
Data dependent modeling of
Task-relatedness in Multi-Task Learning

M. Tech. Project Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

by

Lokesh Rajwani

Roll No: 10305066

under the guidance of

Prof. J. Saketha Nath

�
Department of Computer Science and Engineering

Indian Institute of Technology Bombay

Mumbai

Acknowledgments

I thank and express my utmost gratitude to Prof. J. Saketha Nath, Department of

Computer Science and Engineering, IIT Bombay, who has guided me and helped me

throughout this project. Without his deep insight into this domain and his valuable

time for this project, it would not have been possible for me to move ahead properly.

He rectified my basic mistakes and explained me the things in as easy way as possible.

Without him and his efforts, my understanding would have been incomplete towards

the topic. He has been a constant source of inspiration for me throughout for the

achievement of this task. He has been remarkable in his attempt to keep me motivated

in this project and has always tried to improve me with proper feedback. I would also

like to thank Pratik Jawanpuria for his valuable discussions. He provided me with the

various datasets which I could use in my experiments later.

Lokesh Rajwani

Roll No. : 10305066

Abstract

Multi-Task Learning methods are nothing but extension to single-task learning meth-

ods. When it comes to learn several related tasks, Multi-Task Learning predominantly

had high advantages and hence the tasks are learnt together. Many researchers gave

various forms of problem formulations and the techniques to solve it. The learning

techniques could be leveraged at one more step - by grouping the multiple tasks in

various clusters. This Clustered Multi-Task Learning forms a new approach in which

the tasks are adapted to different clusters according to the the degree of relatedness

amongst them. Each cluster can then represent one MTL problem in its own. The

challenge in this approach is that the clusters are unknown before-hand, and hence

they are also to be learned during the process. We worked upon the Recommender

System, a real world problem and an application to these multi-task approaches. We

noticed that if the clusters are found correct, then we can witness some gains over

some recent approaches to multi-task learning methods.

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Statement . 2

2 Stage 1 Review 3

2.1 Multi-Task Feature Learning . 3

2.2 Task Relationships in Multi-Task Learning 4

2.3 Learning Multiple Tasks with a Sparse Matrix-Normal Penalty 4

2.4 Clustered Multi-Task Learning . 4

2.5 Results from Stage 1 . 5

3 Multi Task Learning for Recommender Systems 6

3.1 Multi Task Learning for Collaborative Filtering 6

3.1.1 Notations . 6

3.1.2 Selection of Most Similar Users 7

3.1.3 Selection of Most Covering Users 7

3.1.4 Kernel Functions for Users and Items 8

4 Our approach towards a Hybrid method 10

5 Experiments 13

5.1 Recommender System versus Argyriou’s method 13

5.2 Our approach - Mixing the two formulations 14

6 Related Work 16

7 Conclusion 17

Chapter 1

Introduction

Traditionally, machine learning methods focussed upon learning each task individually

(Single Task Learning (STL)). Researchers then realized that there is some information

gain (and hence better learning/generalization) by learning several related tasks, not

individually, but learning them together parallely. This approach is called Multi-Task

Learning (MTL). In MTL, tasks are jointly trained and some common features shared

among them is exploited. Rich Caruana in his work [Car97] motivates for MTL and

provides several insights that how MTL can lead to better results. He briefed several

mechanisms as to how MTL works, like

• Tasks may share common hidden features among them

• Uncorrelation among tasks can appear as noise to other tasks, and noise helps

in better generalization of each task.

• Each task having few training samples, but together as a whole they can have

large training data, which will again help in better generalization

With the notion of MTL, the researchers explored several methods and developed

different kinds of problem formulations. Some of the approaches to solve MTL prob-

lems are worked out in [EP04,AEP07,EMP05,PW10,ZYX10]. MTL was indeed found

beneficial in terms of accuracy and computational gains, but it had one condition: the

tasks must be related. Un-related tasks may produce worse results, in which case, STL

would outperform better. So then recently, a notion of grouping related tasks into

several clusters arises. Its underlying claim is that, its better to group related tasks

(from many, possibly uncorrelated tasks), and learn these sub-groups in a Multi-Task

learning fashion.

The clusters formed by grouping some tasks may again involve several variations and

hence can pose different problems for each different variant. For example, each clus-

ter can be regarded mutually exclusive (i.e. one task will go to only one cluster),

and within each cluster/group the tasks share common features amongst them, in-

dependently of the tasks in other groups. In some sense, the problem reduces back

1

to Multi-Task Learning within each cluster. Z. Kang et al. propose this kind of

grouping tasks in their work [KGS11]. Another variant is described in Bach’s et al.

work [JBV09], in which they again form clusters of the tasks, but also account for

the between-cluster variance and within-cluster variance in their formulation. In more

complex scenarios, one can think of tasks getting shared in more than one clusters.

1.1 Motivation

Better generalization and higher accuracies over predicted data is the key target for any

real world application of machine learning. Over the years, researchers have worked

upon the problems and invented several algorithms to achieve better results. Multi-

Task Learning methods have been developed to cater with many tasks together. Since

they assume that all tasks are equally related, this may not be possible in real, some

may be more related and some may have little correlation. So the need is to enhance

such methods to more complex scenarios, where some less related tasks can be taken

care of. One approach which researchers come up is - grouping such tasks according

to degree of correlation. But one cannot know before-hand, how much is the task

related. Will it hamper in learning other tasks, so that we can separate such tasks

out into other groups. All this brings to a challenge of discovering the underlying

correlation structure amongst the tasks. Can more better methods be framed to solve

this problem, and yet achieve good efficiency, is what this project searches for.

1.2 Problem Statement

During this project overall we aimed at these key things:

• Identifying the current state-of-the-art method, and comparing with the new

approaches evolved recently.

• Applying the studied methods on real world datasets and search for any gains

by trying all approaches of MTL.

• Can some hybrid mix of two or more approaches lead to better results.

2

Chapter 2

Stage 1 Review

We studied various papers as mentioned below to get familiar with the problem of

Multi-Task Learning. Various experiments were carried out and we compared the

results of various literature works. We extended our study to Clustered Multi-Task

Learning, and we hoped that continuing in this direction can give better results in

comparison to standard Multi-Task learning framework. The following sections gives

a brief detail about the papers related to the Mutli-Task methods studied during Stage

1.

2.1 Multi-Task Feature Learning

Argyriou et al. gave a problem formulation in their paper Multi-Task Feature Learning

(MTFL) [AEP07], in which tasks are related in such a way that they all share a com-

mom underlying representation. They generalized the 1-norm regularization problem

to multiple task case, where 1-norm regularization will help to learn a low-dimensional

representation which is shared across multiple tasks.

They posed their problem as minimizing the following error function

E(A,U) =
T�

t=1

m�

i=1

L(yti, �at, U�xti�) + λ�A�22,1 (2.1)

where L is the loss function,

Matrix U consists of orthonormal vectors ui, which form the basis for weights wt

for each task t, and Matrix A plays the role of feature selector, so as to learn low-

dimensional representation by taking (2, 1)-norm of it.

The above Error function is to be minimized w.r.t both U and A, but that led to a

non-convex problem. In the paper [AEP07], they gave equivalent convex optimization

formulation, and provided Alternate Minimization algorithm to solve that.

3

2.2 Task Relationships in Multi-Task Learning

Zhang et al. in their paper [ZY10], came up with a formulation for MTL similar to

that of Argyriou’s, but they modelled MTL with relationship between tasks, rather

than common feature representation. Comparing this method which stresses upon

‘task relationship’, with the Argyriou’s method described above, which stresses upon

‘common feature representation’, yet the two formulations given by respective authors

are similar. The reason being is that in both the cases, the regularization term boils

down to the trace norm of weight matrixW . Hence this paper too follows the Alternate

Minimization Algorithm to solve its problem.

2.3 Learning Multiple Tasks with a Sparse Matrix-

Normal Penalty

This paper [ZS10] could be stated as a mix of first two approaches. The authors, Zhang

and Schneider, formulates the Multi-Task Learning approach by including the regu-

larization term being Matrix-Variate Normal with sparse inverse covariances. Matrix-

variate normal incorporates a) row covariance Ω to describe similarity among tasks

b) column covariance Σ to represent a shared feature structure in multi-task learning.

The total loss L to be optimized is:

L =
m�

t=1

nt�

i=1

L(y
(t)
i , x

(t)
i ,W(t, :)) + λtr

�
Ω−1WΣ−1W�� (2.2)

Here again alternatively problem is solved by first estimating W by keeping Ω and Σ

fixed, and then estimating Ω and Σ by keeping W fixed, until convergence.

2.4 Clustered Multi-Task Learning

In this paper [JBV09], Bach et al. came up with the new approach towards MTL

involving clustering of tasks. They group different tasks into different clusters such

that the weight vectors of tasks within a group are similar to each other. The clustering

of tasks also prevents outlier tasks from affecting other related tasks. Clustering effect

is encapsulated in the regularization term, and the problem to be solved is in the form:

min
W∈Rd×m

�(W) + λΩ(W) (2.3)

Here W comprises of the weight vectors of each task, and Ω(W) is designed from prior

knowledge to constrain some sharing information between the tasks. The constraints

could be

• a global penalty Ωmean(W)

4

• A measure of between-cluster variance, Ωbetween(W)

• A measure of within-cluster variance, Ωwithin(W)

or any combination of above three, hence,

Ω(W) = εMΩmean(W) + εBΩbetween(W) + εWΩwithin(W) (2.4)

On varying the parameters εM , εB, εW , we can get different types of penalties.

For eg, εW > εB > εM promotes compact clusters (within cluster variance is more

penalizable than between them).

2.5 Results from Stage 1

Argyriou’s formulation [AEP07] is one of the finest and proper formulation for the

general Multi-Task Learning notion (without grouping the tasks into clusters). So we

took up this as the base evaluation criteria to check the performance of the Clustered

Multi-Task Learning [JBV09] approach. We took three real world datasets: School,

Sarcos and Park datasets and compared the perfomance on these datasets by the two

approaches in an unbiased way. On comparison we found that, the results after taking

clustering into account was only marginally better than Argyriou’s approach in two

datasets. In Park dataset, the result worsen. We wanted to hunt for more better

ways of Multi-Class Clustering approaches, since clustering looked promising with the

slight better results over Argyriou’s method in 2 out of 3 datasets. Hence in stage 2,

we worked on an application of Multi-Task Learning, namely, Multi-task learning for

recommender systems, which we discuss in next chapter.

5

Chapter 3

Multi Task Learning for

Recommender Systems

Collaborative filtering predicts a users interest (i.e., rating) on an unseen item based

on the historical profiles of that user in relation to the historical profiles of the other

users. Conventionally ratings were predicted on new items as an aggregate of ratings

from similar users or similar items [SKKR01], independent of the relationship that

existed among the users’ preferences. Since then various recommendation models were

built to incorporate the relationship. One popular technique was Matrix Factorization

by Koren et al. [KBV09] which performed very well for large-scale recommendation

problems.

This paper Multi-task Learning for Recommender Systems [NK10], captures rela-

tionships among users. It first identifies a set of related users for the active user based

on his/her rating patterns, and then it utilizes rating information from all the related

users together to build a multi-task regression model for predicting the active users

ratings on unseen items. In this way, the rating prediction models of a set of related

users act as parallel learning tasks.

3.1 Multi Task Learning for Collaborative Filtering

Here we present a brief review of the paper [NK10]. The paper explains how the users

are selected which are related to the active user (user under consideration). Then each

user’s problem is formulated as a regression problem which involves items rated by its

related users as well.

3.1.1 Notations

Users and Items are denoted by u and i respectively.

Active user is denoted by u∗.

The rating of user ui on item ij is denoted by ri,j .

The set of items rated by user ui is Ii

6

The set of users that have rated ij is Uj.

The average rating of user ui on items Ii is denoted by r̄i,..

The average rating of user uk over all the items that he/she rated (i.e. Ii) is r̄k,..

U and I denote set of all users and items in the system.

For a certain active user u, the identified set of related users is denoted by N∗.

The set of items rated by a set of users N is denoted by IN .

3.1.2 Selection of Most Similar Users

For a given user u∗, m most related users N∗ = {u∗1 , u∗2 , . . . , u∗m} are selected whose

historical ratings on co-rated items are the most similar to user u∗. The rating sim-

ilarity between two users is computed, using modified version of Pearson correlation

coefficient, as

simu(ui, uj) = pu(ui, uj)·

�
ik∈Ic

(ri,k − r̄i,.)(rj,k − r̄j,.)

� �
ik∈Ic

(ri,k − r̄i,.)2
� �

ik∈Ic
(rj,k − r̄j,.)2

(3.1)

where Ic is the set of items co-rated by users ui and uj (Ic = Ii∩Ij) and pu is a penalty

factor defined as pu(ui, uj) = min(|Ic|, C)/C i.e, it penalizes when the number of

co-rated items is smaller than C (a predefined small constant).

3.1.3 Selection of Most Covering Users

The above method, USMsim, selects the most similar users, but it does not say any-

thing about what all items the selected users has rated. If a user u is selected depending

upon the same rating pattern as of active user u∗, and user u hasn’t rated any such

items which is also yet unseen by user u∗, then u is not at all informative. The goal is

to select such users who not only are similar but are informative as well, i.e. users u

should also have rated new items (new in the sense that those items are not rated by

u∗).

So, the author proposes the method, USMcvg, which selects users that collectively

maximize the coverage of the unrated items for u, in addition to the selection of users

that rated in a consistent way with u. This method’s algorithm is shown below. Here

the key point is that from the list identified by USMsim, (i.e. (u∗1 , u∗2 , . . . , u∗2m)),

this approach selects the user who have rated maximum number of items that are not

rated by both of the active user and the users that are already selected by USMcvg. In

case that fewer users are selected by USMcvg than required, USMcvg chooses the most

similar users from the rest of the user list.

7

Algorithm 1: USMcvg

Data: (u∗1 , u∗2 , . . . , u∗2m) ,m, I∗
Result: N∗
begin

N∗ = u∗1
i = n = 1

while i < 2m do

for j = 1 to WINDOWS SIZE do
k = i+ j

if k > 2m then
goto L

else
count the number of items that have been rated by u∗k but not

rated by u∗ or ∀u ∈ N∗

look for u∗kmax
with maximum non-zero count in this window

if such user u∗kmax
exists then

N∗ = N∗ ∪ {u∗kmax
}

n = n+ 1

i = kmax

else
i = i+WINDOWS SIZE

if n ≥ m then
break

L: if n < m then
select m− n most similar users that are not selected into N∗

end

3.1.4 Kernel Functions for Users and Items

Like user-similarity function (3.1), item-similariy between ii and ij is defined based

on adjusted cosine similarity to determine the similarity between items as done in

[SKKR01],

simi(ii, ij) = pi(ii, ij)·

�
uk∈Uc

(rk,i − r̄k,.)(rk,j − r̄k,.)

� �
uk∈Uc

(rk,i − r̄k,.)2
� �

uk∈Uc

(rk,j − r̄k,.)2
(3.2)

The user-similarity function (3.1) is used to construct Ku, the kernel on users. And,

the item-similarity function (3.2) is used to construct Ki, the kernel on items. To make

them as valid positive semi-definite Kernels, the least eigen value is subtracted from

all the diagonal elements of this symmetric similarity matrices. The multi-task Kernel

8

function Kmt can now be defined as

Kmt((ui, ij), (ui� , ij�)) = Ku(ui, ui�) ×Ki(ij, ij�) (3.3)

Using this Kernel the multi-task model of user u is learned using error-insensitive

Support Vector Regression (�-SVR) [SS04]. The input to the model are tuples of the

form ((ui, ij), ri,j), where,

ui ∈ u∗ ∪ N∗, ij ∈ Ii and ri,j is the target rating that ui has given to ij.

The ratings are predicted as real numbers (since its a regression problem) and it can

be approximated to nearest integers.

9

Chapter 4

Our approach towards a Hybrid

method

We know clustering helps in better learning, but what we don’t know is how to get

correct clusters of tasks so that it helps in performance-boost. So we approached for

a mix of the two methods – Multi-Task Learning for Recommender Systems to obtain

the clusters [NK10] and Multi-Task Feature Learning [AEP07] to train each cluster

independent of the tasks in other clusters.

Here we describe our approach in brief.

From the MTL for Recommender System method, we obtained m related users for

each active user. We build a N × N matrix M (where N is the total no. of user-

s/tasks) whose element mij corresponds to the no. of common users in the m most

covered users set of the active users i and j. This matrix M will be symmetric and

from this matrix M , we obtain n adjacency matrices, each giving us different clusters,

such that all users are covered and no task belongs to two or more than two clusters.

Here we sketch out the algorithm for obtaining n adjacency matrices, each adjacency

matrix will further give us various clusters, and its upto the user to set appropriate

n. As such there is no relation between n and the no. of clusters obtained in the end,

because primarily it depends on the dataset being used. So one needs to cross-validate

over this parameter n.

Since if users having z common related users in their covering user set, then users

having z − 1 common related users can also be treated in the same group. The idea

is, we cannot strictly impose grouping just because there is a difference of only 1 user

in common. So first we find out a more coarse matrix M �, where we can distinguish

such groups easily. Each group is given a no. and that group contains all those users,

which have some minimum threshold of common users amongst them. Now again these

thresholds may vary, and here we choose parameter n to determine various thresholds.

Finding groups on the basis of n thresholds and thus getting a coarse matrix is shown

10

in Algorithm 2.

Algorithm 2: Finding Coarse Matrix M �

begin
Data: Matrix M

Result: Matrix M �

Let l = min(M) and h = max(M)

Choose n and divide the range (h− l) into n parts.

if mij lies in part p then
set m�

ij = p

end

After calculating the coarse matrix M �, we can now strictly partition the users into

n different adjacency matrices, such that,

A1 + A2 + . . .+ An = 1N×N

where, each Ai is an adjacency matrix of size N ×N corresponding to group i,

N is the total no. of users/tasks, and,

1 is a matrix of all ones, i.e. each entry (i, j) is 1.

Depending upon the no. m�
ij , the corresponding users i and j will go into that

group and hence the aij and aji elements of the respective adjacency matrix is set

to one. All adjacency matrices are symmetric and they disjointly partition the users.

Now from each adjacency matrix A, some set of clusters are obtained as shown in

Algorithm 3. In following algorithm, the list clusters of size N (N is the total no.

of users) is computed, such that, user i belongs to cluster no. given by clusters[i].

Maximum no. of clusters thus obtained is max(clusters[i]). Here, we traverse each

adjacency matrix one-by-one and for each matrix, we iterate through each user which

are not clustered yet. For each such user, we find who all are related to it according to

the current adjacency matrix. Classify all these users into one single cluster. Iterate

over each user and each adjacency matrix until all users are clustered.

11

Algorithm 3: Finding clusters from matrix M �

begin
Data: Matrix M �

Result: array clusters[] of size N

Initialize: all clusters[] elements to 0, Cno = 1

n = max(M �)

for k = n to 1 step − 1 do
create Adjacency Matrix A, such that,

if aij == k then
aij = 1

else
aij = 0

list i = all those users i such that clusters[i] == 0

for each user i in list i do

if user clusters[i]! = 0 then
This user has already been clustered

Continue for next iteration
list j = all those users j related to user i (obtained from matrix A)

such that, clusters[j] == 0 and j! = i

if list j is not empty then
set clusters[i] = Cno

for each user j in list j do
set clusters[j] = Cno

Cno+ = 1

end

Once we get the clusters, we apply Argyriou’s method over each cluster as a single

MTL problem. Thereby training all the tasks in that cluster. Once all clusters have

been trained by Argyriou’s method of multi-task feature learning, then we get all tasks

trained depending only on other tasks in its cluster. In the next chapter, we discuss

the experiments performed and the results obtained.

12

Chapter 5

Experiments

We evaluated the performance of our methods on MovieLens dataset 1. It contains

100,000 ratings from 943 users on 1,682 movies. Each user rates more than 20 movies.

The rating scores range from 1 to 5 as integers.

We tried following variations, and measured its performance against Argyriou’s method

(Multi-task Feature Learning) and Bach’s method (Clusteres Multi-Task Learning).

Since Argyriou has performed well enough, and hence its performance forms our base

criteria to be compared with. The methods which we tried on the MovieLens dataset

are:

(i) Multi-Task Feature Learning method by Argyriou et al. [AEP07]

(ii) Clustered Multi-Task Learning by Francis Bach et al. [JBV09]

(iii) The Recommender Systems method given by paper [NK10]

(iv) Obtaining the clusters from method (iii), and then supplying each cluster inde-

pendently to method (i)

In the MovieLens dataset, each user we considered as a separate task and the task

is to predict the rating of items. We divided the dataset into 80:20 ratio for training

and testing respectively. We used 5-fold cross-validation, and in each fold the training

data constitues the 4 parts of the active user’s training data plus all 5 parts of other

related users’ training data. The remaining 5th part of the active user forms the testing

data for that fold. Here we summarize our findings and we report the mean square

errors for the respective methods below.

5.1 Recommender System versus Argyriou’s method

We compared the two papers on the MovieLens dataset. The Multi-Task Learning

for Recommender System paper [NK10] computes the Kernel function only on the

1http://www.grouplens.org/node/73

13

basis of ratings given. We modified that and also included the user features and item

features, and finally the precomputed Kernel was supplied to (�-SVR) using LibSVM

tool [CL11]. Since each user is a separate task, and the recommender system paper

builds a multi-task model explicitly designed for each user, so we experimented this

method on first 50 users. The errors were calculated for each user/task separately and

compared them on both the methods. Following is the brief result obtained.

Table 5.1: Recommender System v/s Argyriou
Test Error

MTL Recommender MTFL (Argyriou)
Avg. of First 10 tasks 1.115 1.16
Avg. of First 30 tasks 1.0365 1.038
Avg. of First 50 tasks 1.25 1.06
Avg. of tasks 31-50 1.58 1.09

It can be seen that MTL for Recommender Systems outperformed on initial few

tasks as compared to Argyriou’s method. Since in Argyriou’s method all tasks are

taken simulataneously as related tasks in Multi-Task Learning approach, but in former

method only some tasks (which are related to the active user only) are taken into ac-

count. This shows that there may be some tasks which are less related and can hamper

overall learning of tasks. But then, the tasks from 31-50 cluster show that Argyriou

has performed well. This may happen because the tasks may not have been properly

clustered. Some non-related task to the cluster may act as a noise and boost-up the

generalization overall which happens in Argyriou, but fails to occur in case of MTL

for Recommender Systems. Thus we conclude that though clustering is required for

witnessing some gains, but improper clusters may harm the learning of tasks in that

cluster. This point was also highlighted in Stage 1 where clustering method by Bach’s

paper [JBV09] results good on 2 out of 3 datasets.

5.2 Our approach - Mixing the two formulations

So we approached for another method, where we aimed to create adjacency matrix over

all tasks. For each task we selected some m most related users as given by MTL for

Recommender Systems approach. We associated those users in the adjacency matrix

with their active user. The procedure was repeated for all users, where each user

became active user one-by-one. On applying some threshold, we distinguished the

users into various groups such that the users in the same group have approximately

same related users - Algorithm 2. Finally clusters of users/tasks were obtained from

each group - Algorithm 3. Each cluster independently was then applied on Argyriou’s

method. The test errors were computed for each task each cluster separately and

we compared the results of this method with the overall Argyriou’s method (without

14

clustering). We also considered the boundary case of each task independently being

learned by again applying Argyriou’s method, once for each user. Since there are many

tasks (users), so we summarize our results for the first 500 tasks in the steps of 100

tasks below.

Table 5.2: Net results of Clustering and applying Argyriou method
Test Error

Argyriou on Clus-
ters from MTL
Recommender

Argyriou
(overall)

Argyriou
(each task in-
dependently)

Avg. of tasks 1-100 1.032 1.028 1.14
Avg. of tasks 101-200 1.15 1.114 1.216
Avg. of tasks 201-300 1.049 1.055 1.097
Avg. of tasks 301-400 1.083 1.06 1.11
Avg. of tasks 401-500 1.134 1.135 1.187

Avg. of all tasks 1.087 1.0673 1.135

The bold figures above show the improvement, though marginally better, over

Argyriou’s method, but overall the performance is not as expected. But the clustering

surely gives certain advantages provided the tasks are correctly clustered so that it

won’t harm the performance overall.

15

Chapter 6

Related Work

For Multi-Task Learning there exist many other formulations, such as, probabilistic

interpretation of the general multi-task feature selection problem [ZYX10]. Also since

it is noted that the basic regularization term is what that couples the task related-

ness, so methods have been developed to tune such regularization terms and develop

more efficient learning algorithms. For example, [JY09] propose an extended gradient

algorithm and shows that by exploiting the special structure of the trace norm, the

optimal convergence rate for general non-smooth problems can be improved. Kernel

methods have also been employed in Multi-Task Learning approaches to generalize

the linear multi-task learning methods to the non-linear case. Micchelli and Pontil

described reproducing kernel Hilbert spaces of vector-valued functions and discussed

their use in multitask learning [MP04].

In case of clustered multi-task learning approaches, Z.Kang et al. have studied the

problem of clustering task in the distinct setting where relatedness is modeled as learn-

ing shared features among the tasks. [KGS11] They simultaneously determine “with

whom” each task should share features, while also optimizing the model parameters

for all tasks per group.

16

Chapter 7

Conclusion

In the Experiment section above, we showed that the hybrid system of MTLRecom-

mender + Argyriou’s method, performs better than Argyriou’s method alone in some

cases. Though we have chose the best parameter n for it, but ideally we should cross-

validate over parameter n also. Clustering can be indeed helpful and since the overall

result isn’t good enough, hence more sophistacated methods to figure out clusters

needs to be employed.

We also compared the results of this hybrid approach with the Bach’s paper, Clus-

tered Multi-Task Learning. We clearly outperform from Bach’s method and can say

that Bach’s method doesn’t finds appropriate clusters. The reason being that the

method itself asks for input to no. of clusters required from the user, instead of

searching the space of all possible clusters and choosing the best amongst them. If

the latter case happens (searching best possible clustering structure over entire span),

then it would require to evaluate the method over 2T clustering structures, where T

is the no. of tasks. This would be highly inefficient and thus this area needs some

more research for exploring better clustering methods since we can see some promising

results of clustering.

17

Bibliography

[AEP07] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Multi-

task feature learning. In Advances in Neural Information Processing Sys-

tems 19. MIT Press, 2007.

[Car97] Rich Caruana. Multitask learning. Mach. Learn., 28:41–75, July 1997.

[CL11] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support

vector machines. ACM Transactions on Intelligent Systems and Technology,

2:27:1–27:27, 2011. Software available at http://www.csie.ntu.edu.tw/

~cjlin/libsvm.

[EMP05] Theodoros Evgeniou, Charles A. Micchelli, and Massimiliano Pontil. Learn-

ing multiple tasks with kernel methods. Journal of Machine Learning Re-

search, 6:615–637, 2005.

[EP04] Theodoros Evgeniou and Massimiliano Pontil. Regularized multi–task

learning. In Proceedings of the tenth ACM SIGKDD international confer-

ence on Knowledge discovery and data mining, KDD ’04, pages 109–117,

New York, NY, USA, 2004. ACM.

[JBV09] L. Jacob, F. Bach, and J.-P. Vert. Clustered multi-task learning: A convex

formulation. In Advances in Neural Information Processing Systems 21,

pages 745–752. MIT Press, 2009.

[JY09] Shuiwang Ji and Jieping Ye. An accelerated gradient method for trace norm

minimization. In Proceedings of the 26th Annual International Conference

on Machine Learning, ICML ’09, pages 457–464, New York, NY, USA,

2009. ACM.

[KBV09] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization tech-

niques for recommender systems. Computer, 42(8):30–37, August 2009.

[KGS11] Zhuoliang Kang, Kristen Grauman, and Fei Sha. Learning with whom

to share in multi-task feature learning. In Lise Getoor and Tobias Schef-

fer, editors, Proceedings of the 28th International Conference on Machine

Learning (ICML-11), ICML ’11, pages 521–528, New York, NY, USA, June

2011. ACM.

18

[MP04] Charles A. Micchelli and Massimiliano Pontil. Kernels for multi-task learn-

ing. In Proceedings of NIPS 2004, 2004.

[NK10] Xia Ning and George Karypis. Multi-task learning for recommender system.

Journal of Machine Learning Research - Proceedings Track, 13:269–284,

2010.

[PW10] Shibin Parameswaran and Kilian Weinberger. Large margin multi-task

metric learning. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S.

Zemel, and A. Culotta, editors, Advances in Neural Information Processing

Systems 23, pages 1867–1875. 2010.

[SKKR01] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-

based collaborative filtering recommendation algorithms. In Proceedings of

the 10th international conference on World Wide Web, WWW ’01, pages

285–295, New York, NY, USA, 2001. ACM.

[SS04] Alex J. Smola and Bernhard Schölkopf. A tutorial on support vector re-

gression. Statistics and Computing, 14(3):199–222, August 2004.

[ZS10] Yi Zhang and Jeff Schneider. Learning multiple tasks with a sparse matrix-

normal penalty. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S.

Zemel, and A. Culotta, editors, Advances in Neural Information Processing

Systems 23, pages 2550–2558. 2010.

[ZY10] Yu Zhang and Dit-Yan Yeung. A convex formulation for learning task

relationships in multi-task learning. In Proceedings of the 26th International

Conference on Uncertainty in Artificial Intelligence (UAI), pages 733–742.

2010.

[ZYX10] Yu Zhang, Dit-Yan Yeung, and Qian Xu. Probabilistic multi-task feature

selection. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and

A. Culotta, editors, Advances in Neural Information Processing Systems 23,

pages 2559–2567. 2010.

19

