
Integration of Telugu dictionary into

Tesseract OCR

MTech Stage II Project Report

Submitted in partial fulfillment of the

requirements for the degree of

Master of Technology

by

Manasa Gootla

123050093

under the guidance of

Prof. J. Saketha Nath

Dept of CSE, IIT Bombay

Generated by CamScanner from intsig.com

Generated by CamScanner from intsig.com

Acknowledgements

I would sincerely like to thank my guide, Prof. J.Saketh Nath for his motivating support

throughout the semester and the consistent directions that he has fed into my work. I

would like to thank Prof. Ganesh Ramakrishnan for valuable guidance and discussions.

3

Contents

1 Introduction 1

1.1 Motivation . 2

2 Stage1 Summary 4

2.1 Comparision . 4

2.1.1 Pre-processing . 5

2.1.2 Feature Extraction . 6

2.1.3 Classification . 6

2.2 Adaptive Binarization . 7

2.3 Proposed improvement . 7

3 Word Recognition 8

3.1 Chopping joined characters . 9

3.2 Associating chopped characters . 9

4 Experiments 10

5 Results 12

6 Conclusion and Future Scope 15

4

List of Tables

5.1 Comparison of accuracies for historical documents 13

5.2 Comparison of accuracies for the modern documents 14

5

List of Figures

1.1 Alphabets in Telugu script . 2

1.2 Vowels and their associated Modifiers . 2

1.3 Confusing characters . 2

1.4 Compound characters and complexities . 3

5.1 Top confused characters . 13

6

Abstract

Applications of OCR in digitizing printed and hand-written documents have found their

way into preserving historical documents. OCR on Telugu language is particularly diffi-

cult because of the complexities in the script. The existing OCR systems for Telugu are

TESSERACT and Drishti. An in-house OCR has been developed in an attempt to over-

come the difficulties in recognizing Telugu characters. The comparision of performance of

Tesseract and in-house system on a toy corpus is given. We implemented Myers algorithm

to find and compare the accuracies of Tesseract and in-house system. A detailed insight

into the Tesseract system and its novel approaches like line finding, page layout analysis,

feature extraction, adaptive classification and an overview of the in-house system is also

given. To improve the word accuracies of tesseract system, the dictionary has been popu-

lated with words, which are more likely to appear in the historical documents, along with

their frequencies. The words that are currently in use, colloquial words, have also been

added to the dictionary to make the OCR robust to the type of document given as input.

We have also observed the effect of sandhis on the word recognition module.

Chapter 1

Introduction

Optical Character Recognition(OCR) converts scanned images of text into machine-

encoded format thereby enabling editing and searching data. This ability of OCR has

led to huge research in this area in the past few decades. Significant amount of research

has been done on OCR for languages like English, Chinese and Japanese. Its applications

include: search through printed and handwritten documents, aid for visually impaired,

check clearing for finance companies.

The existing OCR systems for English, Chinese cannot be adopted for Indian lan-

guages. Every character in English or Chinese are aligned in a single line and there

aren’t many discontinuities in the characters. OCR for Indian languages is much more

difficult because of the Script(lipi) as more strokes are involved. A compound charac-

ter(Samyuktas) can be formed from a huge combination of characters imposing complex-

ities. Active Research has been done in recent years on Devanagari, Hindi, Kannada,

Tamil and Telugu characters.

Telugu script is comprised of 16 vowels and 36 consonants(Figure 1.1). A com-

pound character can be formed from a consonant and a vowel or it can be formed from

2 consonants and a single vowel leading to possible combinations of 36x16 and 36x36x16

respectively. When compared to other Indian languages, it has additional complexity

involved beacause of the similarities in between many of the characters in the script. The

nuances in these characters are difficult to catch even by human readers posing much

more challenge for the OCR(Figure 1.3 and Figure 1.4). It is clear from Figure 1.4 that

the compound character has many disjoint connected ocmponents associated with it.

1

Figure 1.1: Alphabets in Telugu script

Figure 1.2: Vowels and their associated Modifiers

Figure 1.3: Confusing characters

1.1 Motivation

The existing OCR systems for Telugu are TESSERACT[7] and Drishti [1] have constraints

on images like quality, resolution, font, input/output formats. Inspite of these constraints
2

Figure 1.4: Compound characters and complexities

the accuracy levels achieved by these systems are not satisfactory, the best of these being

Tesseract. Tesseract has only considered Pothana fonts making it vulnerable for font

independent system. Drishti showed better results only when the scans are of laser quality

prints. An in-house system has been developed that helps in overcoming these constraints

[5] and [6].

3

Chapter 2

Stage1 Summary

In Stage1, we have studied the implementation of Tesseract software in detail and con-

trasted it against the in-house system. Each OCR has primarily 3 stages : preprocessing,

Feature extraction and Classification. In the following sections we give a brief insight into

the differences of the two OCR systems in discussion in each stage.

2.1 Comparision

In Tesseract, the image is stored in a raw format in the data structure IMAGE. The

leptonica library uses pix data structure to refer to this raw image. Instead of messing

with the raw data, all the image processing operations are done on this pix data structure.

Image is stored as data structure Pix (Leptonica style). The image is scanned row wise

and the rgb info is stored in a color map. The width, depth, height, the raster data and

the number of pix pointers referring the particular pix object are stored.

In in-house system, Java imaging API stores the input as BufferedImage, which is an

Image with an accessible data buffer. It is therefore more efficient to work directly with

BufferedImage. A BufferedImage has a ColorModel and a Raster of image data. The

ColorModel provides a color interpretation of the image’s pixel data.The Raster performs

the following functions:

-Represents the rectangular coordinates of the image

-Maintains image data in memory

-Provides a mechanism for creating multiple subimages from a single image data buffer

4

-Provides methods for accessing specific pixels within the image

2.1.1 Pre-processing

In pre-preocessing, the first step is image binarization. The image is binarized so that

the text is in black representing foreground and the rest is in white representing the

background. Tesseract used a global binarization technique called Otsus thresholding

method whereas the inhouse system used MaxVariance threshold (Java Imaging API) for

the global binarization.

The next step is character and word segmentation, in which connected components are

found through 8-way flood fill algorithm. In Tesseract, auto page segmentation is done

initially to mask the photos in the image and also page is divided into multiple blocks

if there are multiple columns. For each block, outlines are extracted from the connected

components through edge detection, which are then gathered and nested into blobs which

give the average character spacing. The words are then split through character spacing.

Tesseract also does skew detection and correction by tracing along the bounding boxes

of the blobs. The page layout analysis provides text regions of roughly uniform text size.

Drop caps are removed by simple percentile filter. Small blobs like punctuation, noise are

removed by taking threshold a fraction of median height. The characteristics of the font

are determined by x-height, ascender height, fixed pitch, baseline, median line, descender

height which are calculated from page layout analysis. The filtered blobs are sorted by

x-coordinates so that they are uniquely associated with text line. The slope is tracked

across the page using the baseline. Once the filtered blobs are assigned to their respective

text lines, the filtered out blobs are fitted back into appropriate lines.

The in-house system uses Hidden Markov Model to model the characteristic of each

telugu line i.e., white pixels, followed by black pixels with low density, black pixels with

high density and black pixels with low density. The pattern is fed to the 4-state HMM

with density of black pixels as feature. SVM Torch API has been used for HMM im-

plementation. In vertical segmentation, since each word has significant gap between its

neighbours when compared to gaps within word, each segmented line is processed for

significant white pixel density and thus words are segmented[3].

5

2.1.2 Feature Extraction

In training process, a set of images consisting of characters are gathered. For frequent

characters, a minimum 30 samples per each character, for moderate characters 20-30

samples and for less frequent 5-10 samples are to be provided for training. Manually for

each character, a bounding box is to be created coordinates and the corresponding ASCII

code. The vowel modifiers can be trained seperately too with the bounding box defined

only for those. In tesseract, the features extracted in training data are the segments of

polygonal approximation. For recognition i.e., for unknown characters, features of a small,

fixed length are extracted from outline and are matched many to one against the clustered

prototype features of the training data. The features for prototypes are 4-dimensional (x,y

position, angle, length) with 10-20 features in a prototype configuration. The features

for unknown are 3-dimensional (x, y position, angle) and for each character there are

approximately 50-100 features. The normalized features for the unknown are computed

by tracing around the outline of the blob unitwise. the x,y position and the angle between

the tangent line and a vector eastward from the centre of the blob are saved as feature.

In the in-house system, wavelet features have been extracted by dowsampling the

character image to an approximation image and three images: vertical, horizontal and

diagonal. By downsampling, the directional features of the image are captured which is

Battle-Lemarie filter is used as wavelet basis function to capture the circular property of

Telugu characters. Other features were also experimented on i.e., Gabor features, skeleton

features, circular zonal features, out of which wavelet features were found to give better

results.

2.1.3 Classification

In Tesseract, classfication proceeds as a two step process: in the first step: each feature

in the unknown matched against 3-D look-up table and fetches a bit vector of all the

classes it might match. The bit vectors are summed over all features. The classes with

the highest counts become shortlisted for the next step of classification. This step is

called class pruning. In the second step: each feature of unknown looks up for bit vector

of prototypes of given class it matches. Each prototype character class is logical sum of

6

product expression where each term is configuration. So the distance is evaluated and the

total similarity evidence of each feature in each configuration as well as each prototype

is recorded. The best combined distance which is calculated from summed feature and

prototype evidence is the best over all stored configuration of the class. The data structure

used is a k-d tree (k- dimensional tree) for each character. Nearest negihbour classification

is employed and the best choice is returned during the traversal of the tree. Each character

classification is associated with two numbers:

- confidence : prototype - normalized distance

- rating : confidence * (total outline length of the character)

In in-house system, the feature vectors generated are passed onto the classification

stage. The unicode of the letters thus classified are generated individually for the top

, middle and bottom parts of each character. The unicode of all these are combined to

generate the compound character.

2.2 Adaptive Binarization

As a preprocessing task, binarization affected the later stages thereby effecting the OCR

accuracies. This is because of the global binarization technique where the threshold

value is chosen from the whole image. Several local binarization methods[4] were tested

to capture the characteristics of the historical documents viz, no proper illumination and

fading. Adaptive binarization using Sauvolas technique is found to give better binarization

result. There was an increase of 4-5% on an average in the character accuracies per

document.

2.3 Proposed improvement

Tesseract has word recognition module which has dictionary files to improve the word

accuracies. Tesseract for telugu does not implement the word recognition module. In the

next chapter, we discuss the creation of dictionary files and the problems faced in collecting

the required data and how they effected the overall character and word accuracies.

7

Chapter 3

Word Recognition

Linguistic module (Permuter) contains language files freq dawg, word dawg, user words,

unicharset, DangAmbigs. DAWG (Directed Acyclic Word Graph) file is a datastructure

that facilitates fast search for words. The dictionary can be stored in the word dawg

file. This cannot be changed by the user. The user can modify user words dawg file and

personalize the word recognition module. The start node is the first character for the

current word to be searched. These files are not defined for Telugu language resulting in

much lower accuracies than that of English, chinese. These files ensures the correct word

inspite of few characters being wrongly classified in the word.

Permuter chooses best word string from each of the following categories:top frequency

word, top dictionary word, top numeric word, top upper case, top lower case, top classifier

choice The final decision for a given segmentation is the word with the lowest distance

rating. The classifier stores the top best choices for each character during the character

recognition process.

Words from different segmentations may have different numbers of characters in them.

It is hard to compare these words directly, even where a classifier claims to be producing

probabilities, which Tesseract does not. This problem is solved in Tesseract by generating

two numbers for each character classification. The first, called the confidence, is minus the

normalized distance from the prototype. This enables it to be a confidence in the sense

that greater numbers are better, but still a distance, as, the farther from zero, the greater

the distance. The second output, called the rating, multiplies the normalized distance

from the prototype by the total outline length in the unknown character. Ratings for

8

characters within a word can be summed meaningfully, since the total outline length for

all characters within a word is always the same. The word confidence is calculated as:

WERD CHOICE* choice = word->best choice

int w conf = 100 + 5 * choice->certainty()

3.1 Chopping joined characters

While the result from a word is unsatisfactory, Tesseract attempts to improve the result

by chopping the blob with worst confidence from the character classifier. Candidate chop

points are found from concave vertices of a polygonal approximation of the outline, and

may have either another concave vertex opposite, or a line segment. It may take up to 3

pairs of chop points to successfully separate joined characters from the ASCII set. Chops

are executed in priority order. Any chop that fails to improve the confidence of the result

is undone, but not completely discarded so that the chop can be re-used later by the

associator if needed.

3.2 Associating chopped characters

When the potential chops have been exhausted, if the word is still not good enough, it is

given to the associator. The associator makes an A* (best first) search of the segmentation

graph of possible combinations of the maximally chopped blobs into candidate characters.

It does this without actually building the segmentation graph, but instead maintains a

hash table of visited states. The A* search proceeds by pulling candidate new states from a

priority queue and evaluating them by classifying unclassified combinations of fragments.

It may be argued that this fully-chop-then-associate approach is at best inefficient, at

worst liable to miss important chops, and that may well be the case. The advantage is

that the chop-then-associate scheme simplifies the data structures that would be required

to maintain the full segmentation graph.

9

Chapter 4

Experiments

We have added word data file and frequent word data files for Telugu, as they were not not

officially available in the current version of Tesseract. The word data file is a dictionary

that enlists the words in alphabetical order. The frequent word list contains the most

frequently occuring words in Telugu.

We have observed that the addition of word data files effected the character accuracies

because of the chopping and association being done in the word recognition module as

mentioned in the earlier section. Wrongly classfied characters are replaced by the correct

characters as per the words in the dictionary if the correct character to be replaced is

available in the top best choices of the character. If it is not available, then the character

is replaced by a character that is most likely to be the character to be appearing in

the dictionary during the traversal from the letter preceding it. Some characters which

were correctly recognized were now wrongly classified because if the word confidence is not

satisfactory, the chopping and then the A* graph during association look for the next best

character replacement that also can be found in the dictionary file during the traversal in

the dawg. We have experimented with dictionaries that contain only colloquial words ,

only historical words, a unified dictionary.

We have also populated freq word list with the most frequent words. We have exper-

imented on the number of words the freq list should have without compromising on the

accuracies. The way it works is that words in the freq-words list are weighted higher when

Tesseract looks for likely matches. So if there are too many, it is likely that we get less

common variants switched to the most common ones. We have also experimented with

10

dictionary consisting of only limited historical words(300) tightly bound to the text in toy

corpus and then with dictionary consisting of only colloquial words(3M) and then with

historical words unrelated to the toy corpus. We have observed that many characters are

being confused with others. We have also observed that since the vowel modifiers were

included in the training, the output resulted many characters broken into consonant and

vowel modifier. Though the characters were recognised correct, the output was mostly

filled with vowel modifiers seperated from the consonants.

11

Chapter 5

Results

Implemented Myer’s algorithm[2] to find the differences between the actual text of the

image and the output text produced by the OCR system. The algorithm was implemented

in python. The output is returned as a list where all the characters that are inserted are

preceded by a ’+1’ and that are deleted by a ’-1’ and those characters which remain same

are preceded by a ’0’. The accuracy is calculated as:

A =
r

c

where r = the number of characters that are correctly recognized c = number of

characters in the actual text

The character and word level accuracies for Tesseract system without and with our

integrated binarization module and Telugu specific dictionary files are tabulated in ta-

ble 5.1. We can see a significant increase in the accuracy levels. The addition of dictio-

nary files also effected the character accuracies, because of the chopping and association

of characters to get the most probable word that could be in the dictionary.

We have experimented on the recent documents with the changed dictionary files. The

results are tabulated in table 5.2.

We have also observed that many characters are being confused with others. The top

5 characters which are observed to be more confused are tabulated in figure 5.1

For the tables below the first row indicates character accuracies and the next row

indicates word accuracies.

12

Table 5.1: Comparison of accuracies for historical documents

Filename Tesseract OCR with binarization and dictionary files

fwdpayasam/scan0002.jpg 58.384% 65.75%
15% 20%

fwdpayasam/scan0003.jpg 66.54% 72.83%
20% 23%

oct01/govu1/scan0006.jpg 68.95% 78.92%
34% 38%

oct01/govu1/scan0007.jpg 77.03% 79.57%
30% 33%

oct01/govu1/scan0008.jpg 77.38% 79.54%
32% 34%

oct01/ks4/scan0102.jpg 71.36% 74.07%
10% 23%

oct01/govu5/scan0082.jpg 38.7% 78.12%
19% 29%

oct01/govu5/scan0083.jpg 71.28% 77.91%
22% 28%

Figure 5.1: Top confused characters

13

Table 5.2: Comparison of accuracies for the modern documents

Filename Tesseract OCR with binarization and dictionary files

Doc01 37.29% 74.63%
16% 24%

Doc02 17.7% 35.83%
21% 26%

Doc03 55.4% 56.19%
4% 9%

Doc04 56.34% 57.62%
3% 8%

Doc05 62.4% 64.06%
11% 20%

Doc06 65.26% 66.05%
11% 15%

Doc07 67.48% 68.19%
11% 18%

14

Chapter 6

Conclusion and Future Scope

We have observed that the dictionary can never be completely populated with all the

words because of the complex morphology of the language. The union of two words

results in a morphology where the last character of first word and the first character of

second word are combined to get another character and the rest of the characters remain

the same. Sandhis and samasas result in countless combination of words which cannot be

included in the dictionary unless we use a sandhi splitter making the recognition of words

much simpler. This phenomena results in an infinite words list which makes the purpose

of dictionary useless. This problem can be overcome by using a sandhi splitter, which will

break a word into its root words which can be easily found in the dictionary of words.

The quality of the image has a lot of impact in the later stages in the process of char-

acter recognition. We have observed that during the binarization process, the characters

are broken when theres a thin line and faded background and if the characters which are

at the back cover are visible to the front cover and the background is light, then these

characters are also included on the front page which leads in garbled image. This can be

overcome by focusing more on the digital processing of the image.

Training the character variants is highly difficult due to the huge number of combina-

tion of characters possible and the nuances add to the complexity. One possible solution

is the brute force method of training all variants of characters with large number of sam-

ples per variants instead of training the vowel modifiers alone. The other approach is to

instead the output can be processed for finding the disconnected character variants and

joining them.

15

Bibliography

[1] Web Refererence http://www.ildc.in/Telugu/htm/lin ocr spell.htm. Drishti telugu

ocr.

[2] EUGENEW. MYERS. An o(nd) difference algorithm and its variations. Algorithmica,

pages 251–266, 1986.

[3] Srikanta Pal Nallapareddy Priyanka and Ranju Manda. Article:line and word segmen-

tation approach for printed documents. IJCA,Special Issue on RTIPPR, pages 30–36,

2010.

[4] B. Gatos K. Ntirogiannis I. Pratikakis. Dibco 2009: document image binarization

contest. IJDAR, pages 35–44, 2011.

[5] J. Saketha Nath Rajesh Arja. Ocr for historical telugu documents. MTP Stage 1,

2011.

[6] J. Saketha Nath Rajesh Arja. Ocr for historical telugu documents. MTP Stage 2,

2012.

[7] Ray Smith. An overview of tesseract engine.

16

Appendix

The following section provides the results of the experimentation with dictionary consist-

ing of only limited historical words(300) tightly bound to the text in toy corpus and the

next column with dictionary consisting of only colloquial words and the next column of

colloquial words along with historical words unrelated to the toy corpus

Filename Colloquial words Historical Unrelated words

fwdpayasam/scan0002.jpg 63.15% 65.07% 51.63%
15% 17% 9%

fwdpayasam/scan0003.jpg 66.54% 72.83% 61.5%
20% 23% 15%

oct01/govu1/scan0006.jpg 76.21% 76.12% 65.45%
25% 26% 21%

oct01/govu1/scan0007.jpg 78.7% 78.82% 78.41%
24% 26% 21%

oct01/govu1/scan0008.jpg 78.12% 78.01% 75.8%
25% 28% 20%

oct01/govu5/scan0082.jpg 43.04% 43.04% 42.9%
16% 18% 13%

oct01/govu5/scan0083.jpg 55.48% 55.25% 61.25
15% 16% 18%

17

