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Abstract

Kernel functions are widely used in several algorithms in machine learning and statistics. In recent

years instead of using a single kernel people are using combination multiple kernels. These different

kernels may use information acquired from different sources or different similarity measures. Several

Multiple Kernel Learning (MKL) methods are present for combining the Kernels with same weights

over all the points. Localized MKL is where the weights of the Kernels will change for every point.

In the project we studied different MKL methods and Localized MKL method and did an unbiased

comparison by performing experiments on different real world datasets. We also modified the current

localized MKL approach in different ways to achieve better results. We changed the gating function

into linear function used in the Localized MKL to linear function that ended up giving mixed results.

We used Localized mkl with local SVM instead of global classifier which also ended up giving mixed

results.
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Chapter 1

Introduction

Support Vector Machine (SVM) methods [CORTES and VAPNIK, 1995]become widely used in

many classification tasks due to their success. The main advantage using SVM’s is we can get linear

separation by mapping the instances from input space to new feature space. But finding the map

to every instance in the new feature space is costly. Given N iid instances{(xi, yi)}Ni=1 where xi is

d-dimensional input vector and yi is its label. SVM finds the linear discriminant with maximum

margin in the the new feature space given by the mapping function φ : Rd → Rt.

f(x) = �w, x� + b

The classifier can be trained by solving the following optimization problem is:

min
w,b,ξi

1

2
||w||2 + C

�

i

ξi

s.t. yi(�w, xi� + b) ≥ 1 − ξi , ξi ≥ 0 ∀i

where C is the regularization parameter and ξi’s are the slack variables. The Dual problem for the

above optimization problem will be

max
αi

N�

i=1

αi −
1

2

N�

i=1

N�

j=1

αiαjyiyj�xi, xj� (1.1)

s.t.
N�

i=1

αiyi = 0, C ≥ αi ≥ 0∀i

1



where αi’s are the dual variables. From Equation (1.1) notice that the data is appeared only in

inner products products �xi, xj�. At this point Kernels gives as good advantage so that we don’t

have to find the map to any instance in the new feature space. If there is a function such that

K(xi, xj) = �φ(xi), φ(xj)� then no need for calculating Φ(x). The hypothesis function will be

f(x) =
N�

i=1

αiyi�φ(xi), φ(x)� + b.

Selecting a kernel function for the training is an important part in the training. Generally, a

cross-validation procedure is used to choose the best performing kernel function among a set of

kernel functions. In recent years many multiple kernel learning methods are proposed so that we

can combine them to get a better kernel. Simplest way to do this is taking the unweighted sum of

all kernels. This gives equal priority to every kernel but this method may not be an ideal because

some kernels may not be as good as other kernels. One better method is taking the weighted sum

of the given kernels. [Bach et al., 2004, Aflalo et al., 2011, Lanckriet et al., 004a] takes the convex

combination of kernels. And some methods [Corinna Cortes and Rostamizadeh, 2009] took the non-

linear combination of kernels. These methods gives fixed weights to the kernels over whole input

space. Using different weights for different points may produce a better classifier overall. With this

idea Localized MKL[Gonen and Alpaydn, 2004] method is proposed which combines the Kernels

linearly by giving different weights at each data point. In the first stage of project we compared

different MKL algorithms with Localized MKL where it is giving better results in most of the cases

so in the second stage tried different variations with localized MKL to achieve better performance.

In chapter 2 we explained some Multiple Kernel Learning methods highlighting the similarities

and differences between them. In chapter 3 we discussed some improvements for Localized MKL

method. Experimental results are discussed in chapter 4 and conclusion are given in chapter 5.
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Chapter 2

Literature of Multiple Kernel

Learning

In the recent years lot of research was done on Multiple Kernel Learning problem. Linear combi-

nation of kernels as weighted sum is the most popular approach taken by many researchers. In this

various approaches are proposed for sparse and non-sparse combination of Kernels.

Kη(xi, xj) =

p�

m=1

ηmKm(xi, xj)

where p is the no. of Kernels and Km represents the mth Kernel. Different versions of this approach

put different restrictions on η’s:

• Linear Sum (i.e. η ∈ Rp)

• Conic Sum (i.e. η ∈ Rp
+)

• Convex Sum (i.e. η ∈ Rp
+ and

�p
m=1 ηm = 1 )

The conic and convex sums have different advantages than linear sum in terms of interpretability.

First,when we have positive kernel weights, we can extract the relative importance of the combined

kernels by looking at the weights of kernels. Second, when we restrict the kernel weights to be

nonnegative, this corresponds to scaling the feature spaces and using the concatenation of them as

the combined feature representation.
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The discriminant function for the above combination looks like:

f(x) =

p�

m=1

√
ηm�wm, φm(x)� + b.

And the optimization problem for MKL looks like:

min
ηm,w,b,ξi

Ω(w) + C

N�

i=1

ξi (2.1)

s.t. yi(

p�

m=1

√
ηm�wm, φm(xi)� + b) ≥ 1 − ξi , ξi ≥ 0 ∀i,

p�

m=1

ηlm ≤ 1

Ω(w) represents some norm function on w, some people also tried mixed norms [Aflalo et al., 2011]

and different norms are used to restrict η value. After finding the weights and solving the problem

the discriminant function is:

f(x) =
N�

i=1

p�

m=1

ηmαiyiKm(xi, x) + b.

[Lanckriet et al., 004a] formulated this as a semidefinite programming problem which finds the com-

bination weights and support vector coefficients together. [Bach et al., 2004, Vishwanathan et al., 2010]

used SMO approach to solve the problem by using little variations of the formulation. [Bach et al., 2008]

used gradient descent method to find the weights and [Aflalo et al., 2011] used the mirror descent

approach to solve the problem.

All these methods used same weights kernels all over the input space. By using different weights in

different localities we may get better classifier. Using this [Gonen, 2004] proposed localized multiple

kernel method i.e., the weights of kernels depends on the data points.

Kη(xi, xj) =

p�

m=1

ηm(xi)Km(xi, xj)ηm(xj) (2.2)

where ηm(x) is the gating function that takes input as x. The discriminant function look like:

f(x) =

p�

m=1

ηm(x)�wm, φm(x)� + b.
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The optimization problem will be:

min
ηm(x),w,b,ξi

1

2

p�

m=1

�wm�2 + C
N�

i=1

ξi (2.3)

s.t. yi(

p�

m=1

ηm(xi)�wm, φm(xi)� + b) ≥ 1 − ξi , ξi ≥ 0 ∀i

they used a softmax gating function for ηm(x)

ηm(x) =
exp(�vm, x� + vm0)�p
i=1 exp(�vi, x� + vi0)

(2.4)

where vm and vm0 are the parameters of gating function.

They used the alternate optimization, first solving the problem with constant ηm(x) and then

gradient descent method to find the parameters of ηm(x) i.e.vm,vm). The final discriminant function

after solving for ηm(x) is:

f(x) =
N�

i=1

p�

m=1

ηm(xi)αiyiKm(xi, x)ηm(x) + b.

5



Chapter 3

Modifications on Localized MKL

We tried some modifications to the localized MKL to achieve better classifier. First we tried to

use different gating functions,after that we used localized MKL with local classifiers.

3.1 Gating functions

3.1.1 ηm as a linear function of x.

[Gonen and Alpaydn, 2004] used softmax gating function so that ηm(x) is non-negative and to

get a positive semidefinite kernel matrix. From 2.2 the resulting kernel matrix will be:

Kη =

p�

m=1

(ηmηTm). ∗Km (3.1)

where ηm is a N × 1 vector that gives values of all ηm(xi)∀i ∈ [1, N ]. With this we can say that we

don’t have to select non-negative ηm(x) we have to select the function as ηm is a Kernel matrix. So

we represented η(x) as a linear function instead of using a gating function:

ηm(x) = vTmx (3.2)

By taking this linear function also the resulting kernel matrix will also be a positive semidefinite

matrix. Previously because of using the gating function we will get a sparse combination of kernels.

But here the weights will be non-sparse.Here we used a 2-norm regularizer on the parameter vm to

get some sparsity.
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Then the primal optimization problem will be

min
ηm(x),w,b,ξi

1�
m=1

p�wm�2 + C
N�

i=1

ξi + C1�vm�2 (3.3)

s.t. yi(

p�

m=1

ηm(xi)�wm, φm(xi)� + b) ≥ 1 − ξi , ξi ≥ 0 ∀i

The dual for 3.3 by using the ηm as in 3.2 and at constant ηm is

max
αi

N�

i=1

αi −
1

2

N�

i=1

N�

j=1

αiαjyiyjKη(xi, xj) + C1�vm�2 (3.4)

We will find ηm by gradient descent method same as used in [Gonen and Alpaydn, 2004].Using 3.4

objective value J(η) we can calculate the derivatives with respect to the parameters of ηm(x).

∂J(η)

∂vm
= −1

2

N�

i=1

N�

j=1

αiαjyiyjKm(xi, xj)(xiηm(xj) + xjηm(xi)) + 2C1vm.

After updating ηm(x) we will solve single kernel SVM with Kη(xi, xj) at each step. The experimental

results of this are discussed in next chapter.

3.1.2 Using a gating Kernel

Instead of taking gating function on each data point as in 2.2, we can use a gating function ηm such

that

Kη(xi, xj) =

p�

m=1

ηm(xi, xj)Km(xi, xj)

Because using gating function on pairs of data points makes more naive and effective than using

gating function on each data point. If the gating function is a kernel function we won’t have any

problem. Because the resulting kernel matrix will be a positive semi definite. So we can take any

generally known kernel functions as ηm. But here we used a sigmoid kernel as ηm because it works

as a good gating function. Since it is not always gives positive semi definite Kernel matrix we added

ridge to make it positive semi definite. We used the same alternate minimization approach as in

[Gonen and Alpaydn, 2004]. We didn’t perform any experiments on this because it is converging in

just one step without any change in the objective value.
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3.2 Localized MKL with local classifier

Up to now MKL is applied on the global classifiers. [Ladicky and Torr, 2011] proposed local SVM

that gives different classifier at different regions of the input space.

3.2.1 Locally linear SVM

The standard SVM linear discriminant is:

f(x) = wTx + b

To encode local linearity of the SVM classifier by allowing the weight vector w and bias b to vary

depending in the location of the point x in the feature space as:

f(x) = w(x)Tx + b(x) (3.5)

Here they local codings methods that approximate any data point x as a linear combination of

surrounding anchor points.

x ≈
�

v∈A
γv(x)v

where A is the set of anchor points and γv(x) is the vector of coefficients called local coordinates

constrained by
�

v∈A γv(x) = 1. The anchor points can evaluated by different approaches. Using

the manifold learning property any Lipschitz function f(x) can be approximated as:

f(x) ≈
�

v∈A
γv(x)f(v). (3.6)

Using 3.6, 3.5 we can be rewritten as

f(x) =
N�

i=1

wi(x)xi + b(x)

=
N�

i=1

�

v∈A
γv(x)wi(v)xi +

�

v∈A
γv(x)b(v).

=
�

v∈A
γv(x)(

N�

i=1

wi(v)xi + b(v)). (3.7)

Here learning the classifier involves finding optimal wi(v) and b(v) for each anchor point v. Let the

number of anchor points be m = |A|. Let W be the m× n matrix where each row is equal to wi(v)
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of corresponding anchor point v and b be the vector of b(v) for each anchor point. Then 3.7 can be

written as:

f(x) = γ(x)TWx + γ(x)T b. (3.8)

The optimization problem will be:

min
W,b,ξi

1

2
�W�2 + C

N�

i=1

ξi (3.9)

∀i yi(γ(xi)
TWxi + γ(xi)

T b) ≥ 1 − ξi, ξi ≥ 0

where �W�2 =
�m

i=1

�n
j=1 W

2
ij . We can solve this QP problem 3.9 in different ways by using SMO

like algorithms on the dual representation. But [Ladicky and Torr, 2011] used stochastic gradient

method to solve the above optimization problem.

3.2.2 Localized MKL with local SVM

By using the Localized MKL idea in LLSVM the optimization problem 3.9 will become:

min
W,b,η≥0,ξi

1

2

p�

m=1

�Wm�2 + C
N�

i=1

ξi (3.10)

∀i yi(

p�

m=1

ηm(xi)γ(xi)
TWxi + γ(xi)

T b) ≥ 1 − ξi, ξi ≥ 0

We will also use the same method for solving the optimization problem as in [Gonen and Alpaydn, 2004]

by solving 3.10 with respect to wm , b and ξi and then updating ηm(x) by gradient descent method.

For a fixed ηm(x) the Lagrangian of 3.10 will be

LD =
1

2

p�

m=1

�Wm�2 + C

N�

i=1

ξi +

N�

i=1

αi(1− ξi − yi(

p�

m=1

ηm(xi)γ(xi)
TWmxi + γ(xi)

T b)) +

N�

i=1

βi(−ξi)

∂LD

∂Wm
= 0 =⇒ Wm =

N�

i=1

αiyiηm(xi)γ(xi)x
T
i

∂LD

∂b
= 0 =⇒

N�

i=1

αiyiγ(xi) = 0

∂LD

∂ξi
= 0 =⇒ C = αi + βi (3.11)
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From 3.10 and 3.11 the dual formulation will be

max
α≥0

N�

i=1

αi −
1

2

N�

i=1

N�

j=1

αiαjyiyjK
γ
η (xi, xj) (3.12)

s.t.
N�

i=1

αiyiγ(xi)
T = 0, C ≥ αi ≥ 0∀i

where Kγ
η is

Kγ
η (xi, xj) =

p�

m=1

γ(xi)
Tγ(xj)ηm(xi)ηm(xj)Km(xi, xj)

where ηm(x) is same as in 2.4. The gradient of J(η) objective value obtained from 3.12 with respect

to the parameters of ηm(x). The derivatives of J(η) with respect to vm, vm0 are

∂J(η)

∂vm0
= −1

2

N�

i=1

N�

j=1

p�

k=1

αiαjyiyjγ(xi)
Tγ(xj)ηk(xi)Kk(xi, xj)ηk(xj)(2δ

k
m − ηm(xi) − ηm(xj))

∂J(η)

∂vm0
= −1

2

N�

i=1

N�

j=1

p�

k=1

αiαjyiyjγ(xi)
Tγ(xj)ηk(xi)Kk(xi, xj)ηk(xj)(xi(δ

k
m−ηm(xi))+xj(δ

k
m−ηm(xj)))

where δkm = 1 if m = k otherwise 0. After updating ηm(x) we will solve single kernel SVM

with Kη(xi, xj) at each step. After determining the finalηm(x) and SVM solution the discriminant

function will be:

f(x) = γ(x)T (
n�

i=1

p�

m=1

αiyiγ(xi)ηm(xi)Km(xi, xj)ηm(xj) + b).

10



Chapter 4

Experiments

We did experiments on the real world datasets taken from [UCS, ]. We compared some MKL meth-

ods like [Aflalo et al., 2011] and [Vishwanathan et al., 2010] with Localized MKL[Gonen and Alpaydn, 2004]

Then we compared our modified formulations 3.1.1 and 3.2.2 with these methods.

4.1 Datasets

4.1.1 Pendigits

Name Dimension Data Source

dyn 16 eight successive pen points on two-dimensional coordinate system

sta16 256 16 x 16 image bitmap representation formed by connecting

the points in dyn representation with line segments

sta8 64 8 x 8 subsampled bitmap representation

sta4 16 4 x 4 subsampled bitmap representation

Table 4.1: Pendigits

The pendigits dataset 4.1 is on pen-based digit recognition (multiclass classification with 10 classes)

and contains four different feature representations. The data set is split into independent training

and test sets with 7494 samples for training and 3498 samples for testing.
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4.1.2 Protein Fold Prediction

Name Dimension Data Source

Composition D=20 amino acid Composition - Global protein characteristic

Secondary D=21 predicted secondary structure - Global protein characteristic

Hydrophobicity D=21 Global protein characteristic

Volume D=21 Van der Waals volume - Global protein characteristic

Polarity D=21 Global protein characteristic

Polarizability D=21 Global protein characteristic

L1 D=22 PseAA pseudo-amino-acid composition at interval 1

L4 D=28 PseAA pseudo-amino-acid composition at interval 4

L14 D=48 PseAA pseudo-amino-acid composition at interval 14

L30 D=80 PseAA pseudo-amino-acid composition at interval 30

Table 4.2: Protein Fold Prediction

This dataset is on protein fold prediction 4.2(multi-class classification with 27 classes) based on a

subset of the PDB-40D SCOP collection. It is an extension of the original dataset by Ding that also

includes the pseudo-amino acid compositions proposed by Shen and Chou and the Smith-Waterman

String kernels employed in Damoulas and Girolami. The data is split to independent train and test

sets with 311 samples for training and 383 samples for testing.

4.1.3 CAL500

The CAL500 dataset 4.3 is a collection of 500 songs tagged with 174 tags by paid human labellers.

500 songs annotated using a vocab of 174 tags from 8 semantic categories that describe the genre

(multiple and best), emotion, instruments, solos, vocal style, song characteristics and usage. Both

binary (relevant / irrelevant) and affinity labels are included. This CAL500 multi-kernel dataset

contains 6 kernels derived from various features that describe the music.
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Name Data Source

K subsamplePPK Probability Product Kernel (PPK) between Gaussian mixture models

(GMM) of a sub-sampling of each songs Delta-MFCC feature vectors.

K 30sec PPK PPK betweens GMMs of 30 continuous seconds, starting 30 seconds into the

song, of each song’s Delta-MFCC feature vectors.

K 30sec CHROMAPPK PPK betweens GMMs of 30 continuous seconds, starting 30 seconds into the

song, of each song’s Chroma (pitch-histogram) feature vectors.

K fpRBF Radial basis function (RBF) kernel between the Fluctuation Pattern features.

K lastfm RBF kernel between document vectors derived from Last.fm’s social tags

K webdoc RBF kernel between document vectors describing web pages returned by

searching for each song on Google.

Table 4.3: CAL500

4.2 Results

For all the methods we did 5 fold Cross validation on datasets to choose the C value. For every

dataset the manifold is trained with relative number of anchor points according to the size of

dataset. Coefficients of the local coding were obtained using inverse Euclidean distance based

weighting solved for 5-8 nearest neighbors according to the number of anchor points.

Dataset p-norm MKL VSKL LMKL LMKL-l LMKL-LSVM

CAL500 84.8± 1.54(p = 10000) 86.16± 1.65(q = inf) 84.83± 1.56 84.80± 1.55 86.08± 1.79

Protien Fold Prediction 96.29± 0.56(p = 10000) 94.81± 1.34(q = inf) 96.94± 0.73 97.15± 0.69 96.79± 0.81

Pendigits 90.00± 0.44(p = 10000) 97.40± 0.22(q = inf) 99.78± 0.07 98.77± 0.11 99.90± 0.05

Table 4.4: Results
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Chapter 5

Conclusion and Future Work

In the project we tried to understand the MKL problem and to come up with a good solution.

We modified the existing approach slightly and we also applied the existing approach on also local

classifier instead of global classifier. In the end we came up with some methods that are giving

comparable results as the previous methods.

We used the local SVM concept with MKL problem that gives one future approach that may

be useful for further research in the MKL problem. And also using some good gating kernels in

localized MKL may give some good results.
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