Interval Data Classification under Partial Information: A Chance-constraint Approach

Sahely Bhadra J. Saketha Nath Aharon Ben-Tal Chiranjib Bhattacharyya

PAKDD 2009

Data Uncertainty

- Real-world data fraught with uncertainties, noise.
 - Measurement errors, non-zero least counts etc.
 - Inherent heterogenity:
 - * Bio-medical data e.g. Micro-array, cancer diagnostic data.
 - Computational/Respresentational convinience.

Data Uncertainty

- Real-world data fraught with uncertainties, noise.
 - Measurement errors, non-zero least counts etc.
 - Inherent heterogenity:
 - * Bio-medical data e.g. Micro-array, cancer diagnostic data.
 - Computational/Respresentational convinience.
- Many datasets provide partial information regarding noise.
 - e.g., Wisconsin breast cancer datasets (support, mean, std. err.)
 - Micro-array datasets (replicates)

Data Uncertainty

- Real-world data fraught with uncertainties, noise.
 - Measurement errors, non-zero least counts etc.
 - Inherent heterogenity:
 - * Bio-medical data e.g. Micro-array, cancer diagnostic data.
 - Computational/Respresentational convinience.
- Many datasets provide partial information regarding noise.
 - e.g., Wisconsin breast cancer datasets (support, mean, std. err.)
 - Micro-array datasets (replicates)
- Classifiers accounting for uncertainty generalize better.

Problem Definition

Problem:

- Assume partial information regarding uncertainties given:
 - bounding intervals (i.e. support) and means of uncertain eg.
- Make no distributional assumptions.
- Construct classifier that generalizes well.

Existing Methodology

[Laurent El Ghaoui et.al., 2003]:

- Utilize support alone; neglect statistical information
 - True datapoint lies somewhere in bounding hyper-rectangle
- Construct regular SVM

Existing Methodology

[Laurent El Ghaoui et.al., 2003]:

- Utilize support alone; neglect statistical information
 - ► True datapoint lies somewhere in bounding hyper-rectangle
- Construct regular SVM

SVM Formulation:

$$\begin{aligned} & \min_{\mathbf{w}, b, \xi_i} & & \frac{1}{2} \|\mathbf{w}\|_2^2 + C \sum_i \xi_i \\ & \text{s.t.} & y_i(\mathbf{w}^\top \mathbf{x}_i - b) \geq 1 - \xi_i, \ \xi_i \geq 0 \end{aligned}$$

Existing Methodology

[Laurent El Ghaoui et.al., 2003]:

- Utilize support alone; neglect statistical information
 - True datapoint lies somewhere in bounding hyper-rectangle
- Construct regular SVM

IC-BH Formulation:

$$\min_{\mathbf{w}, b, \xi_i} \frac{\frac{1}{2} \|\mathbf{w}\|_2^2 + C \sum_i \xi_i}{\text{s.t.}} \quad y_i(\mathbf{w}^\top \mathbf{x}_i - b) \ge 1 - \xi_i, \ \xi_i \ge 0, \ \forall \ \mathbf{x}_i \in \mathcal{R}_i$$

Limitations of Existing Methodologies

- Neglect useful statistical information regarding uncertainty
- Overly-conservative uncertainty modeling leads to less margin
 - Poor generalization

Limitations of Existing Methodologies

- Neglect useful statistical information regarding uncertainty
- Overly-conservative uncertainty modeling leads to less margin
 - Poor generalization

Proposed Methodology:

- Use both support and statistical information
- Employ Chance-Constraint Program (CCP) approaches
- Relax CCP using Bernstein bounding schemes
 - Not overly-conservative better margin and generalization
 - ► Leads to convex Second Order Cone Program (SOCP)

SVM:

$$\begin{aligned} \min_{\mathbf{w},b,\xi_i} & & \frac{1}{2} \|\mathbf{w}\|_2^2 + C \sum_i \xi_i \\ \text{s.t.} & & y_i(\mathbf{w}^\top \mathbf{x}_i - b) \geq 1 - \xi_i & , \ \xi_i \geq 0 \end{aligned}$$

SVM:

$$\begin{aligned} \min_{\mathbf{w},b,\xi_i} & & \frac{1}{2} \|\mathbf{w}\|_2^2 + C \sum_i \xi_i \\ \text{s.t.} & & y_i(\mathbf{w}^\top X_i - b) \ge 1 - \xi_i & , \ \xi_i \ge 0 \end{aligned}$$

Chance-Constrained Program:

$$\min_{\mathbf{w},b,\xi_i} \frac{\frac{1}{2} \|\mathbf{w}\|_2^2 + C \sum_i \xi_i}{\text{s.t.} \quad Prob} \left\{ y_i(\mathbf{w}^\top X_i - b) \le 1 - \xi_i \right\} \le \epsilon, \ \xi_i \ge 0$$

Chance-Constrained Program:

$$\min_{\mathbf{w},b,\xi_i} \frac{\frac{1}{2} \|\mathbf{w}\|_2^2 + C \sum_i \xi_i}{\text{s.t.} \quad Prob \left\{ y_i(\mathbf{w}^\top X_i - b) \le 1 - \xi_i \right\}} \le \epsilon, \ \xi_i \ge 0$$

Assumptions:

- $X_i \in \mathcal{R}_i$.
- $\mathbb{E}[X_i]$ are known.
- $X_{ij}, j = 1, \dots, n$ are independent random variables.

Comments:

- In general, difficult to solve such CCPs.
- Construct an efficient relaxation:
 - Employ Bernstein schemes to upper bound probability
 - ightharpoonup Constrain the upper-bound to be less than ϵ

Comments:

- In general, difficult to solve such CCPs.
- Construct an efficient relaxation:
 - Employ Bernstein schemes to upper bound probability
 - ightharpoonup Constrain the upper-bound to be less than ϵ

Key Question:

$$Prob\left\{y_i(\mathbf{w}^{\top}X_i - b) \le 1 - \xi_i\right\} \le ?$$

Comments:

- In general, difficult to solve such CCPs.
- Construct an efficient relaxation:
 - Employ Bernstein schemes to upper bound probability
 - $\,\,{}^{}$ Constrain the upper-bound to be less than ϵ

Key Question:

$$Prob\left\{y_i(\mathbf{w}^\top X_i - b) \le 1 - \xi_i\right\} \le ? \le \epsilon$$

Comments:

- In general, difficult to solve such CCPs.
- Construct an efficient relaxation:
 - Employ Bernstein schemes to upper bound probability
 - ightharpoonup Constrain the upper-bound to be less than ϵ

Key Question:

$$Prob\left\{\sum_{j} u_{ij} X_{ij} + u_{i0} \ge 0\right\} \le ?$$

$$Prob(X \ge 0) \le ?$$

$$\mathbb{E}_X\left[1_{X\geq 0}\right]\leq$$
?

$$\mathbb{E}_X \left[1_{X \ge 0} \right] \le \mathbb{E} \left[\exp \left\{ \alpha X \right\} \right] \ \forall \ \alpha \ge 0$$

$$\mathbb{E}_{X} [1_{X \ge 0}] \le \mathbb{E} [\exp \{\alpha X\}] \ \forall \ \alpha \ge 0$$

$$= \mathbb{E} \left[\exp \left\{ \alpha \left(\sum_{j} u_{ij} X_{ij} + u_{i0} \right) \right\} \right]$$

$$= \exp \{u_{i0}\} \prod_{j} \mathbb{E} [\exp \{\alpha u_{ij} X_{ij}\}]$$

$$\mathbb{E}_{X} [1_{X \ge 0}] \le \mathbb{E} [\exp \{\alpha X\}] \ \forall \ \alpha \ge 0$$

$$= \mathbb{E} \left[\exp \left\{ \alpha \left(\sum_{j} u_{ij} X_{ij} + u_{i0} \right) \right\} \right]$$

$$= \exp \{u_{i0}\} \prod_{j} \mathbb{E} [\exp \{\alpha u_{ij} X_{ij}\}]$$

Markov Bounding:

$$\mathbb{E}_{X} [1_{X \ge 0}] \le \mathbb{E} [\exp \{\alpha X\}] \ \forall \ \alpha \ge 0$$

$$= \mathbb{E} \left[\exp \left\{ \alpha \left(\sum_{j} u_{ij} X_{ij} + u_{i0} \right) \right\} \right]$$

$$= \exp \{u_{i0}\} \prod_{j} \mathbb{E} [\exp \{\alpha u_{ij} X_{ij}\}]$$

Bounding Expectation:

• Given $X \in \mathcal{R}$, $\mathbb{E}[X]$, tightly bound: $\mathbb{E}[\exp\{t\mathbf{X}\}]$, $\forall t \in \mathbb{R}$

Bernstein Bounding — Contd.

Known Result:

$$\mathbb{E}\left[\exp\{tX_{ij}\}\right] \le \exp\left\{\frac{\mu_{ij}t + \sigma(\hat{\mu}_{ij})^2 l_{ij}^2}{2}t^2\right\} \ \forall \ t \in \mathbb{R}$$
 (1)

Bernstein Bounding — Contd.

Known Result:

$$\mathbb{E}\left[\exp\{tX_{ij}\}\right] \le \exp\left\{\frac{\mu_{ij}t + \sigma(\hat{\mu}_{ij})^2 l_{ij}^2}{2}t^2\right\} \ \forall \ t \in \mathbb{R}$$
 (1)

- Analogous with Gaussian mgf
 - Variance term varies with relative position of mean!

Bernstein Bounding — Contd.

Known Result:

$$\mathbb{E}\left[\exp\{tX_{ij}\}\right] \le \exp\left\{\frac{\mu_{ij}t + \sigma(\hat{\mu}_{ij})^2 l_{ij}^2}{2}t^2\right\} \ \forall \ t \in \mathbb{R}$$
 (1)

- Analogous with Gaussian mgf
 - ▶ Variance term varies with relative position of mean!

Proof Sketch:

- Support $(a \le X \le b)$, mean are known.
- $\bullet \exp\{tX\} \le \frac{b-X}{b-a} \exp\{ta\} + \frac{X-a}{b-a} \exp\{tb\}$
- Taking expectations on both sides leads to:

$$\mathbb{E}\left[\exp\left\{tX\right\}\right] \le \exp\left\{\frac{a+b}{2}t + h(lt)\right\}, \ h(z) \equiv \log\left(\cosh(z) + \hat{\mu}\sinh(z)\right)$$
$$\le \exp\left\{\mu t + \frac{\sigma\left(\hat{\mu}\right)^2 l^2}{2}t^2\right\}$$

Main Result — A Convex Formulation

IC-MBH Formulation:

$$\begin{aligned} \min_{\mathbf{w}, b, \mathbf{z}_i, \xi_i \geq 0} & \frac{1}{2} \|\mathbf{w}\|_2^2 + C \sum_i \xi_i \\ \text{s.t.} & y_i (\mathbf{w}^\top \mu_i - \mathbf{b}) + \mathbf{z}_i^\top \hat{\mu}_i \geq 1 - \xi_i + \|\mathbf{z}_i\|_1 + \kappa \|\mathbf{\Sigma}_i (y_i \mathbf{L}_i \mathbf{w} + \mathbf{z}_i)\|_2 \end{aligned}$$

Geometric Interpretation

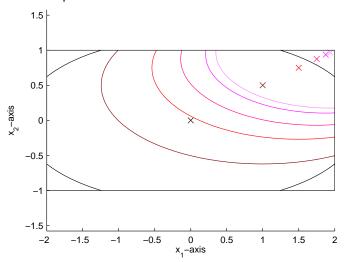


Figure: Figure showing bounding hyper-rectangle and uncertainty sets for different positions of mean. Mean and boundary of uncertainty set marked with same color.

Classification of Uncertain Datapoints

Labeling:

- Support $y^{pr} = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{m}_i b)$
- Mean $y^{pr} = \operatorname{sign}(\mathbf{w}^{\top} \mu_i b)$
- ullet Replicates y^{pr} is majority label of replicates

Classification of Uncertain Datapoints

Labeling:

- Support $y^{pr} = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{m}_i b)$
- Mean $y^{pr} = \operatorname{sign}(\mathbf{w}^{\top} \mu_i b)$
- ullet Replicates y^{pr} is majority label of replicates

Error Measures:

- Nominal Error
- ullet Calculate ϵ_{opt} from Bernstein bounding

$$\mathbf{OptErr}_{i} = \begin{cases} 1 & \text{if } y_{i} \neq y_{i}^{pr} \\ \epsilon_{opt} & \text{if } y_{i} = y_{i}^{pr} \text{ and } \mathcal{R}(\mathbf{a}_{i}, \mathbf{b}_{i}) \text{ cuts opt. hyp.} \\ 0 & \text{else} \end{cases}$$
 (2)

Numerical Experiments

Table: Table comparing NomErr (NE) and OptErr (OE) obtained with IC-M, IC-R, IC-BH and IC-MBH.

Data	IC-M		IC-R		IC-BH		IC-MBH	
	NE	OE	NE	OE	NE	OE	NE	OE
10 _U	32.07	59.90	44.80	65.70	51.05	53.62	20.36	52.68
10_{β}	46.46	54.78	48.02	53.52	46.67	49.50	46.18	49.38
A- F	00.75	46.47	00.08	46.41	55.29	58.14	00.07	39.68
A-S	09.02	64.64	08.65	68.56	61.69	61.69	06.10	39.63
A-T	12.92	73.88	07.92	81.16	58.33	58.33	11.25	40.84
\mathcal{F} - \mathcal{S}	01.03	34.86	00.95	38.73	28.21	49.25	00.05	27.40
\mathcal{F} - \mathcal{T}	06.55	55.02	05.81	58.25	51.19	60.04	05.28	35.07
S-T	10.95	64.71	05.00	70.76	69.29	69.29	05.00	30.71
WDBC	55.67	37.26	×	×	37.26	45.82	37.26	37.26

Conclusions

- Novel methodology for interval-valued data classification under partial information.
 - Employs support as well as statistical information
 - Idea pose the problem as CCP and relax using Bernstein bounds
- Bernstein bounds lead to less conservative noise modeling
 - Better classification margin and generalization ability
 - ightharpoonup Empirical results show $\sim 50\%$ decrease in generalization error
- Exploitation of Bernstein bounding techniques in learning has a promise.

THANK YOU