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o Multiple related learning tasks
e Eg. Object recognition

o Exploit task relatedness for better generalization



MUuULTI-TASK LEARNING

SETTING:

o Multiple related learning tasks
e Eg. Object recognition

o Exploit task relatedness for better generalization

@ Learn shared features across tasks

o If possible, sparse feature representations
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@ Tasks share a few input features.
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@ Tasks share a few input features.
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INTERPRETATION OF lp REGULARIZATION

o 1 < p < 2 promote sparsity
@ p = 2 induces robustness, rotation-invariant
@ 2 < p < oo promote non-sparse combinations

@ p = oo promotes equal weightages
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o Tasks share a few (may be learnt) features.
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A BiT MORE REALISTIC CASE...

o Tasks share a few (may be learnt) features.
o Rotationally transformed features
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A BiT MORE REALISTIC CASE...

o Tasks share a few (may be learnt) features.
o Rotationally transformed features

FORMULATION:

2
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@ Though non-convex global optimum can be obtained

o Can be kernelized
o Efficient alternate minimization algorithm (EVD per iteration)
o Achieves state-of-the-art performance on benchmarks



MULTI-TASK SPARSE FEATURE LEARNING (MTSFL)
FORMULATION

SUMMARY:
@ Though non-convex global optimum can be obtained
o Can be kernelized
e Efficient alternate minimization algorithm (EVD per iteration)

@ Achieves state-of-the-art performance on benchmarks

o Rotationally transformed features — too restrictive
o Essential for convexity
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MULTI-TASK SPARSE FEATURE LEARNING (MTSFL)
FORMULATION

SUMMARY:
@ Though non-convex global optimum can be obtained
o Can be kernelized
e Efficient alternate minimization algorithm (EVD per iteration)

@ Achieves state-of-the-art performance on benchmarks

o Rotationally transformed features — too restrictive
o Essential for convexity

@ |dea: Enrich the input space itself
o Multiple Kernel Learning (MKL) ??
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CENTRAL IDEA

Pose the problem as that of learning a shared kernel

OUTLINE:

e Two formulations:
o learn kernel shared across tasks (MK-MTFL)
o Extension of standard MKL to multi-task case
o learn sparse representation from shared kernel (MK-MTSFL)
o Extension of MTSFL to multiple base kernels
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NOTATIONAL STUFF...

ki,...,ky, base kernels
¢;(-) implicit mapping with k;
wyj; — t' task, j'" kernel, f* feature loading

W.if, Wt. £, Wej.

Linear model: fi(x) =37, th b;(x) — by
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MK-MTFL FORMULATION

PRIMAL:
11-l2-12
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li-lp-l2, p>2
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MK-MTFL FORMULATION

PRIMAL (2<p<oo):

li-lp-l2, p>2
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@ Novel formulation for learning shared kernel
o Extension of MKL to multi-task case

o Tasks can be unequally reliable
o Efficient mirror-descent based alg.
e Each step solves T regular SVMs O(Zzﬂ=1 m?dn)
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MK-MTSFL FORMULATION

PRIMAL (1<¢<2):
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s.t. Q; = 0,377 (trace(Q;))? < 1
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MEK-MTSFL FORMULATION

SUMMARY:

@ Novel formulation for learning shared sparse feature
representations

e Trace-norm constraints lead to low rank matrices
Extension of MTSFL [Argyriou et.al., 08] to multiple base kernels

Though non-convex, global optimal can be efficiently obtained

Efficient mirror-descent based algorithm
e Each step solves T regular SVMs, n EVDs of full matrices

@ Faster convergence in practice than alternate minimization
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SoviNng MK-MTSFL

PARTIAL DUAL:

9(Q)
T ) -
min max 1'a;— -, Y M, Q:M;: | Y«
Q t_zlatESmt(C) t 2 t t J:Zl t]Q] t) t Ot
i =0, (trace(Q))1 < 1
j=1

e g(Q) cannot be analytically computed
@ Danskin's theorem provides Vg(Q)
e Involves solving T' regular SVMs
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PROJECTED (SUB-)GRADIENT DESCENT

e minycy f(x) (f is convex, Lipschitz, X' is compact)
o At iteration k:

XE+1

=Ix(xp — sk Vf(xx))
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PROJECTED (SUB-)GRADIENT DESCENT

e minycy f(x) (f is convex, Lipschitz, X' is compact)
o At iteration k:

o fis approx. by linear func. f(x) = f(xx) + Vf(xx) " (x — x)
e valid only when ||x — x| is small

. 1
Xpp1 = argmin sV F(xx) " (x — x) + = ||1x — x|3
xeX 2

. 1
= argmin iHX — (xi — sV f(xi))1I3

=Ix(xp — sk Vf(xx))
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PROJECTED (SUB-)GRADIENT DESCENT

e minycy f(x) (f is convex, Lipschitz, X' is compact)
o At iteration k:

o fis approx. by linear func. f(x) = f(xx) + Vf(xx) " (x — x)
e valid only when ||x — x| is small

. 1
Xpp1 = argmin sV F(xx) " (x — x) + = ||1x — x|3
xeX 2

. 1
= argmin iHX — (xi — sV f(xi))1I3

=Ix(xp — sk Vf(xx))

o Convergence guarantees with some choices of step-sizes ()

e "Optimal” for Euclidean geometry
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PROJECTED (SUB-)GRADIENT DESCENT

e minycy f(x) (f is convex, Lipschitz, X' is compact)
o At iteration k:

o fis approx. by linear func. f(x) = f(xx) + Vf(xx) " (x — x)
e valid only when ||x — x| is small

. 1
Xpp1 = argmin  spVf(xk) | (x — x5) + =[x — x3|)2
xeX 2

: 1 2
=argmin  oflx — (xx — sk Vf(xx))ll2
= H;y(xk — Ska(Xk))

o Convergence guarantees with some choices of step-sizes ()

e "Optimal” for Euclidean geometry
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MIRROR DESCENT

o Bregmann divergence based regularizer so that per-step
problem is easy

. 1
Xpe1 = argmin  spV f(x) " (x — %) + =[x — x5 [[3
xeX 2
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MIRROR DESCENT

o Bregmann divergence based regularizer so that per-step
problem is easy

X1 = argmin kY ()T (x = x0) + Do (%
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MIRROR DESCENT

o Bregmann divergence based regularizer so that per-step
problem is easy

X1 = argmin kY ()T (x = x0) + Do (%

BREGMANN DIVERGENCE:
e Strongly convex w(-): Dy(y) = w(y) —w(z) — Vw(z) T (y — )
e Common choices:
o X Sphere: w(z) = 1|z||3
o X Simplex: w(x) =", z;log(x;)
e X Spectrahedron: w(x) = trace(xlog(z))
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Entropy function trace(zlog(z)) good enough for our problem




SoL

Entropy function trace(zlog(z)) good enough for our problem

min 3%, {trace((;Qy) +trace(Q;log(Q;))}

s.t. Q; = 0,38 (trace(Q;))? < 1

I



SorLviNg MK-MTSFL

Entropy function trace(xlog(x)) good enough for our problem

PER-STEP PROBLEM:

min Y7, {trace(¢;Q;) + trace(Q; log(Q;)))
s.t. Q; = 0,35, (trace(Q;))7 < 1
AFTER EVDs oF Qj;:

min > i1 (pjlog(ps) + pjimy)

st. p; 20,37 ,p7<1
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SIMULATIONS

DATASETS:
SCHOOL: Multi-task benchmark. Prediction of student
performance in various schools.
@ 139 regression tasks
@ 28 input features
e 15 training examples per task
LETTERS: OCR dataset. Each letter considered as a task.
@ 9 binary classification tasks
@ 128 input features
e 10 training examples per task
DERMATOLOGY: Bio-informatics dataset. Predicting one of six
skin-diseases.
o 15 binary classification tasks
e 33 input features
o 10 training examples per task
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SIMULATIONS

TABLE: Comparison of generalization performance

SVM | MTSFL MK-MTFL MK-MTSFL
p =2 7 Inf q=1 15 1.99
S | -45.88 13.94 10.76 13.80 10.52 | 14.07 13.80 13.94
L | 74.89 75.54 78.28 78.30 78.31 | 76.38 76.93 74.57
D 38 6 0 0 0 38 7 5.33

MTFSTL - 179sec, MK-MTFL - 192sec and MK-MTSFL -
15445sec.
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SIMULATIONS
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CONCLUSIONS

@ Two novel formulations for multi-task feature learning:
o Extension of MKL to multi-task case (non-sparse)
e Simple, good generalization, scalable
o Extension of MTSFL to multiple base kernels (sparse)
o better generalization than state-of-the-art
o Efficient mirror-descent based algorithm
o Faster convergence

@ Sparse representations may not always be desirable
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Questions 7



Thank You



