each iteration. This process is
repeated for various blocks of coordinates in cyclic fashion. The choice of
the coordinate/features is based on the variance observed in the parameters
after one-shot training in each node.

5.3.3 CoCoA

This method is proposed by Jaggi et. al.(2014). In this method, the problem
is solved using distributed dual coordinate ascent where the dual variables
maintained in each node correspond to the global problem.

26

5.4 Results

5.4.1 Metrics used for comparison

We have used the following three metrics to evaluate the performance of the
partial consensus algorithm.

Objective value

Objective value is the most natural choice to evaluate optimization algo-
rithms. Here we comparted the ojective value for various choices of r and for
all the four approaches for parameter selection.

Test accuracy

For each of the datasets, we have taken apart a subset of the examples to be
used as a test set. We calculated the test accuracy of the model obtained for
various choices of r and compared it with the test accuracy obtained by the
optimal model.

F1-Score

When data is skewed, the test accuracy is not a reliable metric for evaluation
of the model. F1-Score gives a better picture on how good the model is.

5.4.2 Analysis

5.4.2.1 Effect of the Block Size

For the URL dataset, we evaluated ADMM-BCD for various block sizes.
As shown in the figure, smaller block sizes are better. Another important
observation here is that there is significant improvement in the first round
and not much later.

27

(a) Suboptimality

(b) Test Accuracy

(c) F1-Score

Figure 3: Effect of Block-Size in ADMM-BCD

28

5.4.2.2 Suboptimality Vs Time

In this section, the suboptimality of the model being trained is presented
against the wall clock time. Among the datasets used, three are large datasets
namely URL, Kdda and Splice-Site and the other two are relatively small.

From the plots, it is clear that ADMM-HotStart is the best in terms of
approaching towards the optimal solution. The effect of HotStart is signifi-
cant when the number of instances is high. From the plot for News20 dataset,
it is clear that there is no difference between ADMM and ADMM-HotStart.
This is because News20 has very less no. of instances.

ADMM-BCD performed well on the larger datasets but it is poor when it
comes to the smaller datasets. Overall, CoCoA is slower towards convergence
than ADMM.

(a) URL

(b) Kdda

Figure 5: Suboptimality Vs. Time

29

(c) Splice-Site

(d) News20

(e) RCV

30

5.4.2.3 Test Accuracy Vs Time

The test accuracy achieved by each of the algorithms is observed over time,
the plots for the four datasets can be found below.

It is easy to see that all the algorithms are improving the test accuracy
very quickly in the first few iterations. But, ADMM-HotStart is doing rela-
tively better than others.

The dataset Splice-Site is a skewed dataset with only 0.1% positive in-
stances. So, it is not a good idea to rely on test accuracy to evaluate the
methods for this dataset. F1-Score is a better measure which is presented in
next subsection.

(a) URL

(b) Splice-Site

Figure 7: Test Accuracy Vs. Time

31

(c) Kdda

(d) News20

(e) RCV

32

5.4.2.4 F1-Score Vs Time

F1-Score is a better measure than test accuracy because it handles imbal-
anced datasets well. All the methods have shown a very quick improvement
in F1-Score. Except for Splice-Site, ADMM reported better F1-Score than
other methods. For Splice-Site, CoCoA method reported higher f1-score than
other methods during initial iterations, but later it is converged with other
methods.

(a) URL

(b) Splice-Site

Figure 9: F1-Score Vs. Time

33

(c) Kdda

(d) News20

(e) RCV

34

5.4.2.5 Suboptimality Vs Communication Rounds

Here we analyse the progress of various algorithms w.r.t amount of data
shared across the nodes. It can be observed that ADMM-BCD performs
better than all other algorithms in initial few iterations for high-dimensional
datasets. But, later it becomes slower than ADMM. However, the optimum
test accuracy is attained in the initial few iterations only. In this regard, we
can say that ADMM-BCD might work well when the network bandwidth is
low.

(a) URL

(b) Splice-Site

Figure 11: Suboptimality Vs. Communication Rounds

35

(c) Kdda

(d) News20

(e) RCV

36

Chapter 6

Conclusion

In this project, we attempted to address the key issue i.e., communication
delay, that exists for most of the large-scale distributed optimization algo-
rithms. We started with a formulation called partial consensus optimization
which incurs low communication cost and performs better than one-shot av-
eraging. However, we realized that it is better if we fix the free parameters
during optimization.

Motivated by this, we tried the method ADMM-BCD. It performs well
in the first few iterations but becomes slow later so that the savings in the
communication cost become insignificant. However, w.r.t amount of commu-
nication, ADMM-BCD performed better than others in initial few iterations
for high-dimensional datasets.

From the analysis of empirical results, we can conclude that ADMM
with HotStart is the best method. ADMM incurs less communication cost
compared to other methods, because the local problem is solved exactly.
Whereas, in stochastic methods like CoCoA, the local problem is solved ap-
proximately, hence it requires more communications to reach optimum.

Another important observation is that the optimum test accuracy is
achieved in very few iterations and didn’t improve later. Hence, for binary
classification, solving the problem exactly is not required. The distributed
optimization can be stopped when we see no improvement in the test accu-
racy after few iterations.

ADMM has it’s drawbacks that it requires an exact solver and also it
is slow towards convergence in later iterations. The efficiency of ADMM-
HotStart comes from the fact that we use a Dual Coordinate Ascent (DCA)
Solver for local problem. DCA is a powerful solver for linear classification
and is widely used. Here we use it to improve the distributed optimization
for linear classification.

37

References

[1] M. Jaggi, V. Smith, M. Takác, J. Terhorst, S. Krishnan, T. Hofmann,
and M. I. Jordan, “Communication-efficient distributed dual coordinate
ascent,” CoRR, vol. abs/1409.1458, 2014.

[2] C. Zhang, H. Lee, and K. G. Shin, “Efficient distributed linear clas-
sification algorithms via the alternating direction method of multipli-
ers,” in International Conference on Artificial Intelligence and Statistics,
pp. 1398–1406, 2012.

[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop dis-
tributed file system,” in Mass Storage Systems and Technologies (MSST),
2010 IEEE 26th Symposium, pp. 1–10, May 2010.

[4] A. Agarwal, O. Chapelle, M. Dud́ık, and J. Langford, “A reliable effective
terascale linear learning system,” CoRR, vol. abs/1110.4198, 2011.

[5] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
pp. 1–122, Jan. 2011.

[6] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundarara-
jan, “A dual coordinate descent method for large-scale linear svm,” in
Proceedings of the 25th international conference on Machine learning,
pp. 408–415, ACM, 2008.

[7] J. Barzilai and J. M. Borwein, “Two-point step size gradient methods,”
IMA J. Numer. Anal., vol. 8, no. 1, pp. 141–148, 1988.

[8] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the 2Nd
USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10,
(Berkeley, CA, USA), pp. 10–10, USENIX Association, 2010.

38

[9] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector ma-
chines,” ACM Transactions on Intelligent Systems and Technology, vol. 2,
pp. 27:1–27:27, May 2011.

39

