Multi-Task Kernel Learning

J. Saketha Nath

CSE, IIT-Bombay

Multi-Task Learning

SETTING:

- Multiple related learning tasks
 - Eg. Object recognition
- Exploit task relatedness for better generalization

Multi-Task Learning

SETTING:

- Multiple related learning tasks
 - Eg. Object recognition
- Exploit task relatedness for better generalization

THE PROBLEM:

- Learn shared features across tasks
- If possible, sparse feature representations

SUPPOSE:

• Tasks share a few input features.

SUPPOSE:

• Tasks share a few input features.

$$\min_{\mathbf{w},b,\xi} \qquad \sum_{t=1}^{T} \sum_{i=1}^{m_t} \xi_{ti}$$
s.t. $y_{ti}(\mathbf{w}_t^{\top} \mathbf{x}_{ti} - b_t) \ge 1 - \xi_{ti}, \ \xi_{ti} \ge 0$

SUPPOSE:

• Tasks share a few input features.

$$\min_{\mathbf{w},b,\xi} \quad \frac{1}{2} \sum_{t=1}^{T} \|\mathbf{w}_{t}\|_{2}^{2} + C \sum_{t=1}^{T} \sum_{i=1}^{m_{t}} \xi_{ti}$$
s.t. $y_{ti}(\mathbf{w}_{t}^{\top} \mathbf{x}_{ti} - b_{t}) \ge 1 - \xi_{ti}, \ \xi_{ti} \ge 0$

SUPPOSE:

• Tasks share a few input features.

$$\min_{\mathbf{w},b,\xi} \quad \frac{1}{2} \sum_{t=1}^{T} \|\mathbf{w}_{t}\|_{1}^{2} + C \sum_{t=1}^{T} \sum_{i=1}^{m_{t}} \xi_{ti}$$
s.t. $y_{ti}(\mathbf{w}_{t}^{\top} \mathbf{x}_{ti} - b_{t}) \ge 1 - \xi_{ti}, \ \xi_{ti} \ge 0$

SUPPOSE:

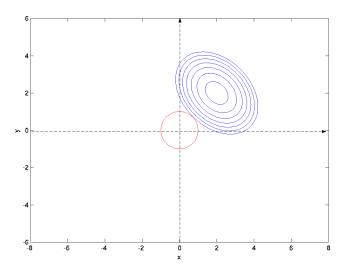
• Tasks share a few input features.

$$\begin{aligned} & \min_{\mathbf{w}, b, \xi} & & \frac{1}{2} \left(\sum_{f=1}^{d} \| \mathbf{w}^{f} \|_{2} \right)^{2} + C \sum_{t=1}^{T} \sum_{i=1}^{m_{t}} \xi_{ti} \\ & \text{s.t.} & & & y_{ti} (\mathbf{w}_{t}^{\top} \mathbf{x}_{ti} - b_{t}) \ge 1 - \xi_{ti}, \ \xi_{ti} \ge 0 \end{aligned}$$

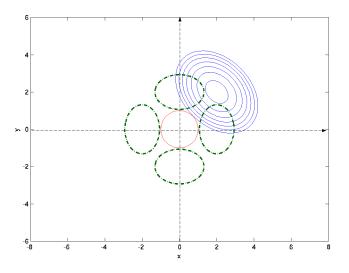
l_1 - l_2 REGULARIZER

$$\sum_{f=1}^{d} \|\mathbf{w}^{f}\|_{2} \underset{l_{1}}{\longleftarrow} \left\{ \begin{array}{c} \|\mathbf{w}^{1}\|_{2} \\ \vdots \\ \|\mathbf{w}^{d}\|_{2} \end{array} \right. \underset{l_{2}}{\longleftarrow} \left\{ \begin{array}{c} w_{11} \dots w_{T1} \leftarrow \mathbf{w}^{1} \\ \vdots \vdots \vdots \vdots \vdots \\ w_{1d} \dots w_{Td} \leftarrow \mathbf{w}^{d} \\ \uparrow & \uparrow \\ \mathbf{w}_{1} \dots \mathbf{w}_{T} \end{array} \right.$$

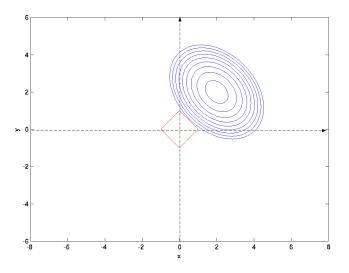
Consider $\min_{\mathbf{x}:\|\mathbf{x}\|_2 \le 1} f(\mathbf{x})$



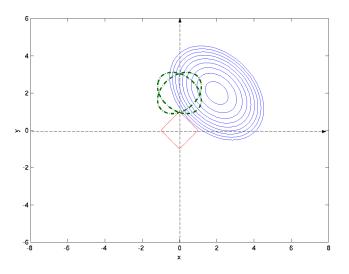
Consider $\min_{\mathbf{x}:\|\mathbf{x}\|_2 \le 1} f(\mathbf{x})$



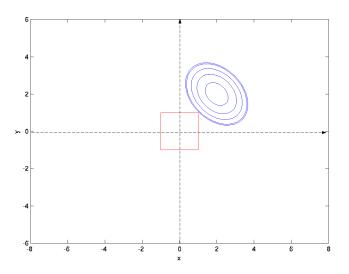
Consider $\min_{\mathbf{x}:\|\mathbf{x}\|_1 < 1} f(\mathbf{x})$



Consider $\min_{\mathbf{x}:\|\mathbf{x}\|_1 < 1} f(\mathbf{x})$



Consider $\min_{\mathbf{x}:\|\mathbf{x}\|_{\infty} \leq 1} f(\mathbf{x})$



SUMMARY:

- $1 \le p < 2$ promote sparsity
- p=2 induces robustness, rotation-invariant
- 2 promote non-sparse combinations
- $p = \infty$ promotes equal weightages

A BIT MORE REALISTIC CASE...

SUPPOSE: [ARGYRIOU ET.AL., 08]

• Tasks share a few (may be learnt) features.

A BIT MORE REALISTIC CASE...

Suppose: [Argyriou et.al., 08]

- Tasks share a few (may be learnt) features.
 - Rotationally transformed features

A BIT MORE REALISTIC CASE...

SUPPOSE: [ARGYRIOU ET.AL., 08]

- Tasks share a few (may be learnt) features.
 - Rotationally transformed features

$$\min_{\mathbf{w},b,\xi,\mathbf{L}} \left(\sum_{f=1}^{d} \|\mathbf{w}^f\|_2 \right)^2 + C \sum_{t=1}^{T} \sum_{i=1}^{m_t} \xi_{ti}$$
s.t.
$$y_{ti}(\mathbf{w}_t^{\mathsf{T}} \mathbf{L}^{\mathsf{T}} \mathbf{x}_{ti} - b_t) \ge 1 - \xi_{ti}, \ \xi_{ti} \ge 0, \ \mathbf{L} \in O^d$$

Multi-task Sparse Feature Learning (MTSFL) FORMULATION

SUMMARY:

- Though non-convex global optimum can be obtained
- Can be kernelized
- Efficient alternate minimization algorithm (EVD per iteration)
- Achieves state-of-the-art performance on benchmarks

Multi-task Sparse Feature Learning (MTSFL) FORMULATION

SUMMARY:

- Though non-convex global optimum can be obtained
- Can be kernelized
- Efficient alternate minimization algorithm (EVD per iteration)
- Achieves state-of-the-art performance on benchmarks

DISCUSSION:

- Rotationally transformed features too restrictive
 - Essential for convexity

Multi-task Sparse Feature Learning (MTSFL) FORMULATION

SUMMARY:

- Though non-convex global optimum can be obtained
- Can be kernelized
- Efficient alternate minimization algorithm (EVD per iteration)
- Achieves state-of-the-art performance on benchmarks

DISCUSSION:

- Rotationally transformed features too restrictive
 - Essential for convexity
- Idea: Enrich the input space itself
 - Multiple Kernel Learning (MKL) ??

CENTRAL IDEA

Pose the problem as that of learning a shared kernel

CENTRAL IDEA

Pose the problem as that of learning a shared kernel

OUTLINE:

- Two formulations:
 - learn kernel shared across tasks (MK-MTFL)
 - Extension of standard MKL to multi-task case
 - learn sparse representation from shared kernel (MK-MTSFL)
 - Extension of MTSFL to multiple base kernels

NOTATIONAL STUFF...

- k_1, \ldots, k_n base kernels
- $\phi_i(\cdot)$ implicit mapping with k_i
- $w_{tif} t^{th}$ task, j^{th} kernel, f^{th} feature loading
- \bullet $\mathbf{W}_{\cdot jf}, \mathbf{W}_{t\cdot f}, \mathbf{W}_{tj}$
- Linear model: $f_t(\mathbf{x}) = \sum_{j=1}^n \mathbf{w}_{tj}^\top \phi_j(\mathbf{x}) b_t$

PRIMAL:

$$\begin{aligned} & \min_{\mathbf{w},b,\xi} & & \frac{1}{2} \overbrace{\left(\sum_{j=1}^{n} \left(\sum_{t=1}^{T} (\|\mathbf{w}_{tj}\|_{2})^{2}\right)^{\frac{1}{2}}\right)^{2}}^{l_{1}-l_{2}-l_{2}} + C \sum_{t=1}^{T} \sum_{i=1}^{m_{t}} \xi_{ti} \\ & \text{s.t.} & & y_{ti}(\sum_{j=1}^{n} \mathbf{w}_{tj}^{\top}.\phi_{j}(\mathbf{x}_{ti}) - b_{t}) \geq 1 - \xi_{ti}, \ \xi_{ti} \geq 0 \end{aligned}$$

PRIMAL:

$$\begin{split} \min_{\mathbf{w},b,\xi} \quad & \frac{1}{2} \overbrace{\left(\sum_{j=1}^{n} \left(\sum_{t=1}^{T} (\|\mathbf{w}_{tj}\|_{2})^{2}\right)^{\frac{1}{2}}\right)^{2}}^{l_{1}-l_{2}-l_{2}} + C \sum_{t=1}^{T} \sum_{i=1}^{m_{t}} \xi_{ti} \\ \text{s.t.} \quad & y_{ti} (\sum_{j=1}^{n} \mathbf{w}_{tj}^{\top}.\phi_{j}(\mathbf{x}_{ti}) - b_{t}) \geq 1 - \xi_{ti}, \; \xi_{ti} \geq 0 \end{split}$$

PARTIAL DUAL:

$$\min_{\gamma \in \Delta_n} \max_{\alpha_t \in S_{m_t}(C)} \sum_{t=1}^T \left\{ \mathbf{1}^\top \alpha_t - \frac{1}{2} \alpha_t^\top \mathbf{Y}_t \left[\sum_{j=1}^n \gamma_j \mathbf{K}_{tj} \right] \mathbf{Y}_t \alpha_t \right\}$$

Saketh MLSS - IIT-Madras

PRIMAL $(2 \le p \le \infty)$:

$$\begin{aligned} & \underset{\mathbf{w},b,\xi}{\min} & & \frac{1}{2} \underbrace{\left(\sum_{j=1}^{n} \left(\sum_{t=1}^{T} (\|\mathbf{w}_{tj}.\|_{2})^{p} \right)^{\frac{1}{p}} \right)^{2}}_{l} + C \sum_{t=1}^{T} \sum_{i=1}^{m_{t}} \xi_{ti} \\ & \text{s.t.} & & y_{ti} (\sum_{j=1}^{n} \mathbf{w}_{tj}^{\top}.\phi_{j}(\mathbf{x}_{ti}) - b_{t}) \geq 1 - \xi_{ti}, \ \xi_{ti} \geq 0 \end{aligned}$$

PRIMAL $(2 \le p \le \infty)$:

$$\min_{\mathbf{w},b,\xi} \quad \frac{1}{2} \underbrace{\left(\sum_{j=1}^{n} \left(\sum_{t=1}^{T} (\|\mathbf{w}_{tj}\|_{2})^{\mathbf{p}} \right)^{\frac{1}{\mathbf{p}}} \right)^{2}}_{l} + C \sum_{t=1}^{T} \sum_{i=1}^{m_{t}} \xi_{ti} \right)}_{\mathbf{s.t.}}$$
s.t.
$$y_{ti} (\sum_{j=1}^{n} \mathbf{w}_{tj}^{\top}.\phi_{j}(\mathbf{x}_{ti}) - b_{t}) \ge 1 - \xi_{ti}, \ \xi_{ti} \ge 0$$

PARTIAL DUAL $(\bar{p} = \frac{p}{p-2})$:

$$\min_{\gamma \in \Delta_n} \max_{\boldsymbol{\lambda_j} \in \Delta_{\boldsymbol{T,\bar{p}}}} \max_{\alpha_t \in S_{m_t}(C)} \sum_{t=1}^T \left\{ \mathbf{1}^\top \alpha_t - \frac{1}{2} \alpha_t^\top \mathbf{Y}_t \left[\sum_{j=1}^n \frac{\gamma_j \mathbf{K}_{tj}}{\boldsymbol{\lambda_{jt}}} \right] \mathbf{Y}_t \alpha_t \right\}$$

SUMMARY:

- Novel formulation for learning shared kernel
- Extension of MKL to multi-task case
- Tasks can be unequally reliable
- Efficient mirror-descent based alg.
 - Each step solves T regular SVMs $O(\sum_{t=1}^{T} m_t^2 dn)$

PRIMAL $(1 \le q \le 2)$:

$$\min_{\mathbf{w},b,\xi,\mathbf{L}} \frac{\frac{1}{2} \left(\sum_{j=1}^{n} \left(\sum_{f=1}^{d_j} \|\mathbf{w}_{\cdot jf}\|_2 \right)^q \right)^{\frac{2}{q}} + C \sum_{t=1}^{T} \sum_{i=1}^{m_t} \xi_{ti}}{\text{s.t.} \quad y_{ti} (\sum_{j=1}^{n} \mathbf{w}_{tj}^{\top}. \mathbf{L}_j^{\top} \phi_j(\mathbf{x}_{ti}) - b_t) \ge 1 - \xi_{ti}, \ \xi_{ti} \ge 0, \mathbf{L}_j \in O^{d_j}$$

PRIMAL $(1 \le q \le 2)$:

$$\min_{\mathbf{w},b,\xi,\mathbf{L}} \frac{\frac{1}{2} \left(\sum_{j=1}^{n} \left(\sum_{f=1}^{d_j} \|\mathbf{w}_{\cdot jf}\|_2 \right)^q \right)^{\frac{2}{q}} + C \sum_{t=1}^{T} \sum_{i=1}^{m_t} \xi_{ti}}{\text{s.t.} \quad y_{ti} \left(\sum_{j=1}^{n} \mathbf{w}_{tj}^{\top} . \mathbf{L}_j^{\top} \phi_j(\mathbf{x}_{ti}) - b_t \right) \ge 1 - \xi_{ti}, \ \xi_{ti} \ge 0, \mathbf{L}_j \in O^{d_j}}$$

PARTIAL DUAL $(\bar{q} = \frac{q}{2-q})$:

$$\begin{split} \min_{\mathbf{Q}} \sum_{t=1}^{T} \max_{\alpha_{t} \in S_{m_{t}}(C)} \quad \mathbf{1}^{\top} \alpha_{t} - \frac{1}{2} \alpha_{t}^{\top} \mathbf{Y}_{t} \left(\sum_{j=1}^{n} \mathbf{M}_{tj}^{\top} \mathbf{Q}_{j} \mathbf{M}_{tj} \right) \mathbf{Y}_{t} \alpha_{t} \\ \text{s.t.} \qquad \mathbf{Q}_{j} \succeq 0, \sum_{j=1}^{n} (trace(\mathbf{Q}_{j}))^{\bar{q}} \leq 1 \end{split}$$

SUMMARY:

- Novel formulation for learning shared sparse feature representations
 - Trace-norm constraints lead to low rank matrices
- Extension of MTSFL [Argyriou et.al., 08] to multiple base kernels
- Though non-convex, global optimal can be efficiently obtained
- Efficient mirror-descent based algorithm
 - ullet Each step solves T regular SVMs, n EVDs of full matrices
- Faster convergence in practice than alternate minimization

SOLVING MK-MTSFL

PARTIAL DUAL:

$$\min_{\mathbf{Q}} \sum_{t=1}^{T} \max_{\alpha_{t} \in S_{m_{t}}(C)} \mathbf{1}^{\top} \alpha_{t} - \frac{1}{2} \alpha_{t}^{\top} \mathbf{Y}_{t} \left(\sum_{j=1}^{n} \mathbf{M}_{tj}^{\top} \mathbf{Q}_{j} \mathbf{M}_{tj} \right) \mathbf{Y}_{t} \alpha_{t}$$
s.t.
$$\mathbf{Q}_{j} \succeq 0, \sum_{j=1}^{n} (trace(\mathbf{Q}_{j}))^{\bar{q}} \leq 1$$

SOLVING MK-MTSFL

PARTIAL DUAL:

$$\min_{\mathbf{Q}} \underbrace{\sum_{t=1}^{T} \max_{\alpha_{t} \in S_{m_{t}}(C)} \mathbf{1}^{\top} \alpha_{t} - \frac{1}{2} \alpha_{t}^{\top} \mathbf{Y}_{t} \left(\sum_{j=1}^{n} \mathbf{M}_{tj}^{\top} \mathbf{Q}_{j} \mathbf{M}_{tj} \right) \mathbf{Y}_{t} \alpha_{t}}_{\mathbf{S}.t. \quad \mathbf{Q}_{j} \succeq 0, \sum_{j=1}^{n} (trace(\mathbf{Q}_{j}))^{\bar{q}} \leq 1$$

SOLVING MK-MTSFL

PARTIAL DUAL:

$$\min_{\mathbf{Q}} \sum_{t=1}^{T} \max_{\alpha_t \in S_{m_t}(C)} \mathbf{1}^{\top} \alpha_t - \frac{1}{2} \alpha_t^{\top} \mathbf{Y}_t \left(\sum_{j=1}^{n} \mathbf{M}_{tj}^{\top} \mathbf{Q}_j \mathbf{M}_{tj} \right) \mathbf{Y}_t \alpha_t$$
s.t.
$$\mathbf{Q}_j \succeq 0, \sum_{j=1}^{n} (trace(\mathbf{Q}_j))^{\bar{q}} \leq 1$$

- $g(\mathbf{Q})$ cannot be analytically computed
- Danskin's theorem provides $\nabla q(\mathbf{Q})$
 - Involves solving T regular SVMs

PROJECTED (SUB-)GRADIENT DESCENT

- $\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$ (f is convex, Lipschitz, \mathcal{X} is compact)
- At iteration k:

$$\mathbf{x}_{k+1}$$

$$= \Pi_{\mathcal{X}}(\mathbf{x}_k - s_k \nabla f(\mathbf{x}_k))$$

PROJECTED (SUB-)GRADIENT DESCENT

- $\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$ (f is convex, Lipschitz, \mathcal{X} is compact)
- At iteration k:
 - f is approx. by linear func. $f(\mathbf{x}) = f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^{\top} (\mathbf{x} \mathbf{x}_k)$
 - valid only when $\|\mathbf{x} \mathbf{x}_k\|_2$ is small

$$\begin{split} \mathbf{x}_{k+1} &= \arg\min_{\mathbf{x} \in \mathcal{X}} \quad s_k \nabla f(\mathbf{x}_k)^\top (\mathbf{x} - \mathbf{x}_k) + \frac{1}{2} \|\mathbf{x} - \mathbf{x}_k\|_2^2 \\ &= \arg\min_{\mathbf{x} \in \mathcal{X}} \quad \frac{1}{2} \|\mathbf{x} - (\mathbf{x}_k - s_k \nabla f(\mathbf{x}_k))\|_2^2 \\ &= \Pi_{\mathcal{X}} (\mathbf{x}_k - s_k \nabla f(\mathbf{x}_k)) \end{split}$$

PROJECTED (SUB-)GRADIENT DESCENT

- $\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$ (f is convex, Lipschitz, \mathcal{X} is compact)
- At iteration k:
 - f is approx. by linear func. $f(\mathbf{x}) = f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^{\top} (\mathbf{x} \mathbf{x}_k)$
 - valid only when $\|\mathbf{x} \mathbf{x}_k\|_2$ is small

$$\begin{split} \mathbf{x}_{k+1} &= \arg\min_{\mathbf{x} \in \mathcal{X}} \quad s_k \nabla f(\mathbf{x}_k)^\top (\mathbf{x} - \mathbf{x}_k) + \frac{1}{2} \|\mathbf{x} - \mathbf{x}_k\|_2^2 \\ &= \arg\min_{\mathbf{x} \in \mathcal{X}} \quad \frac{1}{2} \|\mathbf{x} - (\mathbf{x}_k - s_k \nabla f(\mathbf{x}_k))\|_2^2 \\ &= \Pi_{\mathcal{X}} (\mathbf{x}_k - s_k \nabla f(\mathbf{x}_k)) \end{split}$$

- Convergence guarantees with some choices of step-sizes (s_k)
- "Optimal" for Euclidean geometry

PROJECTED (SUB-)GRADIENT DESCENT

- $\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$ (f is convex, Lipschitz, \mathcal{X} is compact)
- At iteration k:
 - f is approx. by linear func. $f(\mathbf{x}) = f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^{\top} (\mathbf{x} \mathbf{x}_k)$
 - valid only when $\|\mathbf{x} \mathbf{x}_k\|_2$ is small

$$\begin{aligned} \mathbf{x}_{k+1} &= \arg\min_{\mathbf{x} \in \mathcal{X}} \quad s_k \nabla f(\mathbf{x}_k)^{\top} (\mathbf{x} - \mathbf{x}_k) + \frac{1}{2} \|\mathbf{x} - \mathbf{x}_k\|_2^2 \\ &= \arg\min_{\mathbf{x} \in \mathcal{X}} \quad \frac{1}{2} \|\mathbf{x} - (\mathbf{x}_k - s_k \nabla f(\mathbf{x}_k))\|_2^2 \\ &= \Pi_{\mathcal{X}} (\mathbf{x}_k - s_k \nabla f(\mathbf{x}_k)) \end{aligned}$$

- Convergence guarantees with some choices of step-sizes (s_k)
- "Optimal" for Euclidean geometry

MIRROR DESCENT

KEY IDEA:

• Bregmann divergence based regularizer so that per-step problem is easy

$$\mathbf{x}_{k+1} = \arg\min_{\mathbf{x} \in \mathcal{X}} \quad s_k \nabla f(\mathbf{x}_k)^\top (\mathbf{x} - \mathbf{x}_k) + \frac{1}{2} \|\mathbf{x} - \mathbf{x}_k\|_2^2$$

MIRROR DESCENT

KEY IDEA:

• Bregmann divergence based regularizer so that per-step problem is easy

$$\mathbf{x}_{k+1} = \arg\min_{\mathbf{x} \in \mathcal{X}} \quad s_k \nabla f(\mathbf{x}_k)^\top (\mathbf{x} - \mathbf{x}_k) + D_{\mathbf{x}_k}(\mathbf{x})$$

MIRROR DESCENT

KEY IDEA:

 Bregmann divergence based regularizer so that per-step problem is easy

$$\mathbf{x}_{k+1} = \arg\min_{\mathbf{x} \in \mathcal{X}} \quad s_k \nabla f(\mathbf{x}_k)^\top (\mathbf{x} - \mathbf{x}_k) + D_{\mathbf{x}_k}(\mathbf{x})$$

Bregmann Divergence:

- Strongly convex $\omega(\cdot)$: $D_x(y) = \omega(y) \omega(x) \nabla \omega(x)^{\top}(y-x)$
- Common choices:
 - \mathcal{X} Sphere: $\omega(x) = \frac{1}{2} ||x||_2^2$
 - \mathcal{X} Simplex: $\omega(x) = \sum_i x_i \log(x_i)$
 - \mathcal{X} Spectrahedron: $\omega(x) = trace(x \log(x))$

SOLVING MK-MTSFL

OUR FINDING:

Entropy function $trace(x\log(x))$ good enough for our problem

SOLVING MK-MTSFL

OUR FINDING:

Entropy function $trace(x \log(x))$ good enough for our problem

PER-STEP PROBLEM:

$$\begin{split} & \min_{\mathbf{Q}} & \sum_{j=1}^{n} \left\{ trace(\zeta_{j}\mathbf{Q}_{j}) + trace(\mathbf{Q}_{j}\log(\mathbf{Q}_{j})) \right\} \\ & \text{s.t.} & \mathbf{Q}_{j} \succeq 0, \sum_{j=1}^{k} (trace(\mathbf{Q}_{j}))^{\bar{q}} \leq 1 \end{split}$$

SOLVING MK-MTSFL

OUR FINDING:

Entropy function $trace(x \log(x))$ good enough for our problem

PER-STEP PROBLEM:

$$\begin{split} & \min_{\mathbf{Q}} & \sum_{j=1}^{n} \left\{ trace(\zeta_{j}\mathbf{Q}_{j}) + trace(\mathbf{Q}_{j}\log(\mathbf{Q}_{j})) \right\} \\ & \text{s.t.} & \mathbf{Q}_{j} \succeq 0, \sum_{j=1}^{k} (trace(\mathbf{Q}_{j}))^{\bar{q}} \leq 1 \end{split}$$

AFTER EVDs of \mathbf{Q}_i :

$$\begin{split} & \min_{\boldsymbol{\rho}} & \sum_{j=1}^{n} \left(\rho_{j} \log(\rho_{j}) + \rho_{j} \pi_{j} \right) \\ & \text{s.t.} & \quad \rho_{j} \geq 0, \sum_{j=1}^{n} \rho_{j}^{\bar{q}} \leq 1 \end{split}$$

SIMULATIONS

DATASETS:

SCHOOL: Multi-task benchmark. Prediction of student performance in various schools.

- 139 regression tasks
- 28 input features
- 15 training examples per task

LETTERS: OCR dataset. Each letter considered as a task.

- 9 binary classification tasks
- 128 input features
- 10 training examples per task

DERMATOLOGY: Bio-informatics dataset. Predicting one of six skin-diseases.

- 15 binary classification tasks
- 33 input features
- 10 training examples per task

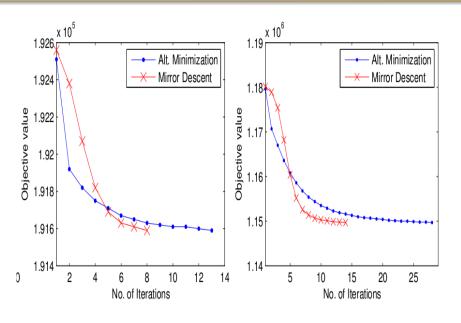
SIMULATIONS

TABLE: Comparison of generalization performance

	SVM	MTSFL	MK-MTFL			MK-MTSFL		
			p = 2	7	Inf	q = 1	1.5	1.99
S	-45.88	13.94	10.76	13.80	10.52	14.07	13.80	13.94
L	74.89	75.54	78.28	78.30	78.31	76.38	76.93	74.57
D	8	6	0	0	0	8	7	5.33

MTFSTL - 179sec, MK-MTFL - 192sec and MK-MTSFL -15445sec.

SIMULATIONS



Conclusions

- Two novel formulations for multi-task feature learning:
 - Extension of MKL to multi-task case (non-sparse)
 - Simple, good generalization, scalable
 - Extension of MTSFL to multiple base kernels (sparse)
 - better generalization than state-of-the-art
- Efficient mirror-descent based algorithm
 - Faster convergence
- Sparse representations may not always be desirable

Questions?

Thank You