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Data Uncertainty

@ Real-world data fraught with uncertainties, noise.

Measurement errors, non-zero least counts etc.
Inherent heterogenity:

Bio-medical data e.g. Micro-array, cancer diagnostic data.

Computational /Respresentational convinience.
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Data Uncertainty

@ Real-world data fraught with uncertainties, noise.

Measurement errors, non-zero least counts etc.
Inherent heterogenity:

Bio-medical data e.g. Micro-array, cancer diagnostic data.
Computational /Respresentational convinience.
@ Many datasets provide partial information regarding noise.

e.g., Wisconsin breast cancer datasets (support, mean, std. err.)
Micro-array datasets (replicates)

@ Classifiers accounting for uncertainty generalize better.
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Problem Definition

Problem:
@ Assume partial information regarding uncertainties given:
bounding intervals (i.e. support) and means of uncertain eg.

@ Make no distributional assumptions.

@ Construct classifier that generalizes well.
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Existing Methodology

[Laurent El Ghaoui et.al., 2003]:

@ Utilize support alone; neglect statistical information
True datapoint lies somewhere in bounding hyper-rectangle

@ Construct regular SVM
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Existing Methodology

[Laurent El Ghaoui et.al., 2003]:

@ Utilize support alone; neglect statistical information
True datapoint lies somewhere in bounding hyper-rectangle

@ Construct regular SVM

SVM Formulation:

: 1 2
mig sllwllz +C Y&

st gi(wixi—b)>1-§, &>0
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Existing Methodology

[Laurent El Ghaoui et.al., 2003]:

@ Utilize support alone; neglect statistical information
True datapoint lies somewhere in bounding hyper-rectangle

@ Construct regular SVM

IC-BH Formulation:

: 1 2
mig sllwllz +C Y&

st yi(wixi—b)>1-¢, >0, Vx €R;
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Limitations of Existing Methodologies

@ Neglect useful statistical information regarding uncertainty
@ Overly-conservative uncertainty modeling leads to less margin
Poor generalization
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Limitations of Existing Methodologies

@ Neglect useful statistical information regarding uncertainty
@ Overly-conservative uncertainty modeling leads to less margin
Poor generalization

Proposed Methodology:
@ Use both support and statistical information
@ Employ Chance-Constraint Program (CCP) approaches

@ Relax CCP using Bernstein bounding schemes

Not overly-conservative — better margin and generalization
Leads to convex Second Order Cone Program (SOCP)
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Proposed Formulation

SVM:
min w3 +C 3 &
s.t. yi(wix; —b) >1-¢
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Proposed Formulation

SVM:
min w3 +C 3 &
SR yi(w'X; —b) >1-¢
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Proposed Formulation

Chance-Constrained Program:

. 1 2
i sliwlls +C > &

s.t. Prob{yi(WTXi —b)<1-§} <€ &>0
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Proposed Formulation

Chance-Constrained Program:

. 1 2
e sllwllz +C &

s.t. Prob{yi(WTXi —b)<1-§} <€ &>0

Assumptions:
0 X, eR,.
o E[X;] are known.

@ X;;,j=1,...,n are independent random variables.
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Convex Relaxation

Comments:
@ In general, difficult to solve such CCPs.
@ Construct an efficient relaxation:

Employ Bernstein schemes to upper bound probability
Constrain the upper-bound to be less than ¢
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Convex Relaxation

Comments:
@ In general, difficult to solve such CCPs.
@ Construct an efficient relaxation:

Employ Bernstein schemes to upper bound probability
Constrain the upper-bound to be less than ¢

Key Question:

Prob Zuinij +up >0 < ?
J
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Bernstein Bounding

Markov Bounding:

Prob(X >0) < ?
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Bernstein Bounding

Markov Bounding:

Ex [1X20] < ?
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Bernstein Bounding

Markov Bounding:

Ex [1x>0] < Elexp{aX}] Va >0
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Bernstein Bounding

Markov Bounding:
Ex [1x>0] < Elexp{aX}] Va >0
=FE [exp} « Zuinij—l—uio

J
= exp {uio } IL;E [exp {ovu; X }]
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Bernstein Bounding

Markov Bounding:
Ex [1x>0] <Elexp{aX}] Va >0
=FE [exp} « Zuinij—}-uio

J
= exp {uio } IL;E [exp {ovu; X }]

Bounding Expectation:
o Given X € R, E[X], tightly bound: E[exp {tX}], V¢t € R
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Bernstein Bounding — Contd.

Known Result:

pagt + o (i) *13; 2
2

E [exp{tX;;}] < exp {

}VteR

(1)
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Bernstein Bounding — Contd.

Known Result:

i't+0' Ai' 2l12
E [exp{tXi;}] Sexp{'u] 2(M]) th} Vt e R (1)

@ Analogous with Gaussian mgf
Variance term varies with relative position of mean!
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Bernstein Bounding — Contd.

Known Result:

2

2t = @l Bgn P
E [exp{tX;}] Sexp{'u] (Aig ) JtQ} vVt e R

@ Analogous with Gaussian mgf
Variance term varies with relative position of mean!

(1)

Proof Sketch:
@ Support (a < X <b), mean are known.
o exp{tX} <X

@ Taking expectatlons on both 5|des leads to:

E[exp {tX}] < exp {%bt + h(lt)} h(z) = log (cosh(z) + jisinh(z
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Main Result — A Convex Formulation

IC-MBH Formulation:

i 1(lwll2 "
Wbz 6520 slwlz +C3 &

st y(wWhp—b) 42 f1; >1— &+ ||zl + £ | Zi(yiLew + 2],
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Geometric Interpretation

15

0.5

Figure: Figure showing bounding hyper-rectangle and uncertainty sets for
different positions of mean. Mean and boundary of uncertainty set marked with

same color.
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Classification of Uncertain Datapoints

Labeling:

Tmi — b)

@ Support — yP" = sign(w
@ Mean — yP" = sign(w ' j1; — b)

@ Replicates — yP" is majority label of replicates

J. Saketha Nath (PAKDD'09) Conference Seminar 12 /15



Classification of Uncertain Datapoints

Labeling:

Tmi — b)

@ Support — yP" = sign(w
@ Mean — yP" = sign(w ' j1; — b)

@ Replicates — yP" is majority label of replicates

Error Measures:
@ Nominal Error

o Calculate €,,; from Bernstein bounding

L ify £y
OptErr; = ¢ €y if y; = y¥" and R(a;, b;) cuts opt. hyp. (2)
0 else
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Numerical Experiments

Table: Table comparing NomErr (NE) and OptErr (OE) obtained with I1C-M,
IC-R, IC-BH and IC-MBH.

[ Data | IC-M [ IC-R IC-BH ICCMBH ||
I [ NE OE | NE _OE | NE __OE | NE __ OE ||
10y | 3207 59.00 | 4480 6570 | 51.05 53.62 | 20.36  52.68
105 | 4646 5478 | 48.02  53.52 | 46.67 4950 | 46.18  49.38
A-F | 0075 4647 | 00.08 4641 | 5529 5814 | 00.07  39.68
A-S | 00.02 6464 | 08.65 6856 | 61.69 61.60 | 06.10  39.63
AT | 1292 7388 | 07.92 8116 | 5833 5833 | 1125  40.84
F-§ | 01.03 348 | 00.95 3873 | 2821  49.25 | 00.05  27.40
F-T | 0655 5502 | 0581 5825 | 51.19 60.04 | 05.28  35.07
S-7 | 1095 6471 | 0500 7076 | 69.29  69.29 | 05.00  30.71
WDBC | 5567  37.26 X X 37.26  45.82 | 37.26  37.26
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Conclusions

@ Novel methodology for interval-valued data classification under partial
information.

Employs support as well as statistical information
Idea — pose the problem as CCP and relax using Bernstein bounds
@ Bernstein bounds lead to less conservative noise modeling
Better classification margin and generalization ability
Empirical results show ~ 50% decrease in generalization error
@ Exploitation of Bernstein bounding techniques in learning has a
promise.
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THANK YOU
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