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Abstract

This paper presents two novel formulations for learning
The
idea is to pose the problem as that of learning a shared ker-

shared feature representations across multiple tasks.

nel, which is constructed from a given set of base kernels,
leading to improved generalization in all the tasks. The first
formulation employs a (I1,1p),p > 2 mixed norm regularizer
promoting sparse combinations of the base kernels and un-
equal weightings across tasks — enabling the formulation to
work with unequally reliable tasks. While this convex for-
mulation can be solved using a suitable mirror-descent algo-
rithm, it may not learn sparse feature representations which
are shared across tasks. The second formulation extends
these ideas for learning sparse feature representations con-
structed from multiple base kernels and shared across mul-
tiple tasks. The sparse feature representation learnt by this
formulation is essentially a direct product of low-dimensional
subspaces lying in the induced feature spaces of few base
kernels. The formulation is posed as a (l1,lq),q > 1 mixed
Schatten-norm regularized problem. One main contribution
of this paper is a novel mirror-descent based algorithm for
solving this problem which is not a standard set-up studied
in the optimization literature. The proposed formulations
can also be understood as generalizations of the framework
of multiple kernel learning to the case of multiple tasks and
hence are suitable for various learning applications. Simula-
tion results on real-world datasets show that the proposed
The
results also illustrate the efficacy of the proposed mirror-

formulations generalize better than state-of-the-art.

descent based algorithms.
Keywords: multi-task feature learning, multiple kernel
learning, mirror-descent, Schatten-norm regularization

1 Introduction

The problem of learning a shared feature representation
across multiple related tasks (multi-task feature learn-
ing) is commonly encountered in many real-world appli-
cations. For instance, consider the application of object
recognition. Consider each task as that of identifying
the images containing a particular object. Note that
images of different objects share a common set of fea-
tures, perhaps those describing lines, shapes, textures
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etc., which are different from the input features describ-
ing the pixels. It is important to discover such shared
feature representations leading to improved recognition
in all the tasks [1, 2, 3]. Also note that in such ap-
plications, the high-level features shared across tasks
are far fewer than the low-level input features. Thus
it is also natural to seek for sparse feature representa-
tions which are shared across multiple tasks. This paper
presents two novel formulations which simultaneously
learn the shared feature representations as well as the
corresponding optimal task predictors. In general, the
former learns a non-sparse representation (henceforth
denoted by MK-MTFL!); whereas the latter learns a
sparse one (henceforth denoted by MK-MTSFL?).

The key idea is to pose the problem of multi-task
feature learning as that of learning a shared kernel,
constructed by combining a given set of base kernels,
in order to improve the generalization in case of all
the tasks simultaneously. Hence the work can also
be understood as an extension of the Multiple Kernel
Learning (MKL) framework [4, 5, 6], to the case of
multiple tasks. The primary objective in MKL is indeed
to learn a kernel best suited for a given task by optimally
combining the base kernels.

The proposed MK-MTPFL formulation employs a
mixed (l1,1,),p > 2 norm regularizer over the RKHS
norms of the feature loadings corresponding to the given
tasks and base kernels. The [,-norm regularizer is
applied across tasks and promotes unequal weightings
across task — by varying p one can achieve various
schemes of unequal weightings for tasks. This may be
useful in handling tasks with unequal reliability [7]. The
l1-norm regularizer is applied over the [, norms leading
to learning the shared kernel as a sparse combination
of the given base kernels. The formulation is solved
by adapting the mirror-descent [8, 9, 10] based algo-
rithm proposed in [11] to the present case. While this
formulation, in general, learns non-sparse feature repre-
sentations, in some applications like object recognition,
learning sparse feature representations may be useful.

In the recent past, several works have focused
" TAbbreviation denotes multiple kernel multi-task feature learn-
1mn;

g2Abbreviation denotes multiple kernel multi-task sparse fea-
ture learning



on this important problem of learning of sparse fea-
ture representations which are shared across multiple
tasks [12, 13, 14, 15, 1, 16, 17]. A majority of these
methods simultaneously learn a shared low-dimensional
(sparse) feature representation as well as the corre-
sponding optimal task predictors. Motivated from both
computational as well as regularization perspectives,
these methods restrict the search for the optimal fea-
ture space to low-dimensional subspaces in the input
feature space (i.e., the final feature representation can
be obtained from the input features by applying a
suitable rotation and then neglecting unimportant fea-
tures). Hence the quality of the final feature represen-
tation depends on the quality of the input features.

The proposed MK-MTSFL formulation aims at
reducing this risk of employing low quality input fea-
tures, by considering an enriched input space induced by
multiple base kernels. MK-MTSFL essentially looks
for low-dimensional subspaces in the induced feature
spaces of the base kernels which are important for all the
tasks at hand, while insisting on employing as few base
kernels as possible. The latter constraint helps in elimi-
nating kernels (and corresponding features) with overall
low quality across the tasks. In the special case where
number of base kernels is unity, the MK-MTSFL re-
duces to the formulation in [1] (henceforth denoted by
MTSFL) — which is shown to achieve state-of-the-art
performance on several benchmark multi-task datasets
and hence is considered as a baseline for comparison in
the simulations (refer section 5).

The MK-MTSFL formulation is posed as a
(l1,14),g > 1 mixed Schatten-norm regularized prob-
lem. Such problems are non-standard in literature and
call for novel optimization methodologies. One main
contribution of this paper is an efficient mirror-descent
based algorithm for solving the MK-MTSFL formu-
lation. Mirror-Descent (MD) is similar in spirit to the
Projected Gradient Descent (PGD) [18, 19] algorithm.
While the key computational step in PGD is projection
onto the feasibility set, MD employs a suitable regular-
izer such that the projection problem is simple. MD has
been studied in the context of two standard feasibility
sets: 1) simplex ii) spectrahedron. However the feasi-
bility set with MK-MTSFL is a (l1,1;),¢ > 1 mixed
Schatten-norm ball and is hence non-standard. In this
paper we show that the entropy function can be em-
ployed as the regularizer in the context of MD leading
to an efficient algorithm for solving MK-MTSFL.

Simulation results on real-world datasets clearly in-
dicate that the proposed methods achieve better gen-
eralization than state-of-the-art and hence employing
multiple base kernels is beneficial in the case of multi-
ple tasks. The results also show that in the special case

where number kernels is unity in the MK-MTSFL for-
mulation, the proposed mirror-descent based algorithm
converges faster (with similar per-iteration complexity)
than the alternate minimization algorithm in [1].

In the subsequent section, we provide a brief in-
troduction to the mirror-descent algorithm. Section 3
details the MK-MTFL formulation while in section 4,
the details of the MK-MTSFL formulation are pre-
sented. The sections also describe the mirror-descent
based algorithms for solving the formulations. The re-
sults of simulations are detailed in section 5. The paper
concludes with a brief summary of the paper and direc-
tions for future work.

2 Mirror-Descent Algorithm

Mirror-Descent (MD) algorithm is suitable for solving
problems of the form min,ex f(x) where X is a convex
compact set and f is a convex and Lipschitz continuous
function on X. It is assumed that an oracle which can
compute the sub-gradient (V f) of f at any point in X is
available (an oracle for computing f is not necessary).
MD is close in spirit to the projected gradient descent
algorithm where the update rule is z(+1) = Iy (x(l) —
5V f(2®)) where ITx denotes projection onto set X and
0 s, are the iterate value and step-size in the [*" iter-
ation respectively. Note that the update rule is equiva-
lent to 2+ = argmingex ' Vf(2V) + %ngxfz(l) (B2
The interpretation of this rule is: minimize a local lin-
ear approximation of the function while penalizing devi-
ations from current iterate (as the linear approximation
is valid only locally). The step-size takes the role of reg-
ularization parameter. The key idea in mirror-descent
is to choose the regularization term which penalizes de-
viations from current iterate in such a way that this
per-step optimization problem is easy to solve; lead-
ing to computationally efficient gradient descent proce-
dures. For convergence guarantees to hold, the regular-
izer needs to be chosen as a Bregmann divergence i.e.,
llz — 2(D]|3 is replaced by some Bregmann divergence
term: w, o (7) = w(x) — w®) — Vw(zW)T (2 — 2®)
where w is the (strongly convex) generating function of

the Bregmann divergence employed. The step-sizes® can
be chosen as any divergent series for e.g., s; = lip, 0<
p < 1. Note that in case w is chosen as w(z) = 3|3,

then the projected gradient descent algorithm is recov-
ered. The per-step minimization problem mentioned
above can now be re-written in terms of w as:

(2.1)

where (W = §Vf(zW) — Vw(z®). As mentioned
above, the strongly convex function w is chosen cleverly

(1+1) _ T ()
x arg;rél)r(lxg + w(x)

SRefer [10] for notes on choosing step-sizes optimally.



based on X such that (2.1) turns out to be an easy
problem to solve. There are two well-known cases where
the MD algorithm almost achieves the information
theoretic optimal rates of convergence: i) X is a simplex
in R (ie, X = {x € R* | ; > 0, Zgzl x; =
1}) and w is chosen as the negative entropy function:
wx) = Zle x;log(x;) i) X is a spectrahedron (i.e.,
set of all symmetric positive semi-definite matrices with
unit trace) and w(z) = Trace(xlog(z)). Infact, in the
former case, the per-step problem (2.1) has an analytical
solution:

(2.2) exp{—¢"}

d 7
S exp{~¢)
Also for this case, the number of iterations can be shown

to grow as log(d) and hence nearly-independent of the
dimensionality of the problem.

LD _

%

3 Multiple Kernel Multi-task Feature Learning

This section presents the MK-MTFL formulation and
the mirror-descent based algorithm for solving it. The
derivations are presented for the case where each task
is a binary classification problem; however it is easy
to extend the derivations to other learning tasks as
well. Let D = {(x¢,9:), ¢ = 1,...,my, t =1,...,T}
be the training dataset where x;; represents the i*?
example of the t* task and vy is its label. Let
Kj,7=1,...,k be the given set of base kernels and let
#;(+) represent the feature vector induced by the j**
kernel Let the linear discriminator for the t** task be
Z 1 Wy L¢j(x) — by = 0. Low empirical risk over each
task would imply minimizing the following hinge-loss:

Zt 1 20 max (0 L= Yui (22521 W;Z'%' (xti) — bt))~

We employ the following mixed-norm based regularizer:

1N 2

(S (Satwler)” ) where p > 2. This
regularizer employs a mixed-norm over the RKHS
norms (i.e., [[wy;||2). More specifically, it involves an I
norm across kernels and [/, norm across tasks and hence
promotes sparsity across kernels and non-sparse com-
binations across tasks. With this regularizer, feature
loadings for a particular kernel are encouraged to be
either zero or non-zero across all the tasks (refer [20, 21]
also). Hence the formulation does achieve a shared
feature representation as desired. Mathematically, the
proposed MK-MTFL formulation can be written as:

min

Wob.E 3 (Z?—l (Z?:l ”Wtj”g)y> + Czt DT

s.t. ytz(Zk 1 Wt](z)j (th) - bt) >1- ftzv gtz Z 0

The MK-MTFL formulation can also be under-
stood as an extension of the standard MKL formula-

tion [6] to the case of multiple tasks. Infact, in the
special case of number of base kernels is unity, it reduces
to the MKL formulation. Also, it can understood as an
adaptation of the composite absolute penalties family
studied in [22, 23, 11] to the current problem. We now
rewrite this formulation in a convenient form which can
be efficiently solved using mirror-descent based algo-
rithms. We introduce some more notation: let Ay, =

{z_[ zd]T|Z7ll<1zZ>OZ—1 ,d

and with slight abuse of notation let Ay = Ad. Next
we note the following lemma [24]:

LEMMA 3.1. Let a; > 0,1 = 1,...,
Then, for Aqg,, defined as before,

dand 1 < r < oo.

r+1

()

and the minimum is attained at

min
nEAg,r
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with the convention that a/0 is 0 if a = 0 and is oo if

a # 0.

Using the result of the lemma (with » = 1) and
introducing variables v = [y1 ... 7] ", we have:
1 2 T

k(T g & (w2

So(DUwylly ) ) = min ,

=1 \t=1 TEAR T Vi
Now introducing dual variables \; = [Aj1 ... 7], j =
1,...,k and using the notion of dual norm [25], we

obtain:

p

T P T
w 5 = a Z/\v w2
(Z Ivwes) ) 5, el

t=1

where p = 5. With this, the objective in the MK-

MTFL formulation can now be written as:

k T 2 T my
. . ]. _ )\'t Wi
min min max — g M +C E g &
YEAL w,b,& )\]‘ GAT,:L; 2 —1 ’YJ =1 i1
After interchanging the min. and max. using min-

max theorem [26] and writing the Lagrange dual of the
resulting formulation wrt. the variables w,b,{ alone,
leads to the following:

min max max

(3.3)
YEAR A EAT 5 a0t €Sm, (C)

g\ ;)



where

)\ a,’y lTat Yt Z’YJKW Yt (673

t=1 Ajt

Mq

Here, o is a vector of Lagrange multipliers correspond-
ing to the m; classifications constraints correspond-
ing to the ¢ task in the MK-MTFL formulation,
Sm, (C) = {at |0 <a; < Cl,yt—rat = O}, 0,1 denote
appropriate-sized vectors of zeros and ones respectively,
y¢ is vector of labels of the t*" task training data points,
Y, is a diagonal matrix with entries as y; and K;; rep-
resents the gram matrix of the ' task training data
points wrt. the 7% kernel.

The partial dual in (3.3) provides further insights
into the formulation. Firstly, (3.3) is equivalent to
solving regular SVM [27] problems one for each task

[E?:l %} The kernel

weights (v, \) in the effective kernel are learned based
on examples of all the tasks and in particular, vs are
shared across all the tasks. Moreover, by construction,
most of the 7; are zero, leading to sparse combination of
kernels. In other words, the effective features employed
are learnt using examples of all the tasks whereas
individual task feature loadings may differ across tasks;
this is consistent with the context of multi-task feature
learning. Note that in the special case p = 2i.e., p = oo,
all As must be unity at optimality. In other words, even
the non-zero weights for the selected kernels are also
shared across tasks. Infact by varying p one can obtain
various weighting schemes for the selected kernels and
can be beneficial in cases where tasks are not equally
reliable.

In the following we present an efficient mirror-
descent based methodology for solving the MK-
MTFL formulation which is inspired by the algo-
rithm presented in [28]. Instead of solving the
min-max problem in (3.3) we prefer to solve equiv-
alently: min.ea, f(v) where f(y) is as defined as
Maxy, eAr , MaXa,es,,, () J(A, ;7). It is easy to see
that f(y) is convex and using Danskin’s theorem [19]
one can obtain Vf provided f(v) can be computed
efficiently for a given «. Since the feasibility set for
this problem is a simplex, mirror-descent outlined in
section 2 can be employed to solve it very efficiently.
As noted above, since the feasibility set is a simplex,
the MD algorithm will be achieving almost the opti-
mal rate of convergence and specifically, the number
of iterations required will be nearly-independent of k
(the no. base kernels). Now, evaluation of f(v) is
equivalent to maximization of g(A, ;) wrt. A and «
for the given . This maximization can be performed
efficiently using an alternate minimization over the A

with the effective kernel

and « variables. For fixed values of A, maximization
over « is equivalent to solving 7' regular SVM prob-
lems. For fixed values of a the problem of maximization
wrt. A is equivalent to: — Z?,l miny;ea, , tTﬂ %
- ’ - Jjt
where Dj; = %yjafYththat. From lemma 1, we
know that this problem has an analytical solution. The
per-step computational complexity is dominated by the
SVM computations and calculation of effective ker-
nel: O(k Z?:l m3?). As mentioned above, the num-
ber of iterations for the mirror-descent grows as log(k)
and in our simulations we found that the alternate
minimization typically converges in around 3-5 itera-
tions. Hence the overall computational complexity is
O(k log(k) Zt , m?). This formulation is thus expected
to be far more scalable than most of the existing MTFL
methodologies [12, 13, 14, 1, 16, 17] — which solve a
Singular Value Decomposition (SVD) problem at every
iteration. However, in general, unless the base kernels
are carefully chosen, the optimal feature representation
learnt by MK-MTFL is non-sparse. Whereas in some
real-world multi-task applications it may be desirable to
learn sparse feature-representations. Such a novel for-
mulation for learning sparse feature representations con-
structed from multiple base kernels and shared across
multiple tasks is presented in the subsequent section.

4 Multiple Kernel Multi-task Sparse Feature
Learning

This section presents the details of the MK-MTSFL
formulation. As discussed in section 1, most of the ex-
isting methods for shared learning of sparse feature rep-
resentations look for low-dimensional subspaces in the
input space which are beneficial to all the tasks. A
short coming of this methodology, as noted above, is the
strong dependency of the performance on the input fea-
tures. One way to minimize risk of employing low qual-
ity input features is to enable the formulations working
with multiple base kernels. A trivial way of generalizing
the existing methodologies to work with multiple base
kernels is just by employing a kernel (and hence its in-
duced feature space) which is a simple sum or average of
all the base kernels. This essentially is same as working
with an enriched input space which is a concatenation of
the individual feature spaces corresponding to the given
base kernels [29]. This may be is fine provided all the
base kernels are “good”. In a more realistic situation
it is desirable to employ the “best” few base kernels
and the corresponding low-dimensional subspaces. In
the following we present a formalism which implements
this idea. Also, the simulation results on real-world
datasets, detailed in section 5, confirm that the pro-
posed MK-MTSFL formulation achieves better gener-
alization than the trivial extension noted above.



We follow the notation introduced in section 3.
As in case of the existing multi-task sparse feature
learning algorithms and in particular MTSFL, we
construct new features as orthogonal transforms
of the given features ie., L;j¢;(x) where L; is an
orthogonal matrix which is to be learnt. Now a
linear discriminator for the t* task with the newly
constructed features is: Z?Zl thijTqu(x) —b = 0.
Again, low empirical risk over each task would
imply minimizing  the following hinge-loss:

Et Lo max (0 11—y (Z?Zl W;Z-L;»'—qu(xti) — bt)>.
Before descrlblng the regularization term, we in-
troduce some more notation: Let the entries of
Wi be we,l = .,d; where d; is the dimen-
sionality of the feature space induced by the j**
kernel. By w.; we denote the vector with entries
wijz,t = 1,...,T. The regularization term we employ

2

is (X0 (S Iwaill2) )" sa € [1,2]. Though this
regularizer looks similar to that in MK-MTFL, there
are few fundamental differences: 1) this regularizer
employs an [; norm over feature loadings across tasks
rather than an RKHS norm over feature loadings for
each task. Hence the feature loadings will be sparse
and the features not selected are common across the
tasks. Thus a shared sparse feature representation
is constructed ii) the I; norm over kernels in the
former case is now generalized to an [, norm over
kernels. Since ¢ € [1,2], we obtain various schemes
of sparsely combining the base kernels by varying
g. iii) the I, norm over tasks is here restricted to
l3-norm. This is done to facilitate the kernel trick (as
we shall understand later). In summary, the regularizer
promotes use of few kernels (i.e., few kernel’s feature
loadings are non-zero) and promotes use of few learnt
features in each kernel (i.e., achieves sparse feature
representation) across the tasks. Thus it is suitable for
constructing shared sparse feature representation across
tasks given multiple base kernels. Mathematically, the
MK-MTSFL formulation can be expressed as:

min
w,b,§,L

s.t.

L (S (S Iwalk)) oS S 6

yti(Z?:l WLl ¢(xei) —br) > 1 — &
&i > 0,L; € O%

where O% represents the set of all orthogonal matrices
of dimensionality d;. Note that, in the special case k =
1, this formulation is same as the MTSFL formulation.
In the following text we re-write this formulation in a
form which is convenient to solve using an MD based
algorithm.

Using lemma 1 and introducing new variables A =

[A1... ] T, we have:

q

QN

d; 2
(i w.llz)

E E [lw_j1]]2 = min
J
AEAK 4 Aj
j=1 \ =1 €Sk J
where ¢ = ﬁ. Again using lemma 1 and in-
. . T . _
troducing new variables v; = [yj1...74] ] =
1,...,k, the regularizer can be written as:
. . T k dj  wij
MiNeA , My €Ay D gy 2 et 211 700 - Now
we perform a change of variables: —=2— = wy;;. Also,
YikAj
we define Wy ; as vector with entries as wy;;,l =1,...,d;.

Using this one can re-write the MK-MTSFL formula-
tion as:

: T . koo T
i Dy Wil bk, 32 WhWe + C 3 &
3 Y5 g
s.t. yti(Z t]Af L ¢j(xei) —be) > 1 =&y & >0

A E Ak@,’}/j € Adj,Lj € 0%

where A; is a diagonal matrix with entries as Ajv;;, [ =
1,..., dj4. Now writing the Lagrange dual wrt. wy, by, &
leads to the following form:

)\mirﬁ Zt | Maxg, 1Ta; — Lo Y, (Z CI);SL;FAL]-(I)”) Yoy
3Yg.g

s.t. A E Ak’q,’)/j S Adj,Lj € Odj7Olt € Smt (C)
where ®;; is the data matrix with columns as
¢j(x4),4 = 1,...,my. Denoting L]-TAij by Q; and
eliminating variables A, ~, Ls leads to:

T

i 17 ffTY< k <I>T’-<I>-)Y

Q' Ladsie) TN =1 21 Qits ) Yo
s.t. Q, = 0, Zj ((trace(Q;))? <1

The difficulty in working with this formulation is that
the explicit mappings ¢;s are required. We now de-
scribe a way of overcoming this problem and effi-
ciently kernelizing the formulation (refer [1] also). Let
D, [®1;...Pr;] and the compact SVD of ®; be
U,%; VT5 Now, introduce new variables Q; such that
QJ = jQJU Here, Q; is a symmetric positive semi-
definite matrix of size same as rank of ®;. Eliminating

TNote that, Ajv;j1 being zero does not cause a problem since
then both wyj;; and w;;; will be zero for all t = 1,...,T at
optimality

5Since we perform a compact SVD, 3 is a square diagonal
matrix of size equal to rank (which is atmost 2321 my) of ®;
and no. columns of Uj;, Vj are the again equal to the rank.



variables Qj, we can re-write the above problem using
Q; as:
T
m(;i)n; H(ISX 1T — %a;rYt (Z?Zl M;'—ijMtj) Yoy
s.t. Q, = O,Z;?:l(trace(Qj))q <1,
a € Sy, (C)

where My; = 37'V/®[®,;. Note that calculation
of My; does not require the kernel-induced features
explicitly and hence the formulation is kernelized.

The partial dual of MK-MTSFL noted above
provides more insights into the original formulation.
Given Q;s, the problem is equivalent to solving 7' SVM
problems individually. The Q; s are learnt using training
examples of all the tasks and are shared across the tasks.
The trace constraints are a generalization of the trace-
norm regularization and hence promote low ranked Q;s
at optimality. Thus the formulation indeed constructs a
shared sparse feature representation using multiple base
kernels simultaneously. In the following text we describe
an efficient MD based algorithm for solving this dual
formulation.

Instead of
in the dual,
minger(q) f(Q)
nal matrix with entries as

min-max problem
equivalently solve:
where Q is a block diago-
Q:1...Qx, R(q) =
{QIQ; =0V j =1, kX0 (trace(@))7 =1},

f(Q = Zthl 1T, — itrace(QB), and B
is a block diagonal matrix with entries as
B, = >, M;Yiuo]Y:M]. Note that this
minimization problem is an instance of a mixed
Schatten-norm based regularized problem. The idea
is to solve min. of f using mirror-descent. Note that
f is point-wise maximum over affine functions in Q
and hence is convex in Q. Also, the gradient of Vf
wrt. Q can be obtained using Danskin’s theorem:
VQW) = —%B(l) where B®) is the value obtained
using optimal «; obtained while evaluating f(Q(l)).
Also evaluation of f(Q) is equivalent to solving T
regular SVM problems.

In the following we show that the strongly convex
function w(x) = trace(zlog(x)) can be employed as the
Bregmann divergence generating function in the context
of mirror-descent for solving the mixed Schatten-norm
regularized problem at hand. With this choice, the per-
step optimization problem (2.1) turns out to be:

Quin trace(¢)Q) + trace(Qloz(Q))

solving  the
we prefer to

where () = 5;V£(Q®) — Vw(QW). We already noted
how Danskin’s theorem can be employed to obtain

VAQWM). Also, Vw(Q®) = log(QW) + I where T is
the identity matrix of appropriate size. Note that both
Q and ¢® share the same block diagonal structure.
In the following we argue that at optimality, Q and
¢ share the same eigen-vectors (also refer [10] for
case of spectrahedron geometry). Let the EVD (Eigen
Value Decomposition) of (0 = ZIOZT (here II is
the diagonal matrix containing eigen values). Passing
from variable Q to © according to Q = ZOZ' we
can re-write this problem as: minge p(q) trace(IlO) +
trace(©log(©®)). It is easy to see that the unique
optimal solution of this (strongly convex) problem is
a diagonal matrix: for every diagonal matrix D with
entries =1 and every feasible solution ©, the quantity
DOD will remain feasible and moreover achieves the
same objective (since II is diagonal). It follows that
the optimal set of solutions must be invariant wrt.
© — DOD transformations, which is possible if and
only if © is also diagonal (else uniqueness of the solution
breaks-down). If the entries in II,© are mj;;,6;,0 =
1,...,r5,5 =1,...,k (here r; represents the dimension
of matrix Q; ) respectively, then the above problem is
equivalent to:

(44) min SE_ S0y (B3 log(6;0) + 0umj)
00> V4, S5 (372,

Though this is a convex problem and involves vectorial
variables, the number of variables can be as large as
T . .
k>, , m;. Hence it is not wise to employ standard op-
timization toolboxes to solve this problem. Actually one
can reduce the number of variables to k by performing
the following trick: introduce variables p;,j =1,...,k
and re-write problem (4.4) as:

s.t. 9jl)q S 1

k
(4.5) min Zlgin i1 (050 log(850) + Ojumjn)
j=1 "
s.t. 9jl Z 0, 2;1:1 Gjl = pPj
o
8.t p; >0, 0 <1

The minimization problem wrt. 6; in the above prob-
lem has an analytical solution: 6; = p;7;, where
_ _ exp{—mu}
2, exp{—m;i}
from (4.5) and re-write as:

T Using this one can eliminate §;
. k T — —
min 35, (p51og(ps) + p; (Xily (muje + T log(win))))

k _
p; =0, Zj:l p‘;- <1

The size of this problem is k and can easily managed

by standard solvers like cvx®. Apart from the com-

s.t.

G Available at http://cvxr.com/cvx/



Table 1: Comparison of % explained variance with various methods on multi-task regression datasets

MK-MTFL MK-MTSFL
MTSFL | MTSFLavg | MKL | SVM p=2 p=6 p=867| ¢q=101 ¢g=15 ¢=1.99
School
1388 [ 1235 [ -1542 [ -8.97 | -918  -6.60 -4.53 | 14.02° 13.86 13.95
Sarcos
-23.2839 | -40.1259 [ -86.2684 | -26.1611 | -82.58  -71.70  -69.9437 [ 26.1477* 25.6644  25.52
Parkinsons
5781 [ 4272 [ 1416 [ 4435 [-249.32 45536 -2156.34 [ 45.37 58.11  59.27*

putational cost of cvx (which is negligible for k in or-
der of few hundreds), the dominant computations are 1)
EVD of ¢ which involves EVDs of k matrices of size
r;,j =1,...,kii) solving T regular SVMs”. This is still
reasonable as, in the special case number of base kernels
is unity, cvx need not be employed and the dominant
computation remains the same as that in the alternating
minimization algorithm in [1]. Also, in the case ¢ = 1,
cvx need not be employed as the final problem again
has an analytic solution.

5 Numerical experiments

This section summarizes results of simulations which il-
lustrate the merits of the proposed algorithms. The ex-
periments are aimed to show that: i) the proposed for-
mulations achieve good generalization ii) the proposed
MD based algorithms are efficient in solving them. We
begin with results comparing the generalization of the
various formulations®:

MK-MTFL The multiple kernel multi-task feature
learning formulation presented in section (3).
Three different values of p (the norm over tasks)
were considered: 2, 6, 8.67.

MK-MTSFL The multiple kernel multi-task sparse
feature learning formulation presented in sec-
tion (4). Three different values of ¢ (the norm over
kernels) were considered: 1.01, 1.5, 1.99

MTSFL State-of-the-art multi-task sparse feature
learning formulation [1]. The original code pro-
vided by authors® was employed for solving the for-
mulation.

MTSFLayg Straight-forward — extension of  the
MTSFL formulation to the case of multiple base

The computation of log(Q;) can be done efficiently (avoiding
EVD) by book-keeping the EVD of Q;
8Code for the proposed formulations is available at: http:
//www.cse.iitb.ac.in/saketh/research/MTFL.tgz
9Available at http://ttic.uchicago.edu/~argyriou/code/

mtl_feat/mtl_feat.tar

kernels noted in section 4. It is same as the
MTSFL formulation but with input kernel as the
average of all the given base kernels.

SVM The baseline formulation where each task is
learnt using an individual SVM [27] model. In
case of binary classification tasks, we employed
1ibsvm!? for solving the SVM problem.

MKL The baseline formulation where each task is
learnt using an individual MKL [6] formulation.
Since this is a special case of MK-MTFL with
k =1, it can be solved using the same algorithm.

The following datasets were employed in our com-
parisons:

School A benchmark multi-task regression
dataset [1]''. The goal is to predict perfor-
mance of students given their descriptions/past
record. Data for 15362 students from 139 schools
is available and each student is described using
28 features. The regression problem of predicting
performances in each school is considered as a
task. At random 15 examples in each task were
taken as training data and the rest as test data'2.

Sarcos A multiple-output regression dataset [30]'2.

The objective is to predict inverse dynamics cor-
responding to the seven degrees-of-freedom of a
SARCOS anthropomorphic robot arm based on 21 in-
put features. The dataset comprises of 48933 data
points. Prediction of inverse dynamics for each
degree-of-freedom is considered as a task. 2000 ran-
dom examples were sampled in case of each task
and 15 of them were used as training examples
while the rest were kept aside as test examples.

T0Code available at www.csie.ntu.edu.tw/~cjlin/libsvm/

11 Available at http://ttic.uchicago.edu/~argyriou/code/
mtl_feat/school_splits.tar

12We employed a different training-test ratio than [1] in order
to focus on data scarce regime

13 Available at http://www.gaussianprocess.org/gpml/data/




Parkinsons A multi-task regression dataset!'4. The
objective is to predict two Parkinsons disease symp-
tom scores (motor UPDRS, total UPDRS) for pa-
tients based on 19 bio-medical features. The origi-
nal dataset comprises of 5,875 recordings for 42 pa-
tients. The regression problem of predicting each
symptom score for each patient is considered as a
task. Thus the total number of tasks turns out to
be 42 x 2 = 84. 15 random examples per task were
used for training and the rest formed the test data.

Caltech A benchmark multi-class object categoriza-
tion dataset [31]'°. A collection of images from
102 categories of objects like faces, watches, ants
etc., with 30 images per category. Each 1-vs-rest
binary classification problem was considered as a
task (no. tasks=102). The training-test splits and
25 base kernels are provided with the dataset.

Oxford A benchmark multi-class object categorization
dataset [32]'¢. Collection of images of 17 varieties
of flowers. The number of images per category is
80. Each 1-vs-rest binary classification problem
was considered as a task (no. tasks=17). Three
predefined training-test splits consisting of 40 train-
ing, 20 validation and 20 test examples and seven
base kernels are provided with the dataset.

In case of SVM, MTSFL a 3-fold nested cross-
validation procedure is employed to tune the C' and
the kernel parameter. For the proposed methods and
MKL, MTSFLayg, a 3-fold cross-validation procedure
is employed to tune the C' parameter and for fairness in
comparison, the base kernels are chosen to be exactly
those provided to the other methods for nested cross-
validation. The values of the C parameter considered
for the regression datasets are in the set {5e — 4,5e —
3,...,5e + 2} whereas for the classification datasets
they are in set {5e — 1,5,...,5e + 5}. Also, one linear
and six Gaussian kernels, with parameter values in the
set {le — 2,1e — 1,...,1le + 3}, are employed in case
of the regression datasets. Following [1], % explained
variance [33] is employed as the measure of performance
for regression problems. The explained variance per
task can be computed as 1 minus the ratio of mean
squared error and the variance of the true outputs on the
test dataset. Note that a simple regressor which predicts
every output as the mean of the outputs in the dataset

MM Available at http://archive.ics.uci.edu/ml/datasets/
Parkinsons+Telemonitoring

15 Available at http://mkl.ucsd.edu/dataset/
ucsd-mit-caltech-101-mkl-dataset

16 Available at  http://www.robots.ox.ac.uk/~vgg/data/
flowers/17/index.html

achieves an explained variance of zero on the dataset.
Thus if explained variance is negative a simple mean
estimate is better than the corresponding regressor and
hence the method is of no use. In general, higher
the explained variance, better the method. However
in our case we have multiple tasks and we compute
the overall explained variance as the mean of explained
variances over each task. Hence we can no longer claim
that a methodology which achieves an overall negative
score is useless. But still, the higher the explained
variance, the better the method. In case of object
categorization datasets we employ % accuracy as the
measure of performance.

The results on regression (object categorization)
datasets are summarized in table 1 (3) respectively.
We report the mean % explained variance (% accu-
racy) achieved over 10 random splits (standard splits)
for each dataset. The highest explained variance (accu-
racy) achieved in each dataset is highlighted. Also, if the
improvement in explained variance (accuracy) is statis-
tically significant (> 94% confidence with paired t-test),
then the result is marked with a x. Table 1 clearly shows
that the proposed MK-MTSFL formulation outper-
forms every baseline confirming that learning a shared
feature representation is indeed beneficial. Moreover the
improvement over state-of-the-art multi-task methodol-
ogy is statistically significant. This illustrates the ad-
vantage of employing multiple kernels in the context of
multi-task applications. Note that MTSFL,,, which
also employs multiple kernels (in a trivial manner) is
infact achieving less generalization than its single ker-
nel counter-part MTSFL — this shows the benefit of
employing sparse combinations of kernels. The results
highlight the importance of solving the MK-MTSFL
formulation at various values of ¢ (the norm for kernel
regularization), and hence the utility of the MD based
algorithm, as there seems to be no evident optimal value
across datasets. Automatic tuning of ¢ calls for further
investigation.

From the results in table 1, the MK-MTFL for-
mulation seems to be highly incompetent; whereas M K-
MTSFL, which learns sparse feature representations, is
highly efficient. However, MK-MTFL can also be em-
ployed for learning sparse feature representations pro-
vided suitable base kernels are employed. For instance,
if base kernels are derived from individual features, then
MK-MTFL may indeed learn sparse feature represen-
tations. In order to see if the poor performance of MK-
MTFL is due to inherent limitations in MK-MTFL or
due to restricted choice of base kernels, we repeated the
simulations with base kernels including those derived
from individual features. These results are reported in
table 2. Due to the large increase in the number of base



Table 2: Comparison of % explained variance with various methods on multi-task regression datasets with feature-

wise kernels

Datasets | MTSFL | MTSFLovg | MKL | SVM |, M;{':I\ETF; — 8.67 MI;E $S5FL

School i 9.76 -3.07 | -4999.08 | 10.95 13.68  14.35° i

Sarcos 2.44 37.80 1872 | -1464 | 49.82 3923 30.12 38.82
Parkinsons | - 3598 | 60.66° | 53.59 | -19.58 -15.88 -418.86 i

kernels (increase by number of features times number
of original base kernels) some formulations failed to ex-
ecute with the available resources. This failure is indi-
cated with a — at the appropriate cell in the table.

Interestingly, the performance of MK-MTFL is
improved by a great magnitude and infact in the case
of School and Sarcos datasets it turned out to be the
best performing method (with either setting of base ker-
nels). In case of the Parkinsons dataset though the ex-
plained variance seems to be low, we observed that the
mean squared error (mse) is the least among all the
methods and infact the improvement in terms of mse
is statistically significant. The results on object cate-
gorization are summarized in table 3. Since the train-
ing dataset sizes here are of the order of few tens of
thousands, the SVD based algorithms failed to execute.
Hence we report simulation results with the baselines
and MK-MTFL alone. The proposed MK-MTFL
outperforms the baselines confirming that it is indeed
capable of discovering efficient shared feature represen-
tations in the context of multiple tasks. To summarize,
in case large number of base kernels are available, then
both from computational and generalization perspective
MK-MTPFL is the obvious choice. When a restricted
set of base kernels are available, then MK-MTSFL is
the best option.

The results showing the efficacy of the proposed MD
methodologies are summarized in figure 1. The first
two plots in figure 1 show the scaling of MK-MTFL
with T and k respectively on the School dataset. The
plots show that the method can easily scale to large
number of base kernels as well as tasks. The subsequent
plots compare convergence rate of the MD algorithm
presented in section 4 for the special case k = 1 and
alternate minimization in [1] on the School dataset
with T = 20,139 respectively. It can be seen that
the MD algorithm achieves faster convergence (with
similar computational complexity) especially for large
problems.

6 Conclusions

There are three main contributions in this paper: i) the
MK-MTFL formulation: discovers shared feature rep-

Table 3: Comparison of performance on various object
categorization datasets

MK-MTFL
Dataset | MKL | SVM P=2 p=6 p=867
Caltech | 52.75 | 54.35 | 65.12  65.15 65.27*
Oxford | 83.73 | 81.67 | 85.29 85.98* 85.88

resentations by learning a common kernel constructed
using multiple base kernels. Simulations show that this
method is scalable as well as achieves good generaliza-
tion when provided with an appropriate set of base ker-
nels. ii) the MK-MTSFL formulation: learns sparse
feature representations constructed from multiple base
kernels and shared across multiple tasks. Simulations
show that this method always achieves better gener-
alization than state-of-the-art and outperforms various
baselines. iii) the MD based algorithm for solving MK-
MTSFL. We showed that the negative entropy func-
tion can be employed as an efficient Bregmann generat-
ing function in the context of mirror-descent for solving
some mixed Schatten-norm regularized problems.
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