
Large Area 3D Reconstruction using Images,
Maps and Location Data

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

by

Srijit Dutt

Roll No: 10305056

under the guidance of

Prof. Parag Chaudhuri

Prof. J. Saketha Nath

Department of Computer Science and Engineering

Indian Institute of Technology Bombay

2012

Dissertation Approval Certificate

Department of Computer Science and Engineering

Indian Institute of Technology Bombay

The dissertation entitled “Large Area 3D Reconstruction using images, maps and

location data”, submitted by Srijit Dutt (Roll No: 10305056) is approved for the degree of

Master of Technology in Computer Science and Engineering from Indian Institute

of Technology Bombay.

Prof. Parag Chaudhuri

Dept CSE, IIT Bombay

Supervisor

Prof. J. Saketha Nath

Dept CSE, IIT Bombay

Supervisor

Prof. Sharat Chandran

Dept CSE, IIT Bombay

Internal Examiner

Mr. Kiran Ambardekar

Sark Infotech

External Examiner

Prof. K R Karunakaran

Dept ME, IIT Bombay

Chairperson

Place: IIT Bombay, Mumbai

Date: 2012

i

Declaration

I, Srijit Dutt, declare that this written submission represents my ideas in my own words

and where others ideas or words have been included, I have adequately cited and referenced

the original sources. I also declare that I have adhered to all principles of academic honesty

and integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source

in my submission. I understand that any violation of the above will be cause for disciplinary

action by the Institute and can also evoke penal action from the sources which have thus not

been properly cited or from whom proper permission has not been taken when needed.

Signature

Name Of student

Roll number

Date

ii

Abstract

With the advent and mass-penetration of smart phones which not only possess high mega-pixel

cameras but also have various sensors like GPS, magnetometer, etc., it is possible now for users

to take high quality photos which have geo-tagged information embedded in them in the form of

EXIF tags. Together with the above development as well as publicly available map databases

which have various places of interest outlined in them like Wikimapia and Google Maps, it

is possible now to find out reliably which building or monument is being photographed by a

user. We have build an online portal where various users can submit a collection of geo-tagged

photographs and easily visualize three-dimensional dense point clouds reconstructed using those

photographs.

We utilize an improved version of Bundler Software [33, 34] in the back-end. The key-point

matching part of the Bundler SFM pipeline, which is the most computationally intensive stage

of the pipeline, has been re-written to take advantage of the multi-core architecture of the

current generation of CPUs giving about four to five times speed improvement over the original

version. The outline of the building being viewed, which is queried from Wikimapia, is used

to reduce the number of image matching. Also, the key-point matching is now incremental.

allowing users to seamlessly add images to existing point cloud models.

Contents

1 Introduction 1

1.1 Problem Statement . 1

1.2 Contributions . 2

1.3 Related Work . 2

1.3.1 Reconstruction from a Single Image . 3

1.3.2 Reconstruction from Multiple Images . 4

2 Single View Metrology 6

2.1 Notation . 7

2.2 Vanishing Points and Lines . 8

2.3 Camera Model . 8

2.3.1 Camera Projection Matrix . 9

2.4 Planar Homography . 9

2.5 Camera Center . 10

2.6 Cross Ratio . 11

2.7 Geometry . 12

2.8 Experiments . 14

3 Bundler System 16

3.1 RANdom SAmple Consensus . 17

3.2 Fundamental matrix/Essential Matrix Estimation 20

3.2.1 Properties of Fundamental Matrix . 20

3.2.2 Fundamental Matrix Estimation Algorithm 21

3.2.3 Seven Point algorithm . 22

3.2.4 Normalized Eight Point Algorithm . 22

3.2.5 Essential Matrix Properties . 22

3.2.6 Experiments . 23

3.3 Triangulation . 25

3.4 Bundle Adjustment . 27

3.5 Levenberg-Marquadt Algorithm . 28

4 System Overview 30

4.1 Rules for starting various stages . 34

i

5 System Modules 37

5.1 Localization of Building being Reconstructed . 37

5.2 Feature Matching . 42

5.2.1 Challenges . 44

5.3 GPS Constrained Bundle Adjustment . 44

6 Results 48

7 Conclusion and Future Work 56

7.1 Conclusion . 56

7.1.1 Contributions . 56

7.2 Future Work . 57

ii

List of Figures

1.1 Make3D Input Image (Left) and output model (Right) 3

1.2 Make3D output on a Hampi Temple Image . 4

2.1 Distance between parallel planes [6] . 6

2.2 Ratio of Area between parallel planes [6] . 7

2.3 Camera Position [6] . 7

2.4 Vanishing Line and Vanishing Point [6] . 8

2.5 Pinhole Camera Model [13] . 9

2.6 Planar Homography [13] . 10

2.7 Camera center [13] . 10

2.8 Cross Ratio [13] . 11

2.9 Basic Camera Geometry [7] . 12

2.10 Distance between parallel planes [6] . 12

2.11 Vanishing Line of the reference plane . 14

2.12 The height of the window is use as reference to measure the height of the door . 15

2.13 Ratio of Area on Parallel Planes . 15

3.1 Bundler Pipeline . 16

3.2 RANSAC Algorithm . 18

3.3 Point Correspondences using RANSAC and Five Point Algorithm on KERMIT

data set . 19

3.4 Point Correspondences using RANSAC and Five Point Algorithm on ET data set 19

3.5 Point Correspondences using RANSAC and Eight Point Algorithm on ET data

set . 20

3.6 Fundamental matrix epipolar lines ET data set Image 6 and 7 23

3.7 Fundamental matrix epipolar lines kermit dataset Image 7 and 8 24

3.8 Residual Error Five Point Algorithm ET Dataset Image 6 and 7(left) and 1 and

2 (right) . 24

3.9 Comparison between 8 and 7 point algorithm based on Residual Error. The

number in bracket is the number of point correspondences 25

3.10 Triangulation of 3D point courtesy Wikipedia TriangulationIdeal.svg 13 Oct

2010. http://en.wikipedia.org/wiki/File:TriangulationIdeal.svg 25

3.11 Point Cloud generated using Five Point and linear triangulation algorithm on

ET data set . 27

3.12 Arrow-Head Sparsity Pattern of the Hessian Matrix courtsey wikipedia 28

iii

4.1 System Architecture . 30

4.2 Interface for uploading images . 31

4.3 Interface for checking status of images . 31

4.4 Interface for checking status of key-point matching of images 31

4.5 Interface for checking point clouds generated . 32

4.6 Stone Chariot Hampi Temple Dense Point Cloud(468 images) 33

4.7 Hostel 14 B wing, IIT Bombay(413 images) . 33

4.8 Kanwal Rekhi Building, IIT Bombay . 34

4.9 ER diagram . 35

5.1 Sample XML file returned by Wikimapia . 38

5.2 Wikimapia Image of IIT Bombay with buildings outlined 39

5.3 Three Conditions under which an edge is visible in the viewing cone 39

5.4 GPS positions of images taken around Physics Department IIT Bombay 41

5.5 GPS positions of images taken around Kanwal Rekhi Building IIT Bombay with

viewing cone of a photograph highlighted . 41

5.6 Comparison of Running Time of various component on KRESIT Dataset of 112

images . 43

5.7 Comparison of key-point matching module . 43

5.8 Correct GPS, Physics Department IIT Bombay 46

5.9 Incorrect GPS, Physics Department IIT Bombay 47

5.10 Totally Incorrect GPS, Physics Department IIT Bombay 47

6.1 Hostel 14 C wing, IIT Bombay sample images 49

6.2 Hostel 14 C wing, IIT Bombay Point Cloud and GPS information(302 images) . 49

6.3 Hostel 14 C wing, IIT Bombay Point Cloud (302 images) 50

6.4 Shailesh J. Mehta School of Management, IIT Bombay sample images 50

6.5 Shailesh J. Mehta School of Management, IIT Bombay Point Cloud and GPS

information (345 images) . 51

6.6 Shailesh J. Mehta School of Management, IIT Bombay(345 images) 51

6.7 Shailesh J. Mehta School of Management, IIT Bombay(345 images) 52

6.8 Physics Department, IIT Bombay sample images 52

6.9 Physics Department(South Side) IIT Bombay, IIT Bombay(345 images) 53

6.10 Physics Department(South Side) IIT Bombay, IIT Bombay(345 images) 53

6.11 Physics Department(South Side) IIT Bombay, IIT Bombay(345 images) 54

6.12 Physics Department(North Side) IIT Bombay, IIT Bombay(345 images) 54

6.13 Physics Department(West Side) IIT Bombay, IIT Bombay(345 images) 55

6.14 GPS positions of images taken around Physics Department IIT Bombay 55

iv

List of Tables

5.1 Computation time in minutes for various stages of the bundler pipeline(original)

on different datasets . 42

6.1 Computation time in minutes for various stages of the bundler pipeline(single/multi-

threaded) on different datasets . 48

v

Chapter 1

Introduction

3D Reconstruction is the problem of constructing a three-dimensional model of an object from

single or multiple two-dimensional views of the object under consideration. Human beings pos-

sess a remarkable ability to navigate and understand the visual world by solving the inversion

problem of getting 3D information from 2D images. 3D Reconstruction is a major research area

in computer vision that seeks to incorporate such abilities in computers. 3D Reconstruction

has applications in diverse fields such as tourism, medical imaging, architecture, robotics, au-

tonomous driving and exploration, photo organization, image or video retrieval, virtual reality,

augmented reality, human-computer interaction, object recognition, etc.

In recent years, there has been a surge of interest in urban 3D modeling from large unordered

collection of images [1, 10, 33]. With the high penetration of smart phones and digital cameras

which come with various sensors to measure GPS and directional data, it is possible locate with

precision the images on a map using geo-tagged data. If compass direction is available, then a

viewing cone can be traced out. Together with the help of map databases, like Wikimapia and

Google Maps, which have various urban buildings outlined in them, it is possible now to find

out reliably which building or monument is being photographed by the user. We have built an

on-line portal where various users can submit a collection of geo-tagged photographs and easily

visualize dense point cloud 3D models generated by those photographs.

1.1 Problem Statement

The main aim of the project is to develop a system capable of doing large scale 3D reconstruction

using sensor data from various sources like GPS and compass direction. We want to use the

GPS and direction information to query the map database and find which building is being

viewed and cluster the images using this information. 3D reconstruction procedure requires a

large amount of images and these images should have good coverage of the building that we

are trying to reconstruct. Our aim is to carry out campus wide reconstruction. As it is not

possible for a single individual to be able to cover all the buildings, we have built an online

portal where users can upload geo-tagged images and view the 3D model reconstructed using

those images.

1

Images Maps GPS and direction
Hampi Temple courtesy wikimapia.org courtesy wikipedia.com

last accessed on 20th June 2012 last accessed on 20th June 2012

1.2 Contributions

In this thesis work, we have made following contributions:-

1. Online portal where users can upload images and view 3D model. The portal allows for

users to track the status of the images submitted.

2. The geo-tagged images annotated with compass direction uploaded by the user are used

to identify the building being viewed by the user and reconstruct the building.

3. The building outline information is used to reduce the number of image key-point matches.

4. The key-point matching stage is re-written to use the latest FLANN Library.

5. Multi-threading support is added to increase the speed of matching.

6. Support for incrementally adding images to an already reconstructed model.

The rest of this report is organized as follows. Chapter 2 gives an overview of single view

metrology technique. Chapter 3 reviews the various algorithms used in the Bundler system.

Chapter 4 gives brief system overview and describes the functionality of each module. Chapter

5 describes in detail the procedure to cluster images depending on the building being viewed

and the key-point matching module. Chapter 6 outlines the formulation to incorporate GPS

information into the Bundle Adjustment problem. In Chapter 7 we present our results and

compare it with those of the pre-existing system. Chapter 8 concludes this report with a

summary of key observations. We outline potential future research that can build upon the

work in this thesis.

1.3 Related Work

In this section, we provide an overview of some of the state-of-the-art systems in 3D reconstruc-

tion. We start by describing a system that uses a single image as an input. We than progress

towards describing systems that process a large number of images.

2

1.3.1 Reconstruction from a Single Image

Single View Metrology

Single View Metrology [7] uses only a single image to obtain a metric reconstruction from the

image but restricts itself to scenes containing planes and parallel lines. The technique can

used to get the distance between parallel planes, area ratio between parallel planes and camera

position. The technique is described in detail in section 2.

Make3D

Make3D [28, 29, 30] uses only a single image to create a visually pleasing 3D model. The

scene is assumed to be made up of a number of small plane patches. Discriminatively trained

Markov Random Field (MRF) by supervised learning is used to infer a set of plane parameters

that capture both the orientation as well as the location of a image patch. The training data

consists of a large set of images and their corresponding ground-truth depth-maps. Make3D

incorporates multi-scale local and global image features, The method does not generalize well

to all types of images and gives good results only for image similar to those present in the

training set.

Figure 1.1: Make3D Input Image (Left) and output model (Right)

3

Figure 1.2: Make3D output on a Hampi Temple Image

Rule based procedural modeling

Rule based procedural modeling technique [22] reconstructs facade of building with a single

image. It uses shape grammars to get hierarchical subdivision of facades. It is useful for urban

reconstruction using low resolution oblique aerial imagery and building facades.

1.3.2 Reconstruction from Multiple Images

Structure-and-Motion Pipeline on a Hierarchical Cluster Tree

Structure from motion refers to the process of finding the three-dimensional structure of an

object by analyzing local motion signals over time. The computational complexity of the

structure for motion pipeline is reduced by using hierarchical clustering [8, 12]. The images

are organized into a tree with agglomerative clustering, using a measure of overlap Geometric

Robust Information Criterion (GRIC) [36] as the distance. The reconstruction then follows

this tree from the leaves to the root, with the partial reconstruction representing the internal

nodes and the images representing the leaves. As a result, the problem is broken into smaller

instances, which are then separately solved and combined. The scheme reduces the complexity

of the problem if the tree is well balanced. Compared to the standard sequential approach, this

pipeline boosts computational efficiency by one order of magnitude, is independent from the

initial pair of views and copes better with drift problems.

Large Scale 3D Reconstruction

The recent development of techniques in 3D reconstruction have allowed for a large number of

images (150,000 to 3 million images) [1, 10] to be processed for 3D reconstruction and large

scale 3D models to be developed from community photo sharing websites. The major steps in

large scale 3D reconstruction [10] are:-

1. Appearance-based Clustering: Using GIST [25] features to capture global image

4

similarity and GPS location information, iconic views are obtained and are clustered

using K-Mediod algorithm [15].

2. Geometric Cluster Verification: SIFT [18] and ARRSAC [26] are used to identify

mutually consistent core set of images. An iconic view of each cluster is also found.

3. Local Iconic Scene Graph Reconstruction: Vocabulary Tree [24] search and cluster-

ing based on geo-location is used to identify neighbouring iconics. Image registration are

carried out for the iconic images.

4. Dense Model Computation: Clustering Views for Multi-view Stereo (CMVS) [11] is

used for clustering the images in manageable cluster sizes. Any Multi-view stereo like

Patch-based Multi-view Stereo (PMVS) can be used to process each cluster in parallel

and then fuse the reconstructed model.

SFM with Duplicate Objects

Traditional structure for motion pipeline do not give good reconstructions when the scene

contains duplicate structures or objects due to erroneous matching of point correspondences

between the duplicate structure. Expectation Maximization (EM) based approach [27] is used

to handle large duplicate objects in a scene using and estimate the camera parameters and

detect erroneous point correspondence matches.

Linear SFM

Linear structure from motion technique [32] is based on vanishing point (VP) matches in images.

A vanishing point is a point in a image to which parallel lines not parallel to the image plane

appear to converge. Vanishing point are used to estimate global camera rotations as well as

relative rotation estimates obtained from pairwise image matches. Camera translations and 3D

points are simultaneously estimated using a multi-staged linear technique. Unlike sequential

structure from motion the linear structure from motion method does not require intermediate

bundle adjustments.

Fusion of GPS and Structure-from-Motion using Constrained Bundle Adjustments

Fusion of GPS and Structure from Motion [16] introduces two constrained Bundle Adjustment[38]

formulation which enforce an upper bound for the re-projection error. The problem of drift in

structure from motion pipeline is addressed by integrating the bundle adjustment procedure in

an incremental structure from motion method based on local bundle adjustment.

Single View Metrology is explained in detail in chapter 2. Structure for motion pipeline

stages are explained in greater detail in chapter 3. More details about all related work can be

found in their respective chapters where we deal with the involved methods in greater detail.

5

Chapter 2

Single View Metrology

In general, a single view does not contain enough information for a complete 3D reconstruction

of the scene. But with the knowledge of certain geometric information, we can achieve a metric

reconstruction from the image.

In this chapter, we shall restrict ourselves to scenes containing planes and parallel lines. We

assume that the vanishing line of a reference plane in the scene and the vanishing point are not

parallel to the plane that is provided by the user. We can then measure the following three

canonical quantities useful in single view metrology:-

1. Distance between planes parallel to the reference plane

Figure 2.1: Distance between parallel planes [6]

6

2. Area and length ratios between planes parallel to the reference plane

Figure 2.2: Ratio of Area between parallel planes [6]

3. Camera position

Figure 2.3: Camera Position [6]

These measurements are independent of the internal parameters of the camera.

2.1 Notation

Here we introduce the mathematical notation used throughout the report. We will be working

with the homogeneous coordinate system.

7

1. Point (x, y) in R2 is represented as (x, y, 1) in P2 projective space

2. Equality is defined only up to scale (x, y, z) = k · (x, y, z) for homogeneous coordinates

3. (x, y, z) in P2 =
(
x
z
, y
z

)
in R2 where z 6= 0

4. (x, y, 0) represents points at infinity

5. Line in R2 : ax+ by + c = 0

6. Line in P2 : (a, b, c)

7. xT l = lTx = 0 for all points on the line

2.2 Vanishing Points and Lines

A vanishing point is a point in a perspective drawing to which parallel lines not parallel to the

image plane appear to converge.

Figure 2.4: Vanishing Line and Vanishing Point [6]

The vanishing line is defined as the intersection of two vanishing points. The vanishing points

and line can also be automatically detected [31].

2.3 Camera Model

We assume a pinhole camera model.

8

Figure 2.5: Pinhole Camera Model [13]

Pinhole Camera: C is the camera center which is placed at the origin. The line from the

camera center perpendicular to the image plane is called the principal axis or principal ray

of the camera and the point P where the principal axis meets the image plane is called the

principal point. Any point on the line through camera center C and X (a point in 3D) is imaged

at x (a point on the image plane).

2.3.1 Camera Projection Matrix

Camera projection matrix P is a 3× 4 matrix. Some properties of projection matrix are :-

1. x = PX where x = (x y 1)T and X = (X Y Z 1)T

2. Columns of P are pi, i = 1, . . . , 4

3. p1, p2, p3 are vanishing points of the world coordinate axes X, Y and Z

4. X-axis direction D = (1, 0, 0, 0)T is imaged at p1 = PD

5. p4 is the image of world origin

6. P =
[

p1 p2 p3 p4

]
= [vx vy v o]

2.4 Planar Homography

x = PX =
[

p1 p2 p3 p4

]
X

Y

0

1

 =
[
p1 p2 p4

] X

Y

1


x = Hxπ

9

H is the planar homography and is a 3 × 3 matrix of full rank where the columns of H are

given by:-

H =
[
p1 p2 p4

]
=
[
vx vy o

]
p4 must not lie on the vanishing line l. If it does, then the columns will not be linearly

independent.

o = p4 =
l

‖l‖
= l

P =
[
vx vy αv l

]
where α is a scale factor

where vx vy v are the vanishing points in X, Y, Z direction and o is origin

The distance between the parallel planes is independent of first two columns.

Figure 2.6: Planar Homography [13]

2.5 Camera Center

Figure 2.7: Camera center [13]

10

The camera center is the null-space of the camera projection matrix PC = 0

Line containing C and any other point A in 3-space:

X (λ) = λA+ (1− λ)

Under projection

x = PX (λ) = λPA+ (1− λ)PC = λPA

All points on the line are mapped to same image point PA that means the line should be

through the camera center.

2.6 Cross Ratio

Cross ratio is invariant under projective transformation of the line and is also independent of

a particular homogeneous representation. The formula for cross ratio is given by :-

Cross (x1, x2, x3, x4) =
|x1x2| |x3x4|
|x1x3| |x2x4|

|xixj| = det

[
xi1 xj1
xi2 xj2

]
where if xi2 = xj2 = 1 then |xixj| is signed distance between xi and xj

Figure 2.8: Cross Ratio [13]

11

2.7 Geometry

Figure 2.9: Basic Camera Geometry [7]

Any scene point which projects onto the vanishing line is at the same distance from the plane

as the camera center

Figure 2.10: Distance between parallel planes [6]

The three aligned points x, x′, v and the point of intersection c of the line joining them with the

vanishing line define a cross-ratio. The value of the cross-ratio determines a ratio of distances

between planes in the world.

12

Distance between two parallel planes is given by:-

Z

Zc
= 1− d (x′, c) ∗ d(x, v)

d (x, c) ∗ d(x′, v)

where Zc is the distance of the camera center from the reference plane

Distance between scene planes specified by base point X = (X, Y, 0)T on the reference plane

and top point X′ = (X, Y, Z)T is derived as:-

x = P


X

Y

0

1

 , x
′
=P


X

Y

Z

1


x = ρ (Xp1 + Y p2 + p4)

x′ = ρ′ (Xp1 + Y p2 + Zp3 + p4)

P =
[
vx vy αv l

]
p1 · l = p1 · l = 0

p4 · l = 1

ρ = l · x

αZ = − ‖x × x′‖
(l.x) ‖v × x′‖

Projection matrix for parallel plane

P =
[

p1 p2 p3 p4

]
P ′ =

[
p1 p2 p3 Zrp3 + p4

]
The homology between the planes can be obtained from the two projection matrices

H =
[
p1 p2 p4

]
H′ =

[
p1 p2 p3 Zrp3 + p4

]
Given the homology between two parallel planes we can transfer all points from one plane to

the other and make affine measurements in either plane.

Homology H̃ = H′H−1 maps image points on the plane π onto points on π′

p1 · p4 = 0 and p2 · p4 = 0(
I + Zrp3p4

T
)

H = H′

H̃ = I + Zrp3p4
T

H̃ = I + ψv l
T

with ψ = αZr = αZ = − ‖x ×x′‖
(l.x)‖v ×x′‖

Therefore we can calculate ψ if two corresponding points x and x′ are known.

13

Algorithm for measurement between parallel planes

1. Calculate orthogonal vanishing points

2. Calculate the vanishing line

3. Calculate ψ from known point correspondences r and r′

4. Transfer each of the four corner using homology H̃

5. Affine rectify the plane

6. Calculate the ratio of the two areas

2.8 Experiments

Single View Metrology experiment to calculate the distance between parallel plane or height of

an object

Figure 2.11: Vanishing Line of the reference plane

14

Figure 2.12: The height of the window is use as reference to measure the height of the door

Figure 2.13: Ratio of Area on Parallel Planes

The slab is of dimension 69cm ∗ 78cm and the A4 is of dimension 21cm ∗ 29.7cm

Actual Area Ratio = 21∗29.7
69∗78 = 0.1158

Area Ratio predicted = 0.1123

15

Chapter 3

Bundler System

In this section, we describe some algorithms that are used in the Bundler [33, 34] system, which

is a Structure From Motion (SFM) pipeline which takes mulitple images and gives a sparse point

cloud. A modified version of the Bundler system is used in the project. The RANSAC algorithm

[9] along with the Five Point Algorithm [23] are some of important algorithms used to initialize

the Bundle Adjustment (BA) [38] procedure. RANSAC algorithm is used to select correct point

correspondences between two images. The Five Point Algorithm is used to estimate the essential

matrix between two images. The Triangulation Algorithm [14] is used to find the 3D points.

We first describe Bundle Adjustment which is a key component of most SFM systems. We

then describe Levenberg-Marquadt [20] algorithm which is used to solve the Bundle Adjustment

problem. Lastly we describe various stages of a large scale 3D reconstruction system.

Figure 3.1: Bundler Pipeline

16

3.1 RANdom SAmple Consensus

RANSAC [9] is a non-deterministic iterative algorithm to estimate parameters of a mathemat-

ical model and is used when inlier to outlier ratio is generally high.

The input to the RANSAC algorithm is a set of point correspondences, a parametrized model

which can explain or be fitted to the observations, and some threshold parameters.

RANSAC achieves its goal by iteratively selecting a random subset of the original data. These

data are hypothetical inliers and this hypothesis is then tested as follows:

1. Select m data points randomly from the original data, where m depends on the minimum

number of points required to generate the hypothesis/model, which is equivalent to the

complexity of the geometric model

2. The selected points are checked for any degenerate configuration. If points are degenerate,

we repeat step 1.

3. A hypothesis is generated from the selected points.

4. Hypothesis Testing: All other data points are then tested against the fitted model using

some error metric. The set of data points Si whose error is less than some given threshold

T , is the support/consensus set for the model and the points are considered inliers for

the model.

5. If the number of inlier points is greater than the best previous found model or is equal

but the error is less than that of the best previous model, then the current model and the

inliers are stored as the current best model.

6. Repeat step 1-6 until some termination criteria is met.

7. The model is re-estimated from all hypothetical inliers, because it has only been estimated

from the initial set of hypothetical inliers.

The threshold is generally chosen empirically. The RANSAC algorithm terminates when at

least one of the random samples is outlier free with probability p. Thus, the minimum number

of samples that must be drawn in order to ensure that the probability of all samples being

corrupted falls below 1− p is

N ≥ log(1− p)
log (1− εm)

where ε is the true inlier ratio

Since the true inlier ratio ε is unknown a priori, a lower bound on this ratio can be found by

using the sample which currently has the largest support. This estimate is then updated as the

algorithm progresses.

17

Figure 3.2: RANSAC Algorithm

Various improvements have been suggested to the basic RANSAC algorithm. These can be

categorized into two classes:-

1. Improvements in the Hypothesis Generation Phase

(a) Progressive Sample Consensus (PROSAC) algorithm [4]

(b) Maximum Likelihood Estimation Sample Consensus (MLESAC) [37]

(c) Lo-RANSAC [5]

2. Improvements in the Hypothesis Testing Phase Stage

(a) The Td,d Test [3]

(b) Bail-Out Test [2]

(c) WaldSAC [19]

ARRSAC [26] a real time RANSAC algorithm combine PROSAC based sampling with partially

depth-first evaluation technique to meet real time constraints

18

Figure 3.3: Point Correspondences using RANSAC and Five Point Algorithm on KERMIT

data set

Figure 3.4: Point Correspondences using RANSAC and Five Point Algorithm on ET data set

19

Figure 3.5: Point Correspondences using RANSAC and Eight Point Algorithm on ET data set

3.2 Fundamental matrix/Essential Matrix Estimation

The fundamental/essential matrix is the algebraic representation of epipolar geometry in the

case of two images. Essential Matrix can be estimated when the cameras are calibrated. Funda-

mental Matrix is a generalization of the essential matrix. The camera matrices can be computed

from both the fundamental as well as essential matrix. The major difference is that in the case

of the fundamental matrix the camera matrices can only be known up to a projective ambiguity

whereas in the case of essential matrices the camera matrices can be derived up to a scale and

a four-fold ambiguity. Next we discuss the properties of fundamental and essential matrices

followed by the various algorithms to compute the fundamental and essential matrix.

3.2.1 Properties of Fundamental Matrix

Given a pair of image for each point in one image there exists an epipolar line in the other

image. The fundamental matrix gives a relation between a point and its epipolar line in the

other image. The various properties of fundamental matrix are:-

1. Fundamental Matrix is a rank 2 matrix of dimension 3 ∗ 3 with seven degrees of freedom

2. Point Correspondences: If x and x′ are corresponding image points the x′TFx = 0

3. Epipolar Lines : l′ = Fx is the line corresponding to x

4. l′ = F Tx′ is the line corresponding to x′

5. Fe = 0 , where e is the epipole i.e. the image of the second camera center in the first

view

20

6. F T e′ = 0 where e′ is the image of the first camera center in the second view

7. Canonical Cameras P = [I | 0], P ′ = [M |m]

F = [e′]×M = M−T [e]×, where e′ = m and e = M−1m

3.2.2 Fundamental Matrix Estimation Algorithm

The fundamental matrix is defined by the equation

x′
T
Fx = 0

for any pair of matching points x and x′

At least seven matching points are required to compute F

For x = (x, y, 1)Tand x′ = (x′, y′, 1)T each point gives linear equation in unknown entries of

F

x′xf11 + x′yf12 + x′f13 + y′xf21 + y′yf22 + y′f23 + xf31 + yf32 + f33 = 0

Where fij denotes the ith row and jth column unknown entry of the fundamental matrix

For a set of n points we stack the set of linear equations to obtain

Af =

 x′1x1
...

x′nxn

x′1y1
...

x′nyn

x′1
...

x′n

y′1x1
...

y′nxn

y′1y1
...

y′nyn

y′1
...

y′n

x1
...

xn

y1
...

yn

1
...

1

 f = 0

We can find the least square solution for

min ‖Af‖ subject to ‖f‖ = 1

which is the singular vector corresponding to the last column of V where SV D A = UDV T

To enforce the rank constraint on the fundamental matrix we can the least singular value of F

to zero

F = UDV Twhere D = diag (r, s, t) with r ≥ s ≥ t

Then F ′ = U diag (r, s, 0)V T is rank 2 matrix closest to F such that ‖F − F ′‖ is minimized

where ‖‖ represents the Forbenius Norm

GivenN point correspondences xi ↔ x′i the image points are normalized such that their centroid

is the origin and their root mean squared distance is
√

2

x̂i = Txi and x̂
′
i = T ′x′i

where T and T ′ are the normalization transformation and are of the form

T =

 scale 0 −scale ∗ centroidx
0 scale −scale ∗ centroidy
0 0 1


Where (centroidx, centroidy) is the centroid of the points xi and

scale =

√
2 ∗N∑

i (xi − centroid)2

The algorithms to estimate require the points to be normalized and then the fundamental

matrix to be denormalized

F = T ′
T
F̂ T

21

3.2.3 Seven Point algorithm

The seven point algorithm works when seven point correspondences are known. The matrix A

is a 7 ∗ 9 matrix and we make use of the singularity constraint to solve for F .

The solution to the equation Af = 0 gives a two dimensional space with an unknown α. Using

the singularity constraint we can write

det(αF1 + (1− α)F2) = 0

Solving the cubic polynomial in α can give either one or three real solutions. Thus the seven

point algorithm gives one or three possible solution for the fundamental matrix

3.2.4 Normalized Eight Point Algorithm

When eight or more correspondences are available we apply the eight point algorithm.

The eight point algorithm involves the following steps:-

1. Normalize the point correspondences

2. Calculate F̂ by solving Âf = 0 where f is the singular vector corresponding to the

smallest singular value of Â where is constructed from the matches x̂i ↔ x̂′i

3. Enforce the constraint that F̂ is rank 2

4. De-normalize the fundamental matrix F = T ′T F̂ T

3.2.5 Essential Matrix Properties

The essential matrix properties [13] are:-

1. The determinant of the essential matrix is zero

det (E) = 0

2. The essential matrix is 3 × 3 matrix with two singular values being equal and the third

being zero.

2EETE − trace
(
EET

)
E = 03×3

3. For a given essential matrix E = UΣV T where Σ = diag(1, 1, 0), and the first camera

matrix P = [I|0], there are four possible choices for the second camera matrix P ′

P ′ =
[
UWV T | +u3

]
or
[
UWV T | −u3

]
or
[
UW TV T | u3

]
or
[
UW TV T | −u3

]

where W =

 0 −1 0

1 0 0

0 0 1


22

In only one of the four solutions, the object is in front of the camera. In the other three

solutions, the object is behind at least one of the cameras.

A single 3D point X is sufficient to decide between the four different solutions for the camera

matrix P ′

depth (X;P ′) =
sign (det (M))w

T ‖m3‖
where P ′ = [M | t] , M = 3× 3 matrix and m is the third row of M and P ′X = wx. A point

lies in front of a camera P ′ if and only if depth (X;P ′) > 0. The point correspondences cannot

be normalized as in the case of fundamental matrix [13] as they violate the singular value

constraint of the fundamental matrix. The N point correspondences xi ↔ x′i are normalized

by

x̂i = K−11 xi and x̂
′
i = K−12 x′i

where K1 and K2 are the camera calibration matrices of first and second cameras. The point

correspondence constraints are:-

x̂
′T
i Ex̂i = 0

The essential matrix is a special case of fundamental matrix when the camera calibration

matrix is known. The essential matrix gives camera matrices only up to a scale ambiguity. The

Five Point Algorithm [23, 35] is used to estimate the essential matrix from five known point

correspondences.

3.2.6 Experiments

The kermit and ET data set used for experiments Epipolar Lines : A point in one image is

related to a line containing the corresponding point in another image by the fundamental matrix

Figure 3.6: Fundamental matrix epipolar lines ET data set Image 6 and 7

23

Figure 3.7: Fundamental matrix epipolar lines kermit dataset Image 7 and 8

The variation of residual error as the number of point correspondences increase. Sampson

Error was used for hypothesis testing

Sampson Error ∑
i

(x′Ti Fxi)
2

(Fxi)21+(Fxi)22+(FT x′i)
2
1+(FT x′i)

2
2

Residual Error

1
N

∑N
i d(x′i, Fxi)

2 + d(xi, F
Tx′i)

2

Figure 3.8: Residual Error Five Point Algorithm ET Dataset Image 6 and 7(left) and 1 and 2

(right)

24

Figure 3.9: Comparison between 8 and 7 point algorithm based on Residual Error. The number

in bracket is the number of point correspondences

3.3 Triangulation

Triangulation refers to the process of determining a point in 3D space given its projections

onto two, or more, images. In order to solve this problem it is necessary to know the camera

matrices. The camera matrices can be obtained from the fundamental or essential matrix with

assuming the world origin at first camera P = K[I|0]

Each point in an image corresponds to a line in 3D space such that all points on the line are

projected to that first point in the image. If a pair of corresponding points xi ↔ x′i in two, or

more images, can be found it must be the case that they are the projection of a common 3D

point X.

Figure 3.10: Triangulation of 3D point courtesy Wikipedia TriangulationIdeal.svg 13 Oct 2010.

http://en.wikipedia.org/wiki/File:TriangulationIdeal.svg

25

We first present the linear triangulation algorithm:-

Find X given the camera matrices P1 and P2 and the point correspondences x↔ x′

x = P 1X and x′ = P2X

The equality is only up to scale, expanding and including the scale factor w gives

w

 x

y

1

 =

 P1

P2

P3

X ⇒ wx = P1X

wy = P2X

w = P3X

Where Pi is the ith row of P and κ = (x, y, 1) homogeneous coordinate

P3Xx = P1X

P3Xy = P2X
=⇒ P3Xx− P1X = 0

P3Xy − P2X = 0
=⇒

[
P3x− P1

P3y − P2

]
X = 0

Similarly for the second camera , we get[
P ′3x− P ′1
P ′3y − P ′2

]
X = 0

Stacking both the constraints gives us
P3x− P1

P3y − P2

P ′3x− P ′1
P ′3y − P ′2

X = 0

The equation of the form AX = 0 and can be easily solved , but we must first normalize the

rows of the A matrix such that they are of unit norm

Anorm =


A1

‖A1‖
A2

‖A2‖
A3

‖A3‖
A4

‖A4‖


The optimal triangulation algorithm [14] is an non-iterative algorithm which involves solving

an six degree polynomial and uses the linear triangulation algorithm as a subroutine.

26

Figure 3.11: Point Cloud generated using Five Point and linear triangulation algorithm on ET

data set

3.4 Bundle Adjustment

Bundle Adjustment [38] is the joint optimization of the camera parameters P and the 3D points

X in one large optimization problem. Global Bundle Adjustment is used as the last step of the

3D reconstruction algorithm. Incremental Bundle Adjustment is used when we add a new

image to the model. It amounts to an optimization problem on the 3D structure, intrinsic

and extrinsic camera parameters and radial distortion coefficients. Bundle Adjustment is the

Maximum Likelihood Estimator if the noise pertaining to the observed image features have a

zero-mean Gaussian distribution. The objective of the Bundle Adjustment problem is to reduce

the re-projection error:-

argmin
Pi,Xj

i=n∑
i=1

j=m∑
j=1

‖xij −Q(Pi, Xj)‖22 ∗ vij

where Xj is 3 dimensional vector representing a 3D points, xij is 2 dimensional vector repre-

senting the 2D point corresponding to camera i and 3D point j and vij is an indicator function

and is one if point j is visible in camera i else zero. n is the number of camera and m is the

number of 3D points

The camera model P used in the optimization has the following parameters:-

• focal length f ,

• two radial distortion parameters k1 and k2

• Rotation R

27

• Translation t.

The formula for projecting a 3D point X into a camera Q(P,X) is:

XP = R ∗X + t

which converts from the world coordinate to camera coordinate. Then perspective division is

carried out followed by conversion to pixel coordinate:

p = −P/XP .z

p′ = f ∗ r(p) ∗ p

where XP .z is the third coordinate of XP . In the last equation, r(p) is a function that

computes a scaling factor to undo the radial distortion:

r(p) = 1.0 + k1 ∗ ‖p‖2 + k2 ∗ ‖p‖4

The equations above imply that the camera viewing direction is:

RT ∗
[
0 0 −1

]T
(i.e. the third row of R)

and the 3D position of a camera is −RT ∗ t
The optimization problem is efficiently solved by using Levenberg-Marquadt algorithm and

exploiting the sparsity pattern of the Hessian matrix, as only a subset of 3D points is visible

in a particular camera.

Figure 3.12: Arrow-Head Sparsity Pattern of the Hessian Matrix courtsey wikipedia

3.5 Levenberg-Marquadt Algorithm

The Levenberg-Marquadt method [20] is a simple variation on Newton iteration designed to

provide faster convergence and regularization in the case of over-parametrized problems. It

may be seen as a hybrid between Newton iteration and a Gradient Descent method.

28

Given a functional relation X = f(P) where X and P are measurement and parameter vectors

in Euclidean spaces RN and RM respectively. We need to find P̂ such that ‖ε‖ = ‖f
(
P̂
)
−X‖

is minimized. In each iteration, the parameter vector P is replaced by a new parameter vector

P + ∆. The function f is approximated by

f (P0 + ∆) = f (P0) + J∆

Where P0 is some initial estimate and ε0 = f (P0)−X and we wish to find P1 = P0 + ∆,

f (P1)−X = f (P0) + J∆−X = ε0 + J∆

Thus we want to minimize ‖ε0 + J∆‖. The normal equation JTJ4 = −JT ε of Gauss Newton

iteration method used to find ∆ is replaced the augmented normal equation

(JTJ + λI)∆ = −JT ε

where J is the Jacobian matrix J = ∂f
∂P

, I is the identity matrix and λ is a scalar typically

initialized to 10−3.

If the value of ∆ is obtained by solving the normal equation leads to a reduction of error, then

the increment is accepted and λ is divided by a factor (usually 10). If the value of ∆ leads to an

increased error, then λ is multiplied by the same factor and the augmented normal equations

are solved again.

The Levenberg-Marquadt algorithm moves seamlessly between Gauss-Newton iteration, which

causes rapid convergence in the neighbourhood of the solution and a gradient descent approach

which will guarantee a decrease in the cost function when we are far away from the minima.

29

Chapter 4

System Overview

We give a brief overview of the architecture of the system that is being used.

Figure 4.1: System Architecture

1. Upload Images: The website provides an interface for the user to upload multiple images.

The GPS and direction can be manually entered by the user at the time of uploading the

images, or they can be stored in the EXIF tag of the images being uploaded.

30

Figure 4.2: Interface for uploading images

Figure 4.3: Interface for checking status of images

Figure 4.4: Interface for checking status of key-point matching of images

31

Figure 4.5: Interface for checking point clouds generated

2. Finding Buildings Visible: The longitude and latitude is used to query Wikimapia and

get all places marked within a fixed window size. The places are marked as polygons

on the maps and the longitude and latitude coordinates of these polygons are returned.

Using the compass direction, a cone is traced and all polygon edges within the cone are

selected. Next, we find which of the edges of the selected polygon edges are actually visible

by tracing a fixed number of rays from the position of GPS coordinates and finding the

nearest polygon edge. All edges which are visible in at least a pre-specified minimum

number of rays are selected. The information is stored in the database.

3. Generation of local image features: SIFT [18] is used for local image features.

4. Matching of features: The features detected from the previous stage are matched to find

out point correspondences between the images.

5. Bundler: Initializes the camera poses and 3D points using RANSAC [9, 26] and Five

Point Algorithm [23]. It then applies Incremental Bundle Adjustment [38] and outputs a

sparse point cloud.

6. Dense model reconstruction: Clustering Views for Multi-view Stereo (CMVS) [11] is used

for clustering the images in manageable cluster sizes. Patch-based Multi-view Stereo

(PMVS) is used to process each cluster in parallel and then fuse the reconstructed model.

32

Figure 4.6: Stone Chariot Hampi Temple Dense Point Cloud(468 images)

Figure 4.7: Hostel 14 B wing, IIT Bombay(413 images)

7. Displaying of 3D Models: The 3D model is displayed in the browser using WebGL. The

position of the image and the compass direction is displayed using Google Map API.

33

Figure 4.8: Kanwal Rekhi Building, IIT Bombay

4.1 Rules for starting various stages

In this section, we shall discuss the criteria for starting the various stages of the system. When

an image is uploaded, we extract the longitude, latitude and direction information from the

EXIF tags if they are not supplied in the upload form. We save the image along with the

longitude, latitude and direction information in the ‘upload’ table as show in the figure 4.9.

The fields ‘located’ and ‘sift state’ field are set to their default values ‘not processed’ when the

image is uploaded.

The various stages of the pipeline are described below along with the prerequisites required

for starting the stage.

• Key-Point Generation Phase: No prerequisite for starting of the phase for generation

of SIFT features [18] of the images. The ‘sift state’ field of the ‘upload’ table which

is set to ‘not processed’ when the image is uploaded, is set to ‘processing’ during the

feature generation phase. Once the feature generation phase has been completed, the

SIFT features are saved in the ‘sift’ field of the ‘upload’ table and the ‘sift state’ field is

set to ‘processed’. If the feature generation phase fails, then the ‘sift state’ field is set to

‘not processed’.

• Locating Building Viewed: There are no prerequisite for starting the phase for locating

which building is being viewed by an image using the GPS and direction information

stored in the ‘longitude’, ‘latitude’ and ‘direction’ fields of the ‘upload’ table. The ‘located’

field of the ‘upload’ table which is set to ‘not processed’ when the image is uploaded is

updated to ‘processing’ when we start this stage for an image. Wikimapia is queried and

the edges of the building outline being viewed are found as described in Chapter 5.1. The

34

Figure 4.9: ER diagram

building information is added to the ‘model’ table if the building is already not present.

The edge information of the building is added to the ‘edge’ table. The ‘image model’

is updated, a tuple is added for each building image pair, to reflect that the building is

viewed in the image. The ‘processstate’ field of the ‘image model’ table is set to its default

value ‘uploaded’. For each edge which is visible, an entry is added to the ‘keymatch’ table.

The ‘processed’ field of the ‘keymatch’ table is set to its default value ‘not processed’.

After the successful addition of all the above entries in the table, the value of the ‘located’

field of the upload table is updated to ‘processed’. If no building is visible in the image,

then the value of the ‘located’ field is set to ‘failed’. In case of some unknown error, the

value is reverted to ‘not processed’.

• Key-match: After the above two stages for an image have been completed, an image

is eligible for the key-match processing stage. Key-match processing is carried out for

a model rather than an image. The following criteria must be satisfied for starting the

key-match processing stage of a model:-

– No key-match processing for the model/building is ongoing

– Bundler/PMVS processing for the model/building should not be under progress

– No image which has also been located to the same model/building is currently under

or waiting for SIFT processing

35

– Number of images meeting above criteria is above a certain threshold. The threshold

differs according to whether we are seeding a new model or adding to an existing

model

When the key-match processing stage is underway, ‘processed’ field in the ‘edge’ table

of the image edge pairs of the model being processed is updated to ‘processing’. The

‘image model’ table field ‘processstate’ is updated to ‘keymatch processing’. On the

successful completion of the stage, the ‘processed’ field of the ‘edge’ table for the var-

ious image edge pairs being processed is set to ‘processed’. The ‘image model’ table’s

field ‘processstate’ is updated to ‘keymatch processed’. The output of this stage is the

‘matches.init.txt’ file containing the SIFT keypoint matching information about the im-

ages and it is saved in the ‘matches’ field of the ‘model’ table as a BLOB. If the stage

cannot be completed ‘processed’ field the values of both the above fields are reverted back

to their original state which is ‘not processed’.

• Bundler/PMVS: A model is eligible for Bundler/PMVS processing after the key-match

processing stage has been successfully completed. The following criteria must be satisfied

before we begin the Bundler/PMVS processing stage:-

– Bundler/PMVS processing for the model is not currently under processing

– SIFT processing for any image located with the model is not ongoing/pending

– Key-match processing is not pending/ongoing

– The number of images waiting to should be processed should greater than some

threshold. The threshold varies depending on whether we seed a new model or we

are incrementally adding to an existing model.

The ‘processstate’ field of the ‘image model’ table is updated to ‘bundler processing’,

before we begin the Bundler/PMVS processing stage. On successful completion of the

stage, the ‘processstate’ field is updated to ‘pmvs processed’. If the execution of the

Bundler/PMVS stage is unsuccessful, the original value of the ‘processstate’ is reverted

back to its original value. The failure is noted in the log files. On successful completion,

the dense point clouds are generated and these are processed and inserted into ‘pointcloud’

table. The Bundler/PMVS output is saved in the ‘model’ table.

36

Chapter 5

System Modules

5.1 Localization of Building being Reconstructed

In this section, we describe the procedure of finding which building is being currently pho-

tographed by the user. The latitude lat, longitude lon and compass direction dir are either

extracted from the EXIF tag of the images using Metadata Extractor Library or manually

entered by the user.

The direction is the angle from the longitude in clockwise direction. The direction dir is

transformed so that we measure the angle θ from the latitude in counter-clockwise direction:

θ = (((−((dir + 90) mod 360)) mod 360) + 180) mod 360

The axis a is defined as

a =

cos(θ)sin(θ)

1


The cone angle θconeangle is a fixed parameter set to 40◦. We rotate the axis with cone angle

θconeangle and add it to the vertex v to get the cone point cp1 as follows:-

cp1 = v +

 cos(θconeangle) sin(θconeangle) 1

−sin(θconeangle) cos(θconeangle) 1

0 0 1

 · a
where the

v =

lonlat
1


The second cone point cp2 is similarly calculated

cp2 = v +

 cos(−θconeangle) sin(−θconeangle) 1

−sin(−θconeangle) cos(−θconeangle) 1

0 0 1

 · a
The vertex v, cp1 and cp2 form a triangle which is used to estimate 2D viewing cone

37

The centroid c of the triangle is calculated

c =
v + cp1 + cp2

3

We calculate the line equations of the sides of the triangle cl1, cl2, cl3 as follows:-

cl1 = v × cp1

cl2 = v × cp2

cl3 = cp1× cp2

and the sign of the centroid w.r.t the cone lines is given as follows:-

sign1 = sign(cl1 · centroid)

sign2 = sign(cl2 · centroid)

sign3 = sign(cl3 · centroid)

which will be used to check whether the edge lies inside the triangle.

The Wikimapia site is queried using the latitude lat and longitude lon coordinates and a

window size and the count of number c of entries to be returned. If the number of buildings

found is more than the number of entries, we query Wikimapia again with c set to number of

buildings found.

Wikimapia returns an XML file with the latitude and longitude coordinates of polygon

vertex of all the buildings in the window specified.

Figure 5.1: Sample XML file returned by Wikimapia

38

Figure 5.2: Wikimapia Image of IIT Bombay with buildings outlined

From the adjacent polygon vertices (say pv1 and pv2), we calculate the edge

e = pv1 × pv2

We check whether each edge e lies within the viewing cone. There are three possible cases:-

1. The edge e intersects cl1

2. The edge e intersects cl2

3. The edge e completely lies with the triangle whose vertices are v, cp1, cp1

Figure 5.3: Three Conditions under which an edge is visible in the viewing cone

39

We do not need to check for intersection with cl3 as it lies outside the window of buildings

queried from Wikimapia. To check whether an edge e intersects with cone line cl1, we take

cross product of the edge e with cl1 to get point of intersection p1

p1 = e× cl1

Now we need to check whether the point p1 lies on the line segment defined by v and cp1
We use the parametric equation of line segment

v + t ∗ (v − cp1), 0 ≤ t ≤ 1

to represent the cone line cl1
We solve for t in

v + t(v − cp1) = p1

if 0 ≤ t ≤ 1, then the point p1 lies within the line segment v and cp1.

Similarly we check that whether the point p1 lies within the line segment pv1 and pv2. If

the point of intersection p1 lies within both the line segments cone line 1 cl1 and edge e, then

we conclude that the edge is visible in the viewing cone. If the above condition is not true then

we need to check whether the cone line cl2 intersects with the edge e. If cone line cl2 intersects

with the edge e, the edge is visible in the viewing cone, else we check for the last condition

whether the edge e lies completely within the viewing cone. To check whether the edge e lies

completely within the triangle, we take the two end points of the edge pv1 and pv2 and find

their dot product with cone line cl1, cl2, cl3 as follows:-

sign1pv1 = sign(cl1 · pv1)

sign2pv1 = sign(cl2 · pv1)

sign3pv1 = sign(cl3 · pv1)

sign1pv2 = sign(cl1 · pv2)

sign2pv2 = sign(cl2 · pv2)

sign3pv2 = sign(cl3 · pv2)

Then we check whether

sign1 = sign1pv1

sign2 = sign2pv1

sign3 = sign3pv1

for pv1 and similarly for pv2 If all the conditions are true, then the edge e lies completely within

the viewing cone.

40

Figure 5.4: GPS positions of images taken around Physics Department IIT Bombay

Figure 5.5: GPS positions of images taken around Kanwal Rekhi Building IIT Bombay with

viewing cone of a photograph highlighted

We select all the edges which satisfy the above conditions. Now we find which of the edges

in the viewing cone are visible i.e. not occluded by some other edge.

We trace rays from the vertex v with θ varying from θconeangle to −θconeangle with step size

41

1◦ and with respect to the axis a. A particular ray r is calculated as

r = v × rp

where ray point rp is given by

rp = v +

 cos(θ) sin(θ) 1

−sin(θ) cos(θ) 1

0 0 1

× a
We find the intersection of the ray ri with the edge ej

priej = ri × ej

and check whether the point of intersection lies in the two line segment given by ray ri and

edge ej
We solve for t in

v + t(v − rp1) = priej

If 0 ≤ t ≤ 1, then the point priej lies within the line segment v and rp1. Similarly solve for

the other line segment.

We find the distance d between the points v and priej using

driej =
√
v2 + p2riej

For each edge we maintain a quantity known as visibility count and initialize it to zero. We

find the closest edge amongst all the edges which intersects with the ray and increase visibility

count of that edge by one. At the end of the process, any edge with a visibility count above a

certain threshold (say 10) is said to be visible in the cone. Now for each image, we get a set

of edges with their corresponding buildings which are visible in it. We save this information in

the database. Using the stored information about the visible edges and buildings in each image

we are able to reduce the number of matches which need to be performed in the key-matching

phase. Only those images are matched to one another which share an edge i.e. in both of the

images, the building edge is visible.

5.2 Feature Matching

The key-point matching module is the most computationally expensive and time taking of all

the stages of the Bundler pipeline. As the number of images increases the complexity of the

key-match point algorithm increases quadratically (O(n2)).

SIFT Keymatch Bundler PMVS

SOM(376) 305 2758 95 112

H14-C(302) 186 433 19 414

H14-B(414) 244 376 253 143

Table 5.1: Computation time in minutes for various stages of the bundler pipeline(original) on

different datasets

42

Figure 5.6: Comparison of Running Time of various component on KRESIT Dataset of 112

images

The original Bundler system used the Approximate Nearest Neighbor(ANN) library for

matching of features in high dimensions. The ANN library is not thread safe. The match-

ing module has been entirely replaced and now the FLANN [21] library is used which is thread

safe and supports multi-threading.

Figure 5.7: Comparison of key-point matching module

We use randomized kd-trees of the FLANN library for searching in high dimensional(128

length) feature space. Classical kd-trees performance degrades rapidly as the dimensionality of

43

the feature space increases. Randomized kd-tree overcomes this problem by maintaining multi-

ple randomized kd-trees. Randomized kd-tree are built by choosing split dimension randomly

from the first k dimensions. Boost multi-threading library is being used in the multi-threaded

key-point matching module.

The key-match program consists of following stages

1. Load the SIFT key files

2. Build the k-d trees

3. Match the image pairs

4. Write the output to the file

5.2.1 Challenges

The keymatch algorithm requires us to match multiple pairs of images. Each image can be

considered a node in the graph, where an edge between two nodes represent that the two images

keypoints need to be matched. The graph is a complete graph, all pair of nodes are connected.

The building outline information fetched from Wikimapia, can be utilized to remove some of

the edges in the graph. some of the challenges that required to be addressed during the design

of the module where to increase concurrency, reduce memory load and decrease contention

between the threads. In the first version of multi-threaded key-matching that we implemented,

we used a mutex to write output to a single file named ’matches.init.txt’. ’matches.init.txt’ file

must be written such that the key-match output of images is sorted by index of image i and

j. The images are assigned indexes according to the order in which they appear in the ’list.txt’

file. There was also a common task pool from which the threads picked the next task i.e. image

to be processed next. This lead to contention between the various threads and the performance

did not improve.

In the second version we tried, we strived to reduce the contention between the threads. The

output of matching each image pair was written to a separate file. The files where combined

together using shell script after the execution of the keymatch phase was over. For a pair of

image i, j the file written is i:j.keyPoints. Each thread loaded into its private memory the SIFT

key files it was assigned to process, this lead to increase in memory requirements and loading

time.

In the final version we load the data files and build indexes only once in the main program.

We had two mutex arrays one for the keypoint data and the other for the kd-trees. A thread

trying to match image i and j must acquire the kd-tree mutex of i and the data mutex of j

to proceed. This granularity of mutual exclusion together with writing output to independent

files lead to the performance improvement.

5.3 GPS Constrained Bundle Adjustment

We use the GPS information present in the images to constraint the Bundle Adjustment prob-

lem. We add to the objective of Bundle Adjustment a GPS error term

44

argmin
Pi,Xj

n,m∑
i,j

‖xij −Q(Pi, Xj)‖22 ∗ vij + λ
n∑
i

‖xgpsi − F (Pi)‖2

where Pi is the ith camera parameter, Xj is the jth three-dimensional vector of 3D points,

xij is two-dimensional vector of the 2D point corresponding to camera i and 3D point j. vij is

an indicator function and is one if point j is visible in camera i else zero. n is the number of

cameras. m is the number of 3D points. Q(P,X) is the projection model. λ is a constant.

Camera position is given by

C =

cxcy
cz

 = −R′ ∗ t

where R is rotation matrix and t is the translation vector of the extrinsic camera matrix. We

ignore the last coordinate and get 2D point ’c’. For a single camera we get the following relation

between the camera center and the GPS co-ordinate of the camera

xgps =

[
xgps1
xgps2

]
= s ∗

[
cos(θ) sin(θ) tx
sin(θ) cos(θ) ty

]
∗

cxcy
1

 =

[
a11 a12 a13
a21 a22 a23

]
∗

cxcy
1

 = B ∗ c

a11 = a22

a12 = −a21
Using all the 2 ∗ n equations from the n cameras

cx1 cy1 1 0

cy1 −cx1 0 1

cx2 cy2 1 0

cy2 −cx2 0 1
...

...
...

...

cxn cyn 1 0

cyn −cxn 0 1


∗


a11
a12
a13
a23

 =



xgps11
xgps12
xgps21
xgps22

...

xgpsn1

xgpsn2


We solve the above equation which is of the form

Ax = b

by taking the normal equation

x = (ATA)−1AT ∗ b

as A is 2n ∗ 4 and 2n� 4 we first multiply ATA to get a 4 ∗ 4 matrix, then find its inverse

(ATA)−1 we then multiply AT ∗ b and get a 4 ∗ 1. We multiply the two matrices to get 4 ∗ 1

vector. The vector x is used to obtain the matrix B

x̂gpsi = B ∗ −R′i ∗ ti = F (Pi)

The software package Scalable Bundle Adjustment SBA [17] required that we use a single

dummy 3D point, which is visible in all the cameras to incorporate the GPS error.

45

The above formulation has been tried, but the result were not encouraging. The main issue

faced by us during the implementation was:-

The GPS data collected by us using smart-phone A-GPS has accuracy in meters(5m-30m), the

data may be too noisy and can cause Bundle Adjustment to fail.

Some of the possible remedies could be:-

• We could incorporate the accuracy of the measured GPS co-ordinate as diagonal elements

of the co-variance matrix.

• Use Differential GPS(D-GPS) which as an accuracy of 10cm. Such system are not avail-

able in smart-phones and thus is not practical.

Figure 5.8: Correct GPS, Physics Department IIT Bombay

Image courtesy Google Maps last accessed 20th June, 2012

46

Figure 5.9: Incorrect GPS, Physics Department IIT Bombay

Image courtesy Google Maps last accessed 20th June, 2012

Figure 5.10: Totally Incorrect GPS, Physics Department IIT Bombay

Image courtesy Google Maps last accessed 20th June, 2012

47

Chapter 6

Results

In this section, we will discuss the various results obtained using the updated Bundler system.

We look at the improvements in the computation time of the various modules of the Bundler

pipeline on different datasets. We show around a 6x improvements in the SIFT key-point

generation phase and also about 4-5x improvements in the running time of the key-match

module.

SIFT

(Bundler)

SIFT

(parallel)

Key-match

(Bundler)

Key-match

(multi-threaded)

Bundler PMVS

SOM(376) 305 55 2758 564 95 112

H14-C(302) 186 47 433 90 19 414

H14-B(414) 244 50 376 80 253 143

Table 6.1: Computation time in minutes for various stages of the bundler pipeline(single/multi-

threaded) on different datasets

The website can be accessed inside IIT Bombay using the following URL http://10.129.1.123:8080/vision.

The project page can be accessed using the following URL http://trellis.cse.iitb.ac.in/

~srijit

The figure 6.3 shows point-cloud generated for the datasets 6.1. GPS information of the

various images in the H-14 C wing dataset is visualized in figure 6.2 :-

48

http://10.129.1.123:8080/vision
http://trellis.cse.iitb.ac.in/~srijit
http://trellis.cse.iitb.ac.in/~srijit

Figure 6.1: Hostel 14 C wing, IIT Bombay sample images

Figure 6.2: Hostel 14 C wing, IIT Bombay Point Cloud and GPS information(302 images)

49

Figure 6.3: Hostel 14 C wing, IIT Bombay Point Cloud (302 images)

The figure 6.7, 6.6 shows point-cloud generated for the datasets 6.4. GPS information of the

various images in the Shailesh J. Mehta School of Management dataset is visualized in figure

6.5 :-

Figure 6.4: Shailesh J. Mehta School of Management, IIT Bombay sample images

50

Figure 6.5: Shailesh J. Mehta School of Management, IIT Bombay Point Cloud and GPS

information (345 images)

Figure 6.6: Shailesh J. Mehta School of Management, IIT Bombay(345 images)

51

Figure 6.7: Shailesh J. Mehta School of Management, IIT Bombay(345 images)

The figure 6.9, 6.10, 6.11, 6.12 shows point-cloud generated for the datasets 6.8. GPS

information of the various images in the Physics Department dataset is visualized in figure 6.14

:-

Figure 6.8: Physics Department, IIT Bombay sample images

52

Figure 6.9: Physics Department(South Side) IIT Bombay, IIT Bombay(345 images)

Figure 6.10: Physics Department(South Side) IIT Bombay, IIT Bombay(345 images)

53

Figure 6.11: Physics Department(South Side) IIT Bombay, IIT Bombay(345 images)

Figure 6.12: Physics Department(North Side) IIT Bombay, IIT Bombay(345 images)

54

Figure 6.13: Physics Department(West Side) IIT Bombay, IIT Bombay(345 images)

Figure 6.14: GPS positions of images taken around Physics Department IIT Bombay

55

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this report, we first discussed an approach of integrating data from varied sources like

GPS, direction and map databases like Wikimapia containing building outline information and

using this information to find which building is being imaged by a user. We have made a

on-line portal for uploading images with GPS and direction information. Using the GPS and

compass information we find which buildings are being viewed and cluster images according

to the visible contour of the building. We then reconstruct the 3D model for the user and

we provide an online interface for the user to monitor its progress as well as visualize the

point cloud output. The website can be accessed inside IIT Bombay using the following URL

http://10.129.1.123:8080/vision.

The various stages of the Bundler software is modified/replaced to improve its performance.

Multi-Thread support is added to key-point/feature matching stage of the Bundler pipeline

which results in three to four times performance increase. We tried to incorporate GPS con-

straints in the Bundle Adjustment problem but the results where not encouraging. The data

collected using smart-phones of GPS co-ordinates are too noisy and are only accurate up-to a

few meters, which are the primary reasons for the failure.

7.1.1 Contributions

In this thesis work, we make the following contributions:-

1. On-line portal where users can upload images and view 3D model The portal allows for

users to track the status of the images submitted.

2. The geo-tagged images uploaded by the user along with compass direction is used to

identify the building being viewed by the user and reconstruct the building

3. The building outline information is used to reduce the number of image key-point match.

4. The Key-point matching stage is re-written to use the latest FLANN library

5. Multi-threading support is added to increase the speed of matching

6. Support for incrementally adding images to an already reconstructed model

56

http://10.129.1.123:8080/vision

7.2 Future Work

Various improvements can be made to the existing system

• We could incorporate the accuracy of the measured GPS co-ordinate as diagonal elements

of the co-variance matrix.

• The GPS data can be collected using Differential GPS(D-GPS) which as an accuracy of

10cm.

• The direction data can be incorporated in the Bundle Adjustment objective to get better

reconstruction of the camera parameters.

• GIST [25] features can be used to cluster images which do not have GPS information.

57

Acknowledgments

I wish to acknowledge the help of many people who have directly or indirectly helped shape this

thesis. I like to express my sincere gratitude and thanks to my guides Prof. Parag Chaudhuri

and Prof. J. Saketha Nath for their constant encouragement and guidance. They has been my

primary source of motivation and advice during my entire study. I have greatly benefited from

the complementary guidance of both my advisors on this thesis.

I would like to thank all my friends in IIT Bombay. I would like to thank Nimit Kalaria

for his expertise in system administration. I would like to acknowledge Yogesh Kadke and

Arindham Bhattacharya for allowing me easy access to their smart-phones which was used to

collect the GPS and direction data. I wish to express my love and gratitude to my beloved

family for their understanding and endless love.

58

Bibliography

[1] S. Agarwal, N. Snavely, I. Simon, S.M. Seitz, and R. Szeliski. Building rome in a day. In

Computer Vision, 2009 IEEE 12th International Conference on, pages 72–79. Ieee, 2009.

[2] D. Capel. An effective bail-out test for ransac consensus scoring. In Proc. BMVC, pages

629–638. Citeseer, 2005.

[3] O. Chum and J. Matas. Randomized ransac with td, d test. In Proc. British Machine

Vision Conference, pages 448–457, 2002.

[4] O. Chum and J. Matas. Matching with prosac-progressive sample consensus. In Computer

Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference

on, volume 1, pages 220–226. Ieee, 2005.

[5] O. Chum, J. Matas, and J. Kittler. Locally optimized ransac. Pattern Recognition, pages

236–243, 2003.

[6] A. Criminisi. Accurate visual metrology from single and multiple uncalibrated images.

1999.

[7] A. Criminisi, I. Reid, and A. Zisserman. Single view metrology. International Journal of

Computer Vision, 40(2):123–148, 2000.

[8] M. Farenzena, A. Fusiello, and R. Gherardi. Structure-and-motion pipeline on a hierar-

chical cluster tree. In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th

International Conference on, pages 1489–1496. IEEE, 2009.

[9] M.A. Fischler and R.C. Bolles. Random sample consensus: a paradigm for model fitting

with applications to image analysis and automated cartography. Communications of the

ACM, 24(6):381–395, 1981.

[10] J.M. Frahm, P. Fite-Georgel, D. Gallup, T. Johnson, R. Raguram, C. Wu, Y.H. Jen,

E. Dunn, B. Clipp, S. Lazebnik, et al. Building rome on a cloudless day. Computer

Vision–ECCV 2010, pages 368–381, 2010.

[11] Y. Furukawa, B. Curless, S.M. Seitz, and R. Szeliski. Towards internet-scale multi-view

stereo. 2010.

[12] R. Gherardi, M. Farenzena, and A. Fusiello. Improving the efficiency of hierarchical

structure-and-motion. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE

Conference on, pages 1594–1600. IEEE, 2010.

59

[13] R. Hartley and A. Zisserman. Multiple view geometry, volume 6. Cambridge university

press, 2000.

[14] R.I. Hartley and P. Sturm. Triangulation. Computer vision and image understanding,

68(2):146–157, 1997.

[15] L. Kaufman and P.J. Rousseeuw. Finding groups in data: an introduction to cluster

analysis, volume 39. Wiley Online Library, 1990.

[16] M. Lhuillier. Fusion of gps and structure-from-motion using constrained bundle adjust-

ments. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on,

pages 3025–3032. IEEE, 2011.

[17] M. Lourakis and A. Argyros. The design and implementation of a generic sparse bundle

adjustment software package based on the levenberg-marquardt algorithm. Institute of

Computer Science-FORTH, Heraklion, Crete, Greece, Tech. Rep, 340, 2004.

[18] D.G. Lowe. Distinctive image features from scale-invariant keypoints. International journal

of computer vision, 60(2):91–110, 2004.

[19] J. Matas and O. Chum. Randomized ransac with sequential probability ratio test. 2005.

[20] J. More. The levenberg-marquardt algorithm: implementation and theory. Numerical

analysis, pages 105–116, 1978.

[21] M. Muja and D.G. Lowe. Fast approximate nearest neighbors with automatic algorithm

configuration. In International Conference on Computer Vision Theory and Applications

(VISSAPP09), pages 331–340, 2009.

[22] P. Müller, G. Zeng, P. Wonka, and L. Van Gool. Image-based procedural modeling of

facades. ACM Transactions on Graphics, 26(3):85, 2007.

[23] D. Nistér. An efficient solution to the five-point relative pose problem. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 26(6):756–770, 2004.

[24] D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. In Computer

Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 2,

pages 2161–2168. IEEE, 2006.

[25] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of

the spatial envelope. International Journal of Computer Vision, 42(3):145–175, 2001.

[26] R. Raguram, J.M. Frahm, and M. Pollefeys. A comparative analysis of ransac techniques

leading to adaptive real-time random sample consensus. Computer Vision–ECCV 2008,

pages 500–513, 2008.

[27] R. Roberts, S.N. Sinha, R. Szeliski, and D. Steedly. Structure from motion for scenes with

large duplicate structures. In Computer Vision and Pattern Recognition (CVPR), 2011

IEEE Conference on, pages 3137–3144. IEEE, 2011.

60

[28] A. Saxena, S.H. Chung, and A. Ng. Learning depth from single monocular images. Ad-

vances in Neural Information Processing Systems, 18:1161, 2006.

[29] A. Saxena, S.H. Chung, and A.Y. Ng. 3-d depth reconstruction from a single still image.

International Journal of Computer Vision, 76(1):53–69, 2008.

[30] A. Saxena, M. Sun, and A.Y. Ng. Make3d: Learning 3d scene structure from a single still

image. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(5):824–840,

2009.

[31] F. Schaffalitzky and A. Zisserman. Planar grouping for automatic detection of vanishing

lines and points. Image and Vision Computing, 18(9):647–658, 2000.

[32] S.N. Sinha, D. Steedly, and R. Szeliski. A multi-stage linear approach to structure from

motion. In ECCV 2010 Workshop on Reconstruction and Modeling of Large-Scale 3D

Virtual Environments, volume 3002, pages 3003–3005, 2010.

[33] N. Snavely, S.M. Seitz, and R. Szeliski. Photo tourism: exploring photo collections in 3d.

In ACM Transactions on Graphics (TOG), volume 25, pages 835–846. ACM, 2006.

[34] N. Snavely, S.M. Seitz, and R. Szeliski. Modeling the world from internet photo collections.

International Journal of Computer Vision, 80(2):189–210, 2008.

[35] H. Stewénius, C. Engels, and D. Nistér. Recent developments on direct relative orientation.

ISPRS Journal of Photogrammetry and Remote Sensing, 60(4):284–294, 2006.

[36] PHS Torr. An assessment of information criteria for motion model selection. In Com-

puter Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE Computer Society

Conference on, pages 47–52. IEEE, 1997.

[37] P.H.S. Torr and A. Zisserman. Mlesac: A new robust estimator with application to esti-

mating image geometry. Computer Vision and Image Understanding, 78(1):138–156, 2000.

[38] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle adjustmenta modern

synthesis. Vision algorithms: theory and practice, pages 153–177, 2000.

61

	Introduction
	Problem Statement
	Contributions
	Related Work
	Reconstruction from a Single Image
	Reconstruction from Multiple Images

	Single View Metrology
	 Notation
	 Vanishing Points and Lines
	 Camera Model
	 Camera Projection Matrix

	 Planar Homography
	 Camera Center
	 Cross Ratio
	 Geometry
	 Experiments

	Bundler System
	 RANdom SAmple Consensus
	 Fundamental matrix/Essential Matrix Estimation
	 Properties of Fundamental Matrix
	 Fundamental Matrix Estimation Algorithm
	 Seven Point algorithm
	 Normalized Eight Point Algorithm
	Essential Matrix Properties
	Experiments

	Triangulation
	Bundle Adjustment
	Levenberg-Marquadt Algorithm

	System Overview
	Rules for starting various stages

	System Modules
	Localization of Building being Reconstructed
	Feature Matching
	Challenges

	GPS Constrained Bundle Adjustment

	Results
	Conclusion and Future Work
	Conclusion
	Contributions

	Future Work

