First order methods

FOR CONVEX OPTIMIZATION

Saketh (IIT Bombay)

Topics

- Part I
 - Optimal methods for unconstrained convex programs
 - Smooth objective
 - Non-smooth objective
- Part II
 - Optimal methods for constrained convex programs
 - Projection based
 - Frank-Wolfe based
 - Functional constraint based
 - Prox-based methods for structured non-smooth programs

Non-Topics

- Step-size schemes
- Bundle methods
- Stochastic methods
- Inexact oracles
- Non-Euclidean extensions (Mirror-friends)

Motivation

& EXAMPLE APPLICATIONS

• **Goal:** Construct $f: X \to Y$

• **Goal:** Construct $f: X \to Y$

- **Goal:** Construct $f: X \to Y$
- Input data: $\{(x_1, y_1), ..., (x_m, y_m)\}$

- **Goal:** Construct $f: X \to Y$
- Input data: $\{(x_1, y_1), \dots, (x_m, y_m)\}$
- Model: $f(x) = w^T \phi(x)$

- **Goal:** Construct $f: X \to Y$
- Input data: $\{(x_1, y_1), ..., (x_m, y_m)\}$
- Model: $f(x) = w^T \phi(x)$
- Algorithm: Find simple functions that explain data

$$\min_{w \in R^n} \Omega(w) + \sum_{i=1}^m l(w^T \phi(x_i), y_i)$$

Typical Program – Machine Learning

Smooth/Non-Smooth $\min_{w \in R^n} \Omega(w) + \sum_{i=1}^m l(w^T \phi(x_i), y_i)$

- Unconstrained
 - , smooth functional constraints
- Smooth/Non-smooth/Composite Objectives

Typical Program – Machine Learning

- Unconstrained/Constrained
 - Simple domains, smooth functional constraints
- Smooth/Non-smooth/Composite Objectives

Typical Program – Machine Learning

- Unconstrained/Constrained
 - Simple domains, smooth functional constraints
- Smooth/Non-smooth/Composite Objectives

Scale is the issue!

- m, n as well as no. models may run into millions!
- Even a single iteration of IPM/Newton-variants is in-feasible.
- "Slower" but "cheaper" methods are the alternative
 - Decomposition based
 - First order methods

First Order Methods - Overview

- Iterative, gradient-like information, O(n) per iteration
- E.g. Gradient method, Cutting planes, Conjugate gradient
- Very old methods (1950s)
- Far slower than IPM
 - Sub-linear rate ® . (Not crucial for ML)
 - But (nearly) n-independent ©
- Widely employed in state-of-the-art ML systems
- Choice of variant depends on problem structure

First Order Methods - Overview

- Iterative, gradient-like information, O(n) per iteration
- E.g. Gradient method, Cutting planes, Conjugate gradient
- Very old methods (1950s)
- Far slower than IPM:
 - Sub-linear rate 8 . (Not crucial for ML)
 - But (nearly) n-independent ⁽³⁾
- Widely employed in state-of-the-art ML systems
- Choice of variant depends on problem structure

Smooth un-constrained

$$\underset{w \in \mathbb{R}^n}{\text{MIN}} \sum_{i=1}^m (w^T \phi(x_i) - y_i)^2$$

- Continuously differentiable
- Gradient is Lipschitz continuous

- Continuously differentiable
- Gradient is Lipschitz continuous
 - $\|\nabla f(x) \nabla f(y)\| \le L\|x y\|$
 - E.g. $g(x) \equiv x^2$ is not L-conts. over R but is over [0,1] with L=2
 - E.g. $g(x) \equiv |x|$ is L-conts. with L=1

- Continuously differentiable
- Gradient is Lipschitz continuous
 - $\|\nabla f(x) \nabla f(y)\| \le L\|x y\|$
 - E.g. $g(x) \equiv x^2$ is not L-conts. over R but is over [0,1] with L=2
 - E.g. $g(x) \equiv |x|$ is L-conts. with L=1

Theorem: Let f be convex twice differentiable. Then

f is smooth with const. $L \Leftrightarrow f''(x) \leqslant L I_n$

- Continuously differentiable
- Gradient is Lipschitz continuous
 - $\|\nabla f(x) \nabla f(y)\| \le L\|x y\|$
 - E.g. $g(x) \equiv x^2$ is not L-conts. over R but is over [0,1] with L=2
 - E.g. $g(x) \equiv |x|$ is L-conts. with L=1

Theorem: Let f be convex twice differentiable. Then

f is smooth with const. $L \Leftrightarrow f''(x) \leqslant L I_n$

Gradient Method [Cauchy1847]

- Move iterate in direction of instantaneous decrease
 - $x_{k+1} = x_k s_k \nabla f(x_k)$, $s_k > 0$

Gradient Method

Move iterate in direction of instantaneous decrease

•
$$x_{k+1} = x_k - s_k \nabla f(x_k)$$
, $s_k > 0$

Regularized minimization of first order approx.

•
$$x_{k+1} = \operatorname{argmin}_{x \in \mathbb{R}^n} f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2s_k} ||x - x_k||^2$$

Gradient Method

- Move iterate in direction of instantaneous decrease
 - $x_{k+1} = x_k s_k \nabla f(x_k)$, $s_k > 0$
- Regularized minimization of first order approx.

Gradient Method

Move iterate in direction of instantaneous decrease

•
$$x_{k+1} = x_k - s_k \nabla f(x_k)$$
, $s_k > 0$

Regularized minimization of first order approx.

•
$$x_{k+1} = \operatorname{argmin}_{x \in \mathbb{R}^n} f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2s_k} ||x - x_k||^2$$

- Various step-size schemes
 - Constant (1/L)
 - Diminishing $(s_k \downarrow 0, \sum s_k = \infty)$
 - Exact or back-tracking line search

Convergence rate – Gradient method

Theorem[NeO4]: If f is smooth with const. L and $s_k = \frac{1}{L}$, then gradient method generates x_k such that:

$$f(x_k) - f(x^*) \le \frac{2L||x_0 - x^*||^2}{k+4}.$$

Proof Sketch.

- $f(x_{k+1}) \le f(x_k) + \nabla f(x_k)^T (x_{k+1} x_k) + \frac{L}{2} ||x_{k+1} x_k||^2$
- $f(x_{k+1}) \ge f(x_k) + \nabla f(x_k)^T (x_{k+1} x_k) + \frac{1}{2L} \|\nabla f(x_{k+1}) \nabla f(x_k)\|^2$
- $||x_{k+1} x^*||^2 \le ||x_k x^*||^2 \frac{1}{12} ||\nabla f(x_k)||^2$
- $\Delta_{k+1} \leq \Delta_k \Delta^2/_{2}$ (Solve recursion)

Convergence rate – Gradient method

Theorem[Ne04]: If f is smooth with const. L and $s_k = \frac{1}{L}$, then gradient method generates x_k such that:

$$f(x_k) - f(x^*) \le \frac{2L||x_0 - x^*||^2}{k+4}.$$

Proof Sketch:

• $f(x_{k+1}) \le f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{L}{2} ||x_{k+1} - x_k||^2$

Majorization minimization

•
$$f(x_{k+1}) \ge f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{1}{2L} \|\nabla f(x_{k+1}) - \nabla f(x_k)\|^2$$

- $||x_{k+1} x^*||^2 \le ||x_k x^*||^2 \frac{1}{2} ||\nabla f(x_k)||^2$
- $\Delta_{k+1} \leq \Delta_k \Delta^2/_{-2}$ (Solve recursion)

Convergence rate – Gradient method

Theorem[Ne04]: If f is smooth with const. L and $s_k = \frac{1}{L}$, then gradient method generates x_k such that:

$$f(x_k) - f(x^*) \le \frac{2L||x_0 - x^*||^2}{k+4}.$$

Proof Sketch:

• $f(x_{k+1}) \le f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{L}{2} ||x_{k+1} - x_k||^2$

Majorization minimization

•
$$f(x_{k+1}) \ge f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{1}{2L} \|\nabla f(x_{k+1}) - \nabla f(x_k)\|^2$$

•
$$||x_{k+1} - x^*||^2 \le ||x_k - x^*||^2 - \frac{1}{L^2} ||\nabla f(x_k)||^2$$

• $\Delta_{k+1} \leq \Delta_k - \Delta^2/r_0^2$ (Solve recursion)

- Sub-linear, very slow compared to IPM
- Applies to conjugate gradient and other traditional variants
- Sub-optimal (may be?):

Theorem[Ne04]: For any $k \leq \frac{n-1}{2}$, and any x_0 , there exists a smooth function f, with const. L, such that with any first order method, we have $f(x_k) - f(x^*) \geq \frac{3L||x_0 - x^*||^2}{32(k+1)^2}.$

Proof Sketch: Choose function such that $x_k \in lin(\nabla f(x_0), ..., \nabla f(x_{k-1})) \subset R^{k,r}$

- Sub-linear, very slow compared to IPM
- Applies to conjugate gradient and other traditional variants
- Sub-optimal (may be?):

Theorem[Ne04]: For any $k \le \frac{n-1}{2}$, and any x_0 , there exists a smooth function f, with const. L, such that with any first order method, we have:

$$f(x_k) - f(x^*) \ge \frac{3L||x_0 - x^*||^2}{32(k+1)^2}.$$

Proof Sketch: Choose function such that $x_k \in lin(\nabla f(x_0), ..., \nabla f(x_{k-1})) \subset R^{k,r}$

- Sub-linear, very slow compared to IPM
- Applies to conjugate gradient and other traditional variants
- Sub-optimal (may be?):

Theorem[Ne04]: For any $k \le \frac{n-1}{2}$, and any x_0 , there exists a smooth function f, with const. L, such that with any first order method, we have:

$$f(x_k) - f(x^*) \ge \frac{3L||x_0 - x^*||^2}{32(k+1)^2}.$$

Proof Sketch: Choose function such that

$$x_k \in lin(\nabla f(x_0), ..., \nabla f(x_{k-1})) \subset R^{k,n}$$

Strongly convex: $O\left(\left(\frac{Q-1}{Q+1}\right)^{2k}\right)$

- Sub-linear, very slow compared to IPIVI
- Applies to conjugate gradient and other traditional variants
- Sub-optimal (may be?):

Strongly convex: $O\left(\left(\frac{\sqrt{Q}-1}{\sqrt{Q}+1}\right)^{2k}\right)$

Theorem[Ne04]: For any $k \le \frac{n-1}{2}$, and any x_0 , there exists a smooth function f, with const. L, such that with any first order method, we have:

$$f(x_k) - f(x^*) \ge \frac{3L||x_0 - x^*||^2}{32(k+1)^2}.$$

Proof Sketch: Choose function such that

$$x_k \in lin(\nabla f(x_0), \dots, \nabla f(x_{k-1})) \subset R^{k,n}$$

Intuition for non-optimality

- All variants are descent methods
- Descent essential for proof
- Overkill leading to restrictive movements
- Try non-descent alternatives!

Intuition for non-optimality

- All variants are descent methods
- Descent essential for proof
- Overkill leading to restrictive movements
- Try non-descent alternatives!

Towards optimality [Moritz Hardt]

Sub-optimal: $O\left(\left(1-\frac{1}{Q}\right)^k\right)$

•
$$f(x) = \frac{1}{2}x^{T}Ax - bx$$
; $x_0 = b$

•
$$x_k = x_{k-1} - \frac{1}{L}(Ax_{k-1} - b) = \sum_{i=0}^k \left(I - \frac{A}{L}\right)^i \frac{b}{L}$$

Chebyshev poly, have two term recursive formula, hence we expect:

• $x_k = x_{k-1} - s_{k-1} \nabla f(x_{k-1}) + \lambda_{k-1} \nabla f(x_{k-2})$, to be optimal (acceleration

Towards optimality [Moritz Hardt]

Sub-optimal: $O\left(\left(1-\frac{1}{Q}\right)^k\right)$

•
$$f(x) = \frac{1}{2}x^{T}Ax - bx$$
; $x_0 = b$

•
$$x_k = x_{k-1} - \frac{1}{L}(Ax_{k-1} - b) = \sum_{i=0}^k \left(I - \frac{A}{L}\right)^i \frac{b}{L}$$
 Optimal: $O\left(\left(1 - \frac{1}{\sqrt{Q}}\right)^k\right)$

Lemma[Mo12]: There is a (Chebyshev) poly. of degree $O(\sqrt{Q} \log^{1}/\epsilon)$ such that p(0) = 1 and $p(x) \le \epsilon \ \forall \ x \in [\mu, L]$.

Chebyshev poly, have two term recursive formula, hence we expect:

• $x_k = x_{k-1} - s_{k-1} \nabla f(x_{k-1}) + \lambda_{k-1} \nabla f(x_{k-2})$, to be optimal (acceleration

Towards optimality [Moritz Hardt]

Sub-optimal: $O\left(\left(1-\frac{1}{Q}\right)^k\right)$

•
$$f(x) = \frac{1}{2}x^{T}Ax - bx$$
; $x_0 = b$

•
$$x_k = x_{k-1} - \frac{1}{L}(Ax_{k-1} - b) = \sum_{i=0}^k \left(I - \frac{A}{L}\right)^i \frac{b}{L}$$
 Optimal: $O\left(\left(1 - \frac{1}{\sqrt{Q}}\right)^k\right)$

Lemma[Mo12]: There is a (Chebyshev) poly. of degree $O(\sqrt{Q} \log^{1}/\epsilon)$ such that p(0) = 1 and $p(x) \le \epsilon \ \forall \ x \in [\mu, L]$.

Chebyshev poly. have two term recursive formula, hence we expect:

•
$$x_k = x_{k-1} - s_{k-1} \nabla f(x_{k-1}) + \lambda_{k-1} \nabla f(x_{k-2})$$
, to be optimal (acceleration)

Accelerated Gradient Method [Ne83,88,Be09]

•
$$y_k = x_{k-1} + \frac{k-2}{k+1}(x_{k-1} - x_{k-2})$$
 Two step history

•
$$x_k = y_k - s_k \nabla f(y_k)$$

(Usual gradient step)

Accelerated Gradient Method [Ne83,88,Be09]

•
$$y_k = x_{k-1} + \frac{k-2}{k+1}(x_{k-1} - x_{k-2})$$

• $x_k = y_k - s_k \nabla f(y_k)$

(Extrapolation or momentum)

(Usual gradient step)

Rate of Convergence – Accelerated gradient

Theorem [Be09]: If f is smooth with const. L and $s_k = \frac{1}{L}$, then accelerated gradient method generates x_k such that:

$$f(x_k) - f(x^*) \le \frac{2L||x_0 - x^*||^2}{(k+1)^2}.$$

Indeed optimal!

Proof Sketch.

- $f(x_k) \le f(z) + L(x_k y)^T (z x_k) + \frac{L}{2} ||x_k y||^2 \ \forall \ z \in \mathbb{R}^n$
- Convex combination at $z=x_k, z=x^*$ leads to:

$$\frac{(k+1)^{2}}{2L}(f(x_{k}) - f^{*}) + \|\overline{y}_{k} - x^{*}\|^{2} \le \frac{(k)^{2}}{2L}(f(x_{k-1}) - f^{*}) + \|\overline{y}_{k-1} - x^{*}\|^{2}$$

$$\le \|x_{0} - x^{*}\|^{2}$$

Rate of Convergence – Accelerated gradient

Theorem [Be09]: If f is smooth with const. L and $s_k = \frac{1}{L}$, then accelerated gradient method generates x_k such that:

$$f(x_k) - f(x^*) \le \frac{2L||x_0 - x^*||^2}{(k+1)^2}.$$

Proof Sketch:

•
$$f(x_k) \le f(z) + L(x_k - y)^T (z - x_k) + \frac{L}{2} ||x_k - y||^2 \, \forall \, z \in \mathbb{R}^n$$

• Convex combination at $z = x_k$, $z = x^*$ leads to:

$$\frac{(k+1)^{2}}{2L}(f(x_{k})-f^{*})+\|\overline{y}_{k}-x^{*}\|^{2} \leq \frac{(k)^{2}}{2L}(f(x_{k-1})-f^{*})+\|\overline{y}_{k-1}-x^{*}\|^{2}$$

$$\leq \|x_{0}-x^{*}\|^{2}$$

Rate of Convergence – Accelerated gradient

Theorem [Be09]: If f is smooth with const. L and $s_k = \frac{1}{L}$, then accelerated gradient method generates x_k such that:

$$f(x_k) - f(x^*) \le \frac{2L||x_0 - x^*||^2}{(k+1)^2}.$$

Proof Sketch:

•
$$f(x_k) \le f(z) + L(x_k - y)^T (z - x_k) + \frac{L}{2} ||x_k - y||^2 \, \forall \, z \in \mathbb{R}^n$$

• Convex combination at $z = x_k$, $z = x^*$ leads to:

$$\frac{(k+1)^{2}}{2L}(f(x_{k}) - f^{*}) + \|\overline{y}_{k} - x^{*}\|^{2} \le \frac{(k)^{2}}{2L}(f(x_{k-1}) - f^{*}) + \|\overline{y}_{k-1} - x^{*}\|^{2}$$

$$\le \|x_{0} - x^{*}\|^{2}$$

A Comparison of the two gradient methods

$$\min_{x \in R^{1000}} \log \left(\sum_{i=1}^{2000} e^{(a_i^T x + b_i)} \right)$$

Junk variants other than Accelerated gradient?

- Accelerated gradient is
 - Less robust than gradient method [Moritz Hardt]
 - Accumulates error with inexact oracles [De13]
- Who knows what will happen in your application?

Summary of un-constrained smooth convex programs

- Gradient method and friends: $\epsilon \approx O(1/k)$
 - Sub-linear and sub-optimal rate.
 - Additionally, strong convexity gives: $\epsilon \approx O\left(\left(\frac{Q-1}{Q+1}\right)^{2k}\right)$. Sub-optimal but linear rate.
- Accelerated gradient methods: $\epsilon \approx O(1/k^2)$
 - Sub-linear but optimal
 - O(n) computation per iteration
 - Additionally, strong convexity gives: $\epsilon \approx O\left(\left(\frac{\sqrt{Q}-1}{\sqrt{Q}+1}\right)^{2R}\right)$. Optimal but still linear rate.

Summary of un-constrained smooth convex programs

- Gradient method and friends: $\epsilon \approx O(1/k)$
 - Sub-linear and sub-optimal rate.
 - Additionally, strong convexity gives: $\epsilon \approx O\left(\left(\frac{Q-1}{Q+1}\right)^{2k}\right)$. Sub-optimal but linear rate.
- Accelerated gradient methods: $\epsilon \approx O(1/k^2)$
 - Sub-linear but optimal
 - O(n) computation per iteration
 - Additionally, strong convexity gives: $\epsilon \approx O\left(\left(\frac{\sqrt{Q}-1}{\sqrt{Q}+1}\right)^{2k}\right)$. Optimal but still linear rate.

Non-smooth unconstrained

$$\underset{w \in \mathbb{R}^n}{\text{MIN}} \sum_{i=1}^m |w'\phi(x_i) - y_i|$$

What is first order info?

What is first order info?

What is first order info?

Canonical form: $L(x) \equiv f(x_1) + g^T(x - x_1)$. Multiple g exist such that $L(x) \leq f(x) \ \forall x$

First Order Methods (Non-smooth)

Theorem: Let f be a closed convex function. Then

- At any $x \in ri(dom f)$, sub-gradient exists and set of all sub-gradients (denoted by $\partial f(x)$; sub-differential set) is closed convex.
- If f is differentiable at $x \in int(dom f)$, then gradient is the only subgradient.

Theorem: $x \in \mathbb{R}^n$ minimizes f if and only if $0 \in \partial f(x)$.

Sub-gradient Method

- Assume oracle that throws a sub-gradient.
- Sub-gradient method:

•
$$x_{k+1} = \operatorname{argmin}_{x \in \mathbb{R}^n} f(x_k) + g_f(x_k)^T (x - x_k) + \frac{1}{2s_k} ||x - x_k||^2$$

$$\bullet \ x_{k+1} = x_k - s_k g_f(x_k)$$

Can sub-gradient replace gradient?

- No majorization minimization
- $-g_f(x)$ not even descent direction

• E.g.
$$f(x_1, x_2) \equiv |x_1| + 2|x_2|$$

(1,0)

Expect slower than O(1/k)

How far can sub-gradient take?

How far can sub-gradient take?

Always exists!

Theorem[Ne04]: Let $||x_0 - x^*|| \le R$ and L the Lip. const. of f over this ball. Then sequence generated by sub-gradient descent satisfies:

$$\min_{i \in \{1,...,k\}} f(x_i) - f(x^*) \le \frac{LR}{\sqrt{k+1}}.$$

Proof Sketch:

- $2s_k \Delta_k \le r_k^2 r_{k+1}^2 + s_k^2 |g_f(x_k)|$
- LHS $\leq \frac{r_0 + 2i = 0}{2} \frac{s_i ||g_f(x_k)||}{2 \sum_{i=0}^k s_i} \leq \frac{R^2 + \sum_{i=0}^n s_i^{-L}}{2 \sum_{i=0}^k s_i}$; Choose $s_k = \frac{R}{\sqrt{k+1}}$

How far can sub-gradient take?

Theorem[Ne04]: Let $||x_0 - x^*|| \le R$ and L the Lip. const. of f over this ball. Then sequence generated by sub-gradient descent satisfies:

$$\min_{i \in \{1,...,k\}} f(x_i) - f(x^*) \le \frac{LR}{\sqrt{k+1}}.$$

Proof Sketch:

•
$$2s_k \Delta_k \le r_k^2 - r_{k+1}^2 + s_k^2 \|g_f(x_k)\|^2$$

• LHS
$$\leq \frac{r_0^2 + \sum_{i=0}^k s_i^2 \|g_f(x_k)\|^2}{2\sum_{i=0}^k s_i} \leq \frac{R^2 + \sum_{i=0}^k s_i^2 L^2}{2\sum_{i=0}^k s_i}$$
; Choose $s_k = R/\sqrt{k+1}$

Is this optimal?

Theorem[Ne04]: For any $k \le n - 1$, and any x_0 such that

 $||x_0 - x^*|| \le R$, there exists a convex f, with const. L over the ball, such that with any first order method, we have:

$$f(x_k) - f(x^*) \ge \frac{LR}{2(1 + \sqrt{k+1})}.$$

Proof Sketch: Choose function such that

$$x_k \in lin\left(g_f(x_0), \dots, g_f(x_{k-1})\right) \subset R^{k,n}$$

Summary of non-smooth unconstrained

- Sub-gradient descent method: $\epsilon \approx O\left(\frac{1}{\sqrt{k}}\right)$.
 - Sub-linear, slower than smooth case
 - But, optimal!
 - Can do better if additional structure (later)

Summary of Unconstrained Case

Bibliography

- [NeO4] Nesterov, Yurii. *Introductory lectures on convex optimization : a basic course*. Kluwer Academic Publ., 2004. http://hdl.handle.net/2078.1/116858.
- [Ne83] Nesterov, Yurii. A method of solving a convex programming problem with convergence rate O (1/k2). Soviet Mathematics Doklady, Vol. 27(2), 372-376 pages.
- [Mo12] Moritz Hardt, Guy N. Rothblum and Rocco A. Servedio. *Private data release via learning thresholds*. SODA 2012, 168-187 pages.
- [Be09] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal of Imaging Sciences, Vol. 2(1), 2009. 183-202 pages.
- [De13] Olivier Devolder, François Glineur and Yurii Nesterov. First-order methods of smooth convex optimization with inexact oracle. Mathematical Programming 2013.