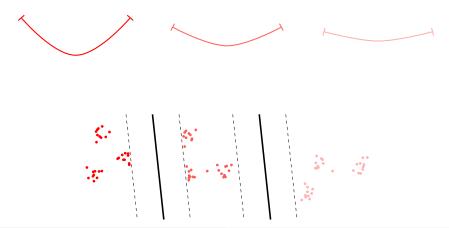
Focused Crawling with Scalable Ordinal Regression Solvers

Rashmin Babaria, J Saketha Nath, Krishnan S, KR Sivaramakrishnan, Chiranjib Bhattacharyya, M N Murty

Department of Computer Science and Automation Indian Institute of Science, INDIA

ICML-2007

Focused Crawling & Large scale OR


Focused Crawling

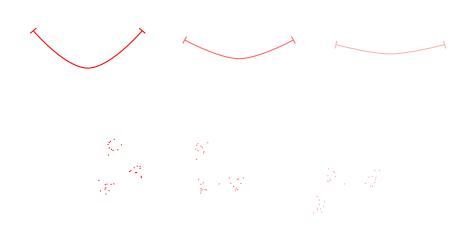
- Given a topic (seed pages) find out relevant pages from the web
- Pose Focused Crawling as a large scale OR problem

Ordinal Regression

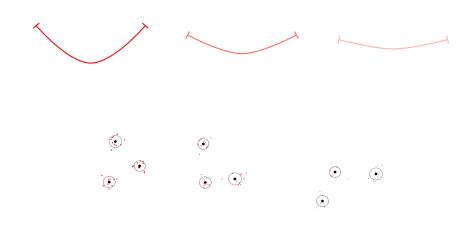
- Fast OR training algorithm scales to millions of datapoints
 - Fast algorithm to solve an SOCP with one SOC constraint
- Low prediction time

Baseline OR Formulation [Chu & Keerthi, 2005]

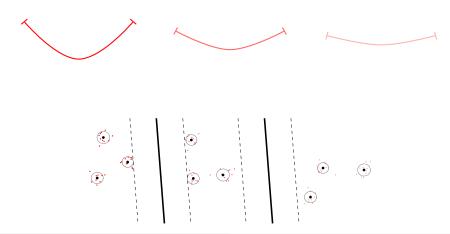
Describe data using clusters instead of data points


- Describe data using clusters instead of data points
 - Class conditional distributions mixture models with spherical covariance

- Describe data using clusters instead of data points
 - Class conditional distributions mixture models with spherical covariance
- Using second order moments $(\mu, \sigma^2 \mathbf{I})$, classify clusters


- Describe data using clusters instead of data points
 - Class conditional distributions mixture models with spherical covariance
- Using second order moments $(\mu, \sigma^2 \mathbf{I})$, classify clusters
- Proposed formulation will have constraints per cluster

- Describe data using clusters instead of data points
 - Class conditional distributions mixture models with spherical covariance
- Using second order moments $(\mu, \sigma^2 \mathbf{I})$, classify clusters
- Proposed formulation will have constraints per cluster
- Size of optimization problem O(clusters) rather than O(datapoints)


Proposed OR formulation's solution

Proposed OR formulation's solution

Proposed OR formulation's solution

Proposed OR formulation

Features:

- SOCP Problem with one SOC constraint
- $T_{train} = T_{clust} + T_{SOCP} = O(n)$
 - Cluster moments estimated using BIRCH [Zhang et.al., 1996] $T_{clust} = O(n)$
 - SOCP solved using SeDuMi^a. T_{SOCP} is independent of n
- Can be Kernelized using input space cluster moments
 - ullet No. of Support Vectors at max. k low prediction time

ahttp://sedumi.mcmaster.ca/

Clustering + SOCP gives speedup

Table: Training times (sec) with SeDuMi and SMO-OR [Chu & Keerthi, 2005] on synthetic dataset.

	S-Rate	S-Size	SMO-OR	SeDuMi
П	0.002	10,000	182	1
li	0.0025	12,500	260	1
li	0.003	15,000	340	1
li	0.3	1,500,000	×	9
Ш	1	5,000,000	×	36

Table: Training times (sec), test error rate with SeDuMi and SMO-OR [Chu & Keerthi, 2005] on CS-Census dataset.

	S-Size	SMO-OR	SeDuMi
		sec (err)	sec
	5,690	893 (.128)	20.4 (.109)
	11,393	5281.6 (.107)	108.8 (.112)
CS	15,191	9997.5 (.107)	271.1 (.108)
	22,331	×	435.7 (.119)

Large number of clusters is still challenging

Table: Training times (sec), test error rate with SeDuMi and SMO-OR [Chu & Keerthi, 2005] on CH-California Housing dataset.

	S-Size	SMO-OR	SeDuMi
		sec (err)	sec
	10,320	551.9 (.619)	112 (.623)
	13,762	1033.2 (.616)	768.8 (.634)
CH	15,482	1142 (.617)	×
	17,202	1410 (.617)	×
	20,230	1838.5 (.62)	×

Key Idea:

- Exploit special SOCP form SOCP problem with one SOC constraint
 - Erdougan et.al., 2006 specialized solvers scale better
- Fast algorithm similar in spirit to Platt's SMO for QP

Features:

- More scalable than generic solvers
- Easy to implement, uses no optimization tools

Rewrite Dual as follows:

$$\min_{\substack{\alpha,\alpha^* \\ \text{s.t.}}} W\sqrt{(\alpha^* - \alpha)^\top \mathbf{K}(\alpha^* - \alpha)} - \mathbf{d}^\top (\alpha + \alpha^*)$$
s.t.
$$0 \le \alpha \le 1, 0 \le \alpha^* \le 1$$

$$s_i^* \le s_i, \ \forall \ i = 1, \dots, r - 2, s_{r-1}^* = s_{r-1}$$

K is Gram matrix for cluster centers

$$s_i = \sum_{k=1}^i \sum_{j=1}^{n_k} \alpha_k^j$$
 and $s_i^* = \sum_{k=2}^{i+1} \sum_{j=1}^{n_k} \alpha_k^{*j}$

Minimization wrt. two multipliers

$$\min_{\Delta\alpha} \quad \sqrt{a(\Delta\alpha)^2 + 2b(\Delta\alpha) + c} - e\Delta\alpha$$
 s.t.
$$lb \leq \Delta\alpha \leq ub$$

Has closed form solution:

$$\Delta \alpha = \begin{cases} \frac{e\sqrt{\frac{ac-b^2}{a-e^2}} - b}{a} \\ \frac{-b}{a} \end{bmatrix}_{lb}^{ub} & \text{if } ac - b^2 > 0, a - e^2 > 0 \\ \frac{-b}{a} \end{bmatrix}_{lb}^{ub} & \text{if } ac - b^2 = 0, a - e^2 > 0 \\ ub & \text{if } e - \sqrt{a} \ge 0 \\ lb & \text{if } e + \sqrt{a} \le 0 \end{cases}$$

CB-OR Algorithm

- Step 1 Pick two most KKT violators
- Step 2 Solve the 1-d minimization problem
- Step 3 Update unknowns
- Step 4 Check for KKT violators. If none terminate. Else Step 1

CB-OR — Evaluation

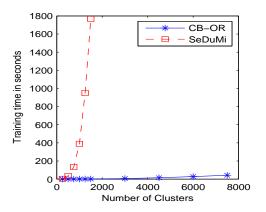
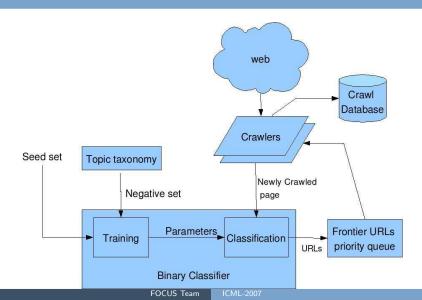
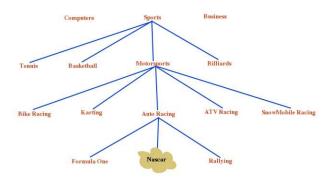


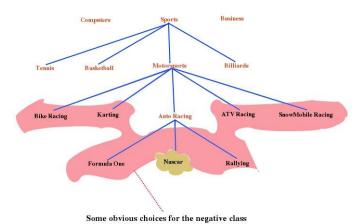
Figure: Dashed line represents training time with **SeDuMi** and continuous line that with **CB-OR** on a synthetic dataset.

CB-OR — Evaluation

Table: Comparison of training times (in sec) with **CB-OR**, **SMO-OR** and **SeDuMi** on benchmark datasets. The test set error rate is given in brackets. (CH-California Housing, CS-Census datasets).

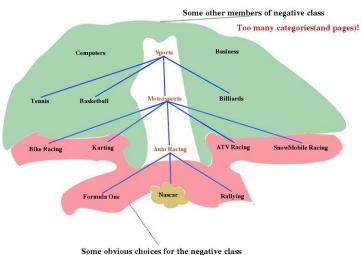

	S-Size	CB-OR	SMO-OR	SeDuMi
		sec (err)	sec (err)	sec
	10,320	.5 (.623)	551.9 (.619)	112
	13,762	1.5 (.634)	1033.2 (.616)	768.8
CH	15,482	8.4 (.618)	1142 (.617)	×
	17,202	14.3 (.621)	1410 (.617)	×
	20,230	10.4 (.62)	1838.5 (.62)	×
	5,690	.3 (.109)	893 (.128)	20.4
	11,393	.7 (.112)	5281.6 (.107)	108.8
CS	15,191	1 (.108)	9997.5 (.107)	271.1
	22,331	1.5 (.119)	×	435.7


Focused Crawling

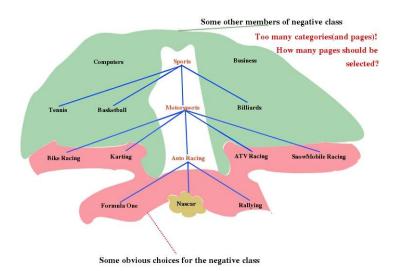

Focused Crawling

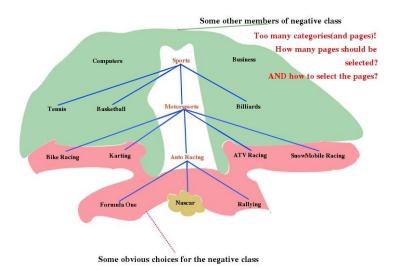
- Given a topic (seed pages) find out relevant pages from the web.
- S. Chakrabarti et.al (1999,2002), C. Aggarwal et.al (2001), M. Diligenti et.al (2000)
- Requires low bandwidth and low disk space.
- Small updation cycle.

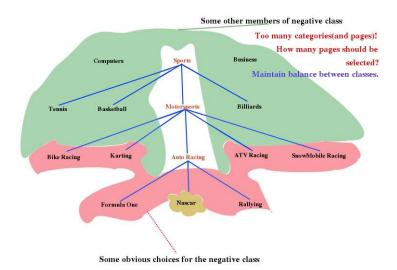
Baseline Focused Crawler [Chakrabarti et.al., 1999]

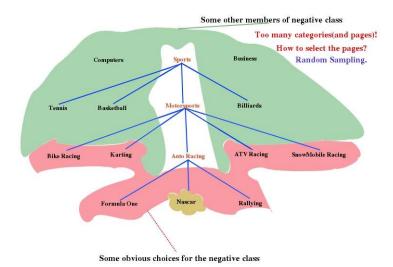


Some other members of negative class Business Computers Sports Motorsports Billiards Basketball Tennis ATV Racing SnowMobile Racing **Bike Racing** Karting Auto Racing Nascar Formula One Rallying


FOCUS Team


Some obvious choices for the negative class


ICML-2007



some obvious choices for the negative class

Exploit link structure

- Grangier and Bengio observe that hyperlinked documents are semantically closer.
- One link away pages are more similar to seed pages compare to two link away pages.

Link structure in web

Link structure in web

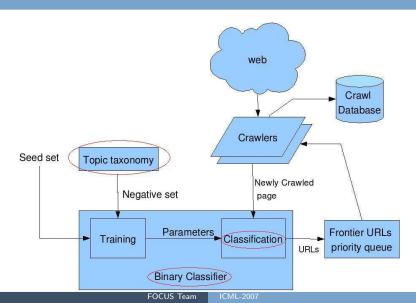
Link structure in web

Focused Crawling as OR problem — exploit link structure

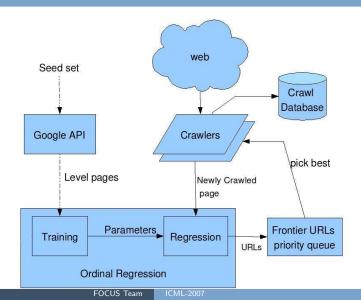
Focused Crawling as OR problem — exploit link structure

Level 0 - Pages belong to topic

Focused Crawling as OR problem — exploit link structure

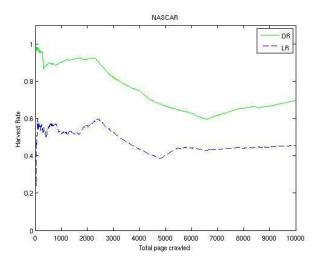

Level 0 - Pages belong to topic

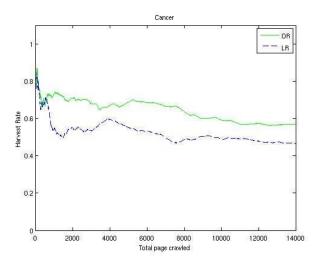
Focused Crawling as OR problem — exploit link structure



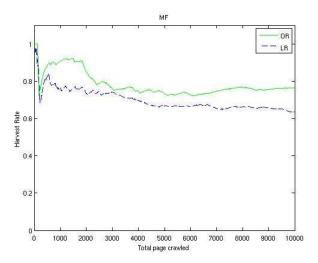
Level 0 - Pages belong to topic

Baseline Focused Crawling architecture


Proposed Focused Crawling architecture


Focused Crawling is a large scale OR problem

Category	Seed	1	2	3	4
NASCAR	1705	1944	1747	1464	1177
Soccer	119	750	1109	1542	3149
Cancer	138	760	895	858	660
Mutual Funds	371	395	540	813	1059


NASCAR harvest rate

Cancer harvest rate

Mutual Funds harvest rate

Harvest rate comparison

Dataset	Baseline	OR
NASCAR	.3698	.6977
Cancer	.4714	.58
Mutual Fund	.526	.5969
Soccer	.34	.4952

Conclusions

- Proposed a scalable clustering based OR formulation
 - Training time O(datapoints)
 - Support Vectors O(clusters)
- Exploited special structure of the formulation to develop a fast solver. CB-OR
 - Scalable to tens of thousands of clusters
- We formulated focused crawling as large scale ordinal regression
 - No need for negative class definition
 - Independent of topic taxonomy
 - OR captures link structure of web graph.

Focused crawler code available at

http://mllab.csa.iisc.ernet.in/downloads/focusedcrawler.html

Acknowledgments

This project is partially supported by AOL India Pvt Ltd and DST, Government Of India (DST/ECA/CB/660)

Questions?