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Abstract

Data obtained from scanning with range scanners or obtained by Structure From Mo-
tion(SFM) from multiple images suffer incompleteness due to occlusion or lack of corre-
spondences. This problem is significant for when large Architectural Structures scanned
using LIDAR scanner or large scale reconstruction using SFM. So, the objective behind
this project is to build a reconstruction mechanism that can predict missing structures
from an incomplete point cloud of a building. Doing a surface reconstruction is time con-
suming and also will not work with missing data. So, in this project a modelling system
is presented which perform a primitive approximation of the point cloud very FAST. The
system model partial point clouds which using object recognition, which have very similar
complete models in the repository.



Chapter 1

Introduction

1.1 Motivation And Objective

Data obtained from scanning with range scanners or obtained by Structure From Mo-
tion(SFM) from multiple images [2] suffer incompleteness due to occlusion or lack of
correspondences. Also, sometimes the material property may have an adverse effect on
the scanning process. This problem is significant for when large Architectural Structures
scanned using LIDAR scanner or in large scale reconstruction techniques which are part
of my Seminar Large Scale 3D Reconstruction From Unstructured Images . An
example of such large reconstruction is shown in figure 1.2. So, the objective behind
this project is to build a reconstruction mechanism that can predict missing structures
from an incomplete point cloud of a building. In order to build a FAST reconstruction or
prediction system, instead doing Surface Reconstruction (which is time consuming) which
reconstruct a approximate model composed of primitive shapes. In this report we have
considered Boxes as the only primitive shape. Figure 1.1 shows the schematic diagram of
our project.

1.2 Overview Of the Report

In chapter 2, a part based structure recovery technique is discussed. This technique re-
constructs a a mesh model from point cloud and an RGB image of an object from the
same view point. It uses a repository having semantic labelled parts of models falling in
the same category as the input. The technique then forms the reconstruct model by bor-
rowing parts from different models which captures the underlying geometry of the input.
The image and the scan provide complementary information. This has a similar objective
to our project.

Although the above method provides visually attractive result, it requires an addi-
tional image which may not be available at all times also the method works better only
for models composed only of similar parts and vary only in scale and relative position.
Therefore in Chapter 3 and 4 we discuss two techniques for decomposing a point cloud
into boxes(primitives). Chapter 3 provides a region growing bottom up approach that ini-
tially embeds the point cloud into a grid. Then from a staring seed(grid cell) the merges
suitable cells to generate bigger boxes. The boxes found out are all axis aligned. Chapter
4 provides a top down approach which at each level splits the data when it’s surface does
not fits that of a cuboid. Chapter 5 provides a predictive strategy for reconstructing
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Figure 1.1: Shows the schematic diagram of our Project

incomplete point cloud along with the method described in Chapter 4.

Chapter 5 provides the Conclusion and Future Work.
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Figure 1.2: Shows a sparse and incomplete point cloud generated by SFM [1]
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Chapter 2

A Part Based Structure Recovery
Technique

2.1 Overview

In this chapter, a method to convert low quality point cloud data obtained from scans
into a high quality 3D model with labelled semantic parts [3]. The parts are assembled
in a way so that it closely resembles the underlying geometry. This approach unlike top-
down approaches works bottom-up from a local to global manner which helps to keep
the structure consistent with the underlying geometry. The technique mentioned assumes
that most of the man made objects lie in low dimensional shape space with respect to
relative sizes and positions of shape parts [4]. With this assumption, only a few top ranked
candidates of certain part category are filtered out from the database and matched with
acquired data. The matching considers both the partial match of the candidate part
and the interaction between other parts. Then a conjoining technique is used to join the
different parts into a whole.
For this technique the input consists of a single view scan of the object and an RGB image
under the same view point. The reason behind taking a RGB image as input along with
the point cloud is that information provided by both these sources are complementary.
The point cloud may have incomplete data but provides accurate cues for the underlying
geometry in 3D. On the contrary, the image have lack of depth information but have
complete data of object in the current view point. The structure recovery has the following
stages:

1. Candidate Part Selection: In this stage, for every part category a small set of
candidate parts are identified without doing an exhaustive search from all possible
candidate parts composition. This is done by searching for the part inside fixed
window size by utilizing the fact of low shape variation. By this most parts are
quickly filtered out.

2. Structure Composition: In this stage structures are composed by using a subset
of candidate parts from each category. The composition takes into account the
geometric fidelity of each part and interaction between the parts. Then a scoring
function is devised to measure the individual compositions and the optimal structure
is identified with the one with the highest score.

3. Part Conjoining: In this stage loosely placed parts from the previous stage are
conjoined to form a connected structure. The proximity between the parts and and

4



knowledge of contact points of the different parts are used in this process.

2.2 Detail Methodology

2.2.1 Pre Processing

In this step all the models in the database are pre segmented into semantic parts and
are labelled by a learning based algorithm [5]. Also reflective and rotational symmetry
is detected between the parts of the individual model by [6]. This pre-processing task
is done only once for each model category. In order to utilize the information from the
RGB image, user interaction is required. The user can cut out the object in the image
by using the grab cut algorithm [7]. Also, since the the 3D scan and the image are taken
from the same view point, by projecting parts of the object in the image we can extract
its corresponding 3D scan pieces from the rest of the scanned data.

2.2.2 Candidate Part Selection

The selection of the candidate parts from the database is based on the degree to which
the part matches with both parts of the scan and the image. The parts from each model
in the repository are matched efficiently by a two stage process.
First a rough matching of each individual repository model with the input data is done. To
do this, first individual models aligned with scan data. The scan data and the repository
model are aligned by first aligning them with their upright direction. The upright direction
of the the repository models are already pre-defined and fixed. The upright the scan data
can be determined by detecting the dominant supporting plane [8]. After this, each model
is scaled and translated so that it can just fit within the Bounding Box of the scan. Next,
the orientation of both the entities around the upright axis are made same. This is done
by rotating the scan cloud by some sampled rotation and checking for the min squared
error. Figure 2.1 shows models of chairs aligned with scan of a chair. Next individual
parts of the aligned model are matched with the scan data. The RGB image is also used
for matching with the projection of the repository model and a final score is computed
for each model. An example for the chair scan is shown in figure 2.2. Here the image
information is used to match the parts when scan data is missing as shown in figure 2.3.

2.2.3 Structure Composition

In this step, the underlying structure is composed by taking a subset of parts from each
category(empty or 1) by following some constraints:

� Geometric fidelity: The parts of the composition should match the acquired data
well i.e good geometric fidelity score.

� Proximity: The parts should not be far away from each other.

� Overlap: The parts should not overlap with each other too much.

2.2.4 Part Conjoining

After completion of the previous step the parts selected are loosely placed together. This
step conjoins all the parts to form a well-connected model. First pairs of parts that are
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Figure 2.1: (a) shows the scan and the RGB image of chair whose scan is to recovered.
(b) Shows orientation of the models from the repository after alignment with the point
cloud [3].

likely to contact each other are found out. For this proximity between the two parts is
used as a measure to select a pair. However only using using proximity does not yield a
good result. So, the repository is used to infer whether the two parts should be contact
or not. Figure 2.4 shows the contact points of different parts in the repository.
After pairing of the contact points, the sizes and positions of the parts are adjusted so

that pair of contact points meet each other as much as possible.

2.2.5 Results

The database had 70 models of each category mainly chair, tables, bicycles and aeroplanes.
with labelled parts. The value of K i.e number of top ranked parts from each category
is fixed to 5. The spatial overlap threshold parameter ts is decreased when excessive tiny
parts are to be avoided. The geometric fidelity threshold tf is decreased when the scan
data is very poor. The distance threshold td is increased to use more primary primary
contact points for conjoining. Some of the results are shown in figure 2.5 and 2.6.

This approach is view independent and generated roughly the same structure for
different view scan of the same object. Limitations of this approach:

� Requires an extra RGB Image to extract information not present in the scan data.

� Works efficiently for objects which lie in low dimensional shape space.

� This method fails for objects fails for objects which features that cannot be charac-
terized by spatial layout e.g. façades.

� In-correctness in creating the edge map where 3d scan data is not available can
cause match with undesired parts.
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Figure 2.2: Shows the top K(here 5) candidates for each category, the blue box denotes
the part that are finally selected after all the steps are processed [3].

� For low resolution input data parts very close to each other cannot be discriminated
accurately as shown in figure 2.7.
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Figure 2.3: Shows 2D Distance field image is used to match parts from the repository for
the leg of chair whose data is missing in the scan [3].

Figure 2.4: The red points shown above are the primary contact points and the blue
points are the secondary contact points [3].

Figure 2.5: The above figure shows the final reconstructed model from scan data by parts
borrowed from different repository models. Here the H shape base type example did not
exist in the repository but recreated from other parts [3].
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Figure 2.6: The above figure shows the final reconstruction from scan of plane model. Dif-
ferent colored parts are taken from different model. From the figure we can see symmetry
is used for generation of symmetrical parts [6].

Figure 2.7: The above figure shows the failure of the part matching algorithm to discrim-
inate between 3 slim pillars that are close to each other[3].
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Chapter 3

A Region Growing Approach To Box
Decomposition of Point Cloud
Technique Using Axes Parallel Boxes

3.1 Overview

In this chapter we discuss a bottom up region growing based technique which decomposes
a point cloud into axis aligned boxes. This method is inspired from [14] which uses a
bottom up merging technique to build LEGO models of objects.
In this method, the initial step is to embed the 3D scan data into a voxel grid. The voxel
grid is always axis aligned and the dimensions of the grid are found out by calculating
upper and lower bound of the data. The cells in this grid instead of being a cube is
a cuboid whose dimensions are a pre-determined fraction of the grid dimensions. After
this, cells of the grid that does not intersect with the scan data are removed. Then cells
are merged with neighbouring cells which are compatible only X direction. The idea
of being compatible is that after merging the merged cell should be also in form of a
cuboid. Next, the resulting merged cells re merged in the Y direction and then in the
Z direction. At any point of time in the above process a box composed of many cells is
represented by the co-ordinates of the cell has the lowest Z, Y and X value as shown in
figure 3.1. Since it is Box, we can always find a cell having the lowest values in all the 3
directions. To implement the concept of region growing, all the valid cells are stored in
an ordered-map ,sorted by their Z, Y and X value in order. So, in the merging phase,
since the cells are kept sorted, adjacent cells if present are merged. In this way a region
continues to grow in a direction in a plane until there are no more cells to merge. This
is done for all planes sequentially in order of increasing perpendicular distance from the
staring plane as shown in figure 3.2. The merging is done sequentially for all the three
directions. After merging in all the three directions, it results in the minimum number of
axis parallel boxes required to represent the voxel grid.

3.2 Detailed Algorithm

Each cell in the voxel grid contains, a counter dataCount and boolean variable isNoise.
The outline of the voxelization process is given as follows,
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Figure 3.1: The above figure shows the Front and Top View of two compatible boxes
in the X direction. The boxes are compatible as they have both Y and Z values of the
representative cell equal. Also the dimension in Y and Z are equal. The blue boxes shows
the representative cell of each of boxes. After merging the resultant box will have the
representative cell as the left blue box as it has a lesser X value of the two boxes.

Algorithm 3.1 Voxelization of scan data

Input: Point Cloud Data D
Output: Grid G
Step 1: A axis parallel grid G is formed by computing lower and upper bound of data.
Step 2: The dimensions of a cell in the grid G is calculated by taking a pre-determined
fraction of the grid size. In the experiments the value is taken as 0.2% of the size.
Step 3: For each data point in cloud, its nearest voxel co-ordinate is determined and its
dataCounter in increased.
Step 4: Voxels having data points less than a threshold, its isNoise value is set to false;
Step 5: Voxels having isNoise set to true are stored in a ordered-map(M), ordered by
Z, Y and X.

Once the grid and the ordered-map(M) has been created, the merging process is
started. Merging algorithm for a fixed direction(X is example) is given below,

Algorithm 3.2 Merging cells in one direction

Input: Grid G, ordered-map M
Output: Grid G, ordered-mapM
Step 1: Take C to be the first element of M.
Step 2: If any of the adjacent Box(B) of C in the X direction has the same textbfY and
Z co-ordinate the two Boxes are merged in Step 3 and 4
Step 3: Find out which out of the two Box comes ahead in sorted order. Merge the Box
which comes after in the order with the one which comes before.
Step 4: Remove the one which comes after from M.
Step 5: If a merge occurred in Step 2, then goto to Step 2.
Step 6: If atleast once a merge occurred in Step 2 then goto Step 1.
Step 7: Return.
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The algorithm 3.2 is called 3 times sequentially with merging occurring in the X, Y
and Z direction as shown in figure 3.2. Due to poor quality of surface, there may be gaps
in between voxels even for a continuous surface. Such gaps may lead to a break in region
growing process and leads to unnecessary increase in the number of boxes. A tweak in
algorithm can reduce the number of boxes in such a case by not only considering the
adjacent box but considering any box within a fixed distance.

Plane with Z = i

X

Y

Z

1, 2,...,6,.. is the sequence in which

1

2

3
4

5
6

merging is going to take place while
merging in X direction.

Figure 3.2: The above figure shows a XY plane with Z = i. The merging algorithm first
along the X direction for a given Z and then in the next iteration Z is increased the same
procedure is followed. Similar situation happens when merging along Y and Z axis.

3.3 Results

This section shows the results on running the algorithm on architectural structures down-
loaded from Google Warehouse. The models available in Google Warehouse rare
not point clouds but mesh models and are available in collada format. Point cloud of
such models are created by sampling the meshes using Poisson Disk Sampling. Point
Cloud Library is used to load and process the ply file. Figure 3.3, shows the result of
running this algorithm on different models. Here the initial cell size is taken as 0.05 of
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Table 3.1: Shows information about the Box Decomposition of different models in figure
3.3

Model Points Initial Cell No. Box No. After Merging Total Time Taken
Fig. 3.3 (a),(f) 1268039 1879 42 6.25 secs
Fig. 3.3 (b),(g) 469003 674 34 2.16 secs
Fig. 3.3 (c),(h) 1030023 1645 48 4.86 secs
Fig. 3.3 (d),(i) 977029 310 7 4.48 secs
Fig. 3.3 (e),(j) 2223314 2325 96 10.58 secs

the bounding Box. Threshold for noise while voxelization is kept at 4 points.

This algorithm works very fast in practise, to generate the voxel grid one iteration
of through the point cloud data is required i.e. O(N) where N is the number of points.
Since the geometric information about each voxel is ordered map, it takes O(log V ) time
to access the information of a voxel where V is the number voxels present in the map
currently. So, the merging phase takes O(VlogV) to execute.

The shortcoming of this approach is that it performance degrades with poor quality
data. Also for surfaces that are not parallel to the axis, the approximation is poor as
shown in figure 3.3 for (c) and (h). Also curved surfaces are approximated poorly by
boxes. Also to connect cells that are separated by gaps due lack of data the condition of
compatibility between the boxes is relaxed. But this also sometimes leads to connecting
different parts as shown in 3.3 (d) and (i). Table 3.1 provides some information regarding
the results obtained in figure 3.3.
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Figure 3.3: In the above figure (a)-(e) shows the point cloud data of the different buildings
downloaded from Google Warehouse. Figure (f)-(j) shows the axis parallel box decompo-
sition of the corresponding point clouds
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Chapter 4

A Top Down Approach For
Approximating of Point Cloud Data
Into Boxes

4.1 Overview

This chapter shows a Top Down technique for decomposing a point cloud into minimum
number of axis parallel boxes. The idea behind this approach is inspired by [11]. Unlike
the first approach mentioned in the previous chapter, representing a model by boxes can
be done automatically and user interaction and repository of labelled semantic parts of a
model is not required. Also, unlike region growing approaches. Also this technique suffers
less when data is noisy or when the scan quality is poor as experienced by bottom up
region growing methods [12].

4.2 Detailed Algorithm

Here first an initial bounding box is calculated. Then the data inside the box is checked
for its RMSE from the surface the box. If the RMSE is more than a pre-determined
threshold the box is splited further. The splitting is done along one of the co-ordinate
axis and determined maximum reduction in volume caused by the split. The reduction if
at all is there due to the fact that the volume covered the bounding boxes of two parts of
the splitted data is less equal to that of the parent bounding box. As with the previous
merging approach the point cloud is first embedded into a voxel grid.

The outline of the algorithm is as follows,
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Algorithm 4.1 Box Decomposition Outline

Input: Point Cloud Data D
Output: Set of Boxes each bounding part of the Point Cloud Data
Step 1: Find the bounding box B for the current data D by min-max of the data.
Step 2: Check whether the data inside the box has Root Mean Square distance from the
surface less than a threshold. If yes goto step 3 else goto step 7.
Step 3: Find the BEST split parallel to any of the faces of the box and divide the data
into two parts say D1 and D2 as shown in figure 4.1.
Step 4: Create Bounding Boxes C1 for D1 and C2 for D2.
Step 5: Find the corresponding reduction in volume of the split in step 3 by, RED =
V(C1) +V(C2)

V(P)
, where P is the parent box.

Step 6: If the RED computed in Step 5 is more than a usually 0.98 then repeat recursively
Steps 2-5 for D1, C1 and D2, C2. Step 7: Store the data and bounding box of the parent.

B
es

t
S
p
li
t

P
la

n
e

Object

Figure 4.1: In above figure, the blue plane is the best splitting plane parallel to the top
and bottom face. Points lying on top of the plane are D1 and bottom are D2. This figure
is in 2D but the splitting is done in 3D.

4.2.1 Computing The Best Split

The split of a Bounding Box is done parallel to any of the face. To find the best best split
for a particular cutting plane (say XY), a loop is run along the direction perpendicular
to it(here it is Z direction). For every index of the grid in the Z direction reduction in
volume is computed. The index where minimum reduction occurs is returned as the best
split for that plane. This is done for the other two planes also. Then the minimum of the
three splits is used to split the data.

4.2.2 Computing RMSE of the data

To compute the RMSE, for each data voxel (see voxilization in previous chapter) find the
record the nearest distance from the surface of its bounding box. To ensure that a noisy
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surface does not effect the RMSE a the nearest distance is subtracted by 1 unit while
calculating.

4.2.3 Heuristic When Volume Reduction Fails

There are cases when volume reduction fails although the data has a high RMSE as shown
in figure 4.2. However these cases does not occur very frequently.

Figure 4.2: The above figure shows is a 2D projection of 3D model. That is, the projection
on all the four sides should be similar to the above figure. Here there is no reduction in
volume cutting through any plane parallel to the axis. However the red dotted lines show
the possible cuts.

Here to find the best split for a cutting plane, we use the following algorithm based
on rate of change of RMSE:
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Algorithm 4.2 Heuristic To Find The Best Split For A Cutting Plane

Input: Voxel Grid and Parent Bounding Box D
Output: Index of the Best Split in the Voxel grid
Step 1: Loop in the direction perpendicular to the plane. For each index of the grid in
that direction calculate and store RMSE of both the lower and upper block considering
the parent is splitted at that index in an array S separately. Also store the min RMSE
found for both the upper and lower blocks. To avoid edge cases we loop not from begin
to end index but within a margin of 4 units from begin and end
Step 2: Loop through S and calculate the difference in RMSE of S[i] and S[i + 1] and
store in S1u/l[i] for both lower and upper blocks separately.
Step 3: Calculate the index having the maximum jump in RMSE among both
S1u/l[i] but have S[i − 1] within a threshold of the min RMSE found in Step 1. Step
4: The index i calculated in the previous step is considered the best split in that direction.

4.3 Results On Complete Synthetic Data

The parameters of our the algorithm are set in the following way,

� The size of the voxels are kept at 0.1 fraction of smallest dimension of the initial
Bounding Box.

� The threshold for the reduction in volume is kept at 0.98-0.99 of the initial volume.

� The RMSE threshold is kept at 0.2 units.

The number of boxes used in the decomposition depends on the threshold value of the
reduction and RMSE.

4.3.1 Creation Of Synthetic Data

Synthetic Data is created in 3DS MAX software using the script [16]. The script is used
to generate a random perimeter with perpendicular corners. Some buildings with non
perpendicular walls are created manually using Blender. After creating the mesh model
Poisson Disk Sampling is used to create the point clouds.

The figures 4.3 and 4.4 below shows decompositions obtained.

4.4 Results On Complete Models Gathered from Google

Warehouse

The figure 4.5 below shows decompositions obtained,
An advantage of this approach is that after the decomposition of two separate branches

can be done independently. Also more primitives can be easily incorporated in this ap-
proach.
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(a) Original Point Cloud (b) Box Approximation

(c) Original Point Cloud (d) Box Approximation

(e) Original Point Cloud (f) Box Approximation

Figure 4.3: The left column shows the point cloud data and the right column shows the
Box Decomposition. Here the data contains only perpendicular walls.
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(a) Original Point Cloud (b) Box Approximation

(c) Original Point Cloud (d) Box Approximation

(e) Original Point Cloud (f) Box Approximation

Figure 4.4: The left column shows the point cloud data and the right column shows the
Box Decomposition. Here the data contains Oblique walls.
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(a) Original Point Cloud (b) Box Approximation

(c) Original Point Cloud (d) Box Approximation

(e) Original Point Cloud (f) Box Approximation

(g) Original Point Cloud (h) Box Approximation

Figure 4.5: The left column shows the point cloud data and the right column shows the
Box Decomposition. Here the data is obtained from Google Ware House.
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Figure 4.6: The above figure shows an partial cloud generated from Point Cloud shown
in figure 4.3 (a).

4.5 Creation Of Synthetic Partial Data

Partial Data is created by randomly removing a rectangular patch on any of the six sides
of the bounding box. The co-ordinates of the rectangle are selected at random but it is
ensured that none of the dimensions of the rectangle exceed more than 50% of the any
of dimension of the initial Bounding Box. To do so, first one of the six side is chosen at
random. Then a point(P ) on its surface is chosen at random. The next three points are
chosen depending on whether co-ordinates of P are more than halfway of each dimension
or not not. An example of such a creation is shown in figure 4.6.

4.6 Results On Partial Data

The following figure 4.7 shows decomposition obtained,

4.7 Results On Data Obtained After Applying SFM

On Photographs

The following figure 4.8 shows the result from point cloud obtained after SFM from
pictures.

22



(a) Original Point Cloud (b) Box Approximation

(c) Original Point Cloud (d) Box Approximation

(e) Original Point Cloud (f) Box Approximation

Figure 4.7: The left column shows the point cloud data and the right column shows the
Box Decomposition. Here the models have missing data.
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(a) IIT Bombay SOM (b) Box Approximation

(c) IIT B Hostel 14 Wing (d) Box Approximation

(e) Cornell Art Quad Watch
Tower

(f) Box Approximation

Figure 4.8: The left column shows the point cloud data and the right column shows the
Box Decomposition. Here the models have missing data.
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Chapter 5

Using Learning Techniques For
Decomposition Of Partial Data

The errors in decomposition that occurs in partial data are of mainly Two types:

� Under Split: This happens when the RMSE of the data inside the box is close to
ZERO due missing data of an entire side or corner as shown in figure 5.1 (a).

� Incorrect Decomposition: Due to missing data the BEST split calculated is worse
than the one calculated for complete data of the same model. Also, Bounding Boxes
of the two children can be incorrectly calculated due to missing data as shown in
figure 5.1 (b).

5.1 Outline For Creating Training Data

The training data is created by essentially storing the Decomposition Tree for our Training
Data set consisting of 15 synthetically created models. Here for each node in the tree the
following information is stored,

� Which directions are the longest(l1), second longest(l2) and third longest(l3) dimen-
sions.

� Aspect ratios i.e. (l3) to (l1), (l2) to (l1) and (l3) to (l1).

� For each of the two child box, the offset of representing co-ordinate(mentioned in
chapter 2) from the parent’s representing is calculated. The ratio of the offset to its
corresponding dimension is stored.

� Similarly, the 3 dimensions of the child boxes are stored as ratios of its parents
corresponding dimensions.

� The name of model is stored.

� The number of the node in the tree is stored. i.e. 2i or 2i+1 when parent has a
number i.

� Information about whether the node is stored or not is also stored.

� The Point Cloud is stored.

� The descriptors extracted from the data is stored.
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Bounding Box
(a) Missing Data Ex. 1

Bounding Box
(b) Missing Data Ex. 2

Figure 5.1: The Bounding Box in the above figures is drawn with one unit gap for better
clarity.In (a) RMSE is close to 0 due to missing data hence no decomposition is done. In
(b) Bounding Box of the top should be as shown in blue but wrongly calculated shown in
green. The black solid lines shows data.
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5.2 Descriptors Used

For now only local descriptors are used. Here Signature of Histograms of Orienta-
tions(SHOT) [17] feature is used. This is an 3D equivalent of SIFT [18]. Before encoding
each keypoint (uniform down sampled data points in this) to SHOT descriptors, the Local
Reference Frame for each keypoint point is found out as mentioned in [19] to make the
descriptor invariant to rotations and translations. For encoding the descriptor the radius
within which support points are to be looked is taken as 5 times the cloud resolution.

5.2.1 Matching Descriptors and Correspondence Grouping

In order to determine whether training database model is similar to the scene using SHOT
descriptors, first descriptor for the each each data point in the scene are matched to the
nearest neighbour of considering there distance between the histograms is below a certain
threshold(0.25). After the pairs of matches are found out (total number of pairs of matches
is a subset of the total number of key points) a Hough voting scheme [20] is used to a
find clusters of the matching pairs that satisfies a rigid transformation from scene points
to repository model points. For similar objects number of clusters is very less(less than
equal to 5).

5.3 Algorithm For Testing Data

The outline of the testing algorithm is as follows:

Algorithm 5.1 Testing Algorithm Outline

Input: Scene Point Cloud Data D
Output: Set of Boxes each bounding part of the Point Cloud Data
Step 1: Find the aspect ratios of the current block (p).
Step 2: Find the nearest neighbour within a threshold radius(0.05 units) from the training
database.
Step 3: For each of the blocks retrieved from the database match its SHOT features with
that of the scene and perform Correspondence Grouping to enforce geometric constraint.
The training having the minimum number of clusters and the number is within 5 is taken
as matched model.
Step 4: If a match if found split follow the decomposition tree of the matched to split
this block further.
Step 5: If there is no match, follow the algorithm 4.1 for decomposition.
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Chapter 6

Conclusion And Future Work

From the two discussed box decomposition approaches mentioned in chapter 3 and 4, the
Top Down Approach in chapter 4 takes a little longer time to execute than the region
growing algorithm. Also the number boxes by the two algorithms are quite different.
The region growing algorithm is much more sensitive to noise and missing data. So, the
number of boxes is much more than algorithm 4.1. Also, algorithm 4.1 gives better result
for missing data by avoiding creating holes in many cases. Table 6.1 shows the comparison.
Using object recognition from repository models we can form a box decomposition from
its partial model without creating holes. However, this technique totally dependent on
how well the object recognition works. At present only our framework can only recognize
parts which are very similar models in the repository. Also, we only follow decomposition
of the matched model faithfully not modify it to suit current data.

In Future, we want to incorporate global features like VFH [22] and CVFH [21] along
with aspect ratios for initial selection of the models from the data base. Also, we want
use neighbourhood relations and not just point cloud matching for recognition. Also we
want to add more primitives as cylinder and prisms which would give more visually better
result.

Model Name Algorithm 4.1 Algorithm 3.2
Time Taken(secs), No. Boxes Time Taken(secs), No. Boxes

Fig. 4.5 (a) 1.8, 5 1.89, 19
Fig. 4.5 (c) 5.77, 5 3.52, 25
Fig. 4.7 (c) 16.02, 10 0.88, 35

Table 6.1: The above shows the comparison between Algorithm 4.1 and 3.2
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