First order methods

Saketh (IIT Bombay)

Topics

Part — |
Optimal methods for unconstrained convex programs

Smooth objective

Non-smooth objective

Part — Il
Optimal methods for constrained convex programs

Projection based
Frank-Wolfe based
Functional constraint based

Prox-based methods for structured non-smooth programs

Non-Topics

Step-size schemes
Bundle methods
Stochastic methods

Inexact oracles

Non-Euclidean extensions (Mirror-friends)

Motivation

Machine Learning Applications

Goal: Construct f : X = Y

Machine Learning Applications

Goal: Construct f : X = Y

Machine Learning Applications

Goal: Construct f : X = Y
Input data: { (x1, 1), ..., (Xm, Ym)}

Machine Learning Applications

Goal: Construct f : X = Y

Input data: { (x4, 1), ..., (X, Vi) }
Model: f(x) = wl ¢ (x)

Machine Learning Applications

Goal: Construct f : X = Y

Input data: { (x4, 1), ..., (X, Vi) }
Model: f(x) = wl ¢ (x)

Algorithm: Find simple functions that explain data

WERN

min Q(w) + 2 [((w"@(x), yi)
=l

Typical Program — Machine Learning

Smooth/Non-Smooth Smooth/Non-Smooth

o ™
min +

WERMN

e Unconstrained

* Smooth/Non-smooth/Composite Objectives

Typical Program — Machine Learning

Smooth/Non-Smooth Smooth/Non-Smooth
min

Domain

e.g. simplex

 Unconstrained/Constrained
 Simple domains
* Smooth/Non-smooth/Composite Objectives

Typical Program — Machine Learning

Smooth/Non-Smooth Smooth/Non-Smooth
min

Domain

e.g. simplex

t Gw) <0 g multn
SH e.g. multiple models

 Unconstrained/Constrained
 Simple domains, smooth functional constraints
* Smooth/Non-smooth/Composite Objectives

Scale is the issue!

m, n as well as no. models may run into millions!
Even a single iteration of IPM/Newton-variants is in-feasible.

“Slower” but “cheaper” methods are the alternative
Decomposition based
First order methods

First Order Methods - Overview

Iterative, gradient-like information, O(n) per iteration ©
E.g. Gradient method, Cutting planes, Conjugate gradient
Very old methods (1950s)

First Order Methods - Overview

Iterative, gradient-like information, O(n) per iteration ©
E.g. Gradient method, Cutting planes, Conjugate gradient
Very old methods (1950s)

Far slower than IPM:
Sub-linear rate ® . (Not crucial for ML)
But (nearly) n-independent ©

Widely employed in state-of-the-art ML systems

Choice of variant depends on problem structure

Smooth un-constrained

Smooth Convex Functions

Continuously differentiable

Gradient is Lipschitz continuous

Smooth Convex Functions

Continuously differentiable

Gradient is Lipschitz continuous

Vo) =V < Lllx — yl|
E.g. g(x) = x? is not L-conts. over R but is over [0,1] with L=2
E.g. g(x) = |x| is L-conts. with L=1

Smooth Convex Functions

Continuously differentiable

Gradient is Lipschitz continuous

Vo) =V < Lllx — yl|
E.g. g(x) = x? is not L-conts. over R but is over [0,1] with L=2
E.g. g(x) = |x| is L-conts. with L=1

Theorem: Let f be convex twice differentiable. Then

f is smooth with const. L & f"(x) < LI,

Smooth Convex Functions

Continuously differentiable

Gradient is Lipschitz continuous

Vo) =V < Lllx — yl|
E.g. g(x) = x? is not L-conts. over R but is over [0,1] with L=2
E.g. g(x) = |x| is L-conts. with L=1

Theorem: Let f be convex twice differentiable. Then

f is smooth with const. L & f"(x) < LI,

Gradient Method (cauchyisa7]

Move iterate in direction of instantaneous decrease

Xiey1 = X — SkVI(xg), sk >0

Gradient Method

Move iterate in direction of instantaneous decrease
Xey1 = Xg — SV (xg), s> 0
Regularized minimization of first order approx.

! 1
Xipr = argmingepn £ (i) + VF () (e = 1) + 5= 1 = 2]l

Gradient Method

Move iterate in direction of instantaneous decrease
Xey1 = Xg — SV (xg), s> 0
Regularized minimization of first order approx.

. 1
ean = argmingegn £ (00 + 7f (60" (6 = 20) + 5=l = 20l

* (.b(xk) ‘/
¢(xk+1) % f(xk)
x*
-— —-
Xk+1 Xk

Gradient Method

Move iterate in direction of instantaneous decrease
Xey1 = Xg — SV (xg), s> 0
Regularized minimization of first order approx.

! 1
Xicer = argmingegn £ (o) + Vf (a7 (= xi0) + 5 llx = i1

Various step-size schemes
Constant (1/L)
Diminishing (s; | 0,).s;, = o0)
Exact or back-tracking line search

Convergence rate — Gradient method

Theorem[Ne04]: If f is smooth with const. L and s;, = - then gradient method
generates x;, such that:

flxe) = f(x") <

2L)|xg — x ||2
k + 4

Convergence rate — Gradient method

Theorem[Ne04]: If f is smooth with const. L and s;, = - then gradient method
generates x;, such that:

Flo) — fa7) < 2P0 v
B k+ 4
Proof Sketch:
Majorization
f i) < F O + VFGu)T Coan — 20) + = 101 — xlI? minimization

fGierr) = FOa) + V)T (ges = Xie) + 52 IVF (ean) = VF @) I?

Convergence rate — Gradient method

Theorem[Ne04]: If f is smooth with const. L and s;, = - then gradient method
generates x;, such that:

Flo) — fa7) < 2P0 v
B k+ 4
Proof Sketch:
Majorization
f i) < F O + VFGu)T Coan — 20) + = 101 — xlI? minimization

fGierr) = FOa) + V)T (ges = Xie) + 52 IVF (ean) = VF @) I?

1
1 — 271 < llxe — x*11% = S IVF)1l

Apy1 < Ay — Az/rg (Solve recursion)

Comments on rate of convergence

Sub-linear, very slow compared to IPM

Applies to conjugate gradient and other traditional variants

Comments on rate of convergence

Sub-linear, very slow compared to IPM
Applies to conjugate gradient and other traditional variants

Sub-optimal (may be?):

Theorem|[NeO04]: For any k < nT_l, and any x,, there exists a smooth

function f, with const. L, such that with any first order method, we have:

o 3Llxo —x°I13
fn) = &) = S50

Comments on rate of convergence

Sub-linear, very slow compared to IPM
Applies to conjugate gradient and other traditional variants

Sub-optimal (may be?):

Theorem|[NeO04]: For any k < nT_l, and any x,, there exists a smooth

function f, with const. L, such that with any first order method, we have:

Flr) -) = 2o — 2l

32(k + 1)
Proof Sketch: Choose function such that
v € in(Vf (xg), ., Vf (xy_1)) © RS

_\2k
Strongly convex: O <(%) >J

Comments on rate of convergence

e ———
linear, slow compare

conjugate gradient

k
Sub-optimal (may be?): Strongly convex: 0((%:)2)J

Intuition for non-optimality

All variants are descent methods
Descent essential for proof

Overkill leading to restrictive movements

Intuition for non-optimality

All variants are descent methods
Descent essential for proof
Overkill leading to restrictive movements

Try non-descent alternatives!

Towards optimality (Moritz Hardt] sub-optimat: 0 (1~ 2)°)]

f(x) =%xTAx—bx;x0 =b

1
X = Xpg—1 — Z(Axk_l > b) — i.(=0 ([- _) —

Sub-optimal: O ((1 B %)k>]

Towards optimality [Moritz Hardt]

f(x) =%xTAx—bx;x0 =b

.] . 1 k
Xk = Xg—1 — % (Axg—1 —b) = X (1 — %)l% [Optlmmﬂ((l ﬁ>

Lemma[Mo12]: There is a (Chebyshev) poly. of degree O(ﬁlog 1/6)
such that p(0) = 1and p(x) <eVx € |u,L].

Sub-optimal: O ((1 B %)k>]

Towards optimality [Moritz Hardt]

f(x) =%xTAx—bx;x0 =b

.] . 1 k
Xk = Xg—1 — % (Axg_1 —b) = X5 (1 — %)l% [Optlmmﬂ((l ﬁ>

Lemma[Mo12]: There is a (Chebyshev) poly. of degree O(ﬁlog 1/6)
such that p(0) = 1and p(x) <eVx € |u,L].

Chebyshev poly. have two term recursive formula, hence we expect:
Xy = X—q1 — S—1Vf(xp—1) + A_1Vf(x)_>), to be optimal (acceleration)

Accelerated Gradient Method [Nes3,88 Be09]

k-2
Vi = Xj—1 aF m (xk—l — Xk_z)gstep his@

Accelerated Gradient Method [nes83,88 Be09]

k—2
* Vi = Xp—1 T+ 1 (xk—l — Xk_z) (Extrapolation or momentum)
* Xir = Vi — Sk Vf(yk) (Usual gradient step)

Rate of Convergence — Accelerated gradient

Theorem [Be09]: If f is smooth with const. L and s;, = %, then accelerated
gradient method generates x;, such that: ,
2L||xg — x*|| Indeed optimal!
X)) — f(x¥) <
f) = (&) < =

Rate of Convergence — Accelerated gradient

Theorem [Be09]: If f is smooth with const. L and s;, = %, then accelerated
gradient method generates x;, such that:

Flr) - far) < 2o = 21
: =~ (k+1)?

Proof Sketch:

fla) < f@) + L0 —)T — %) +Z llx — ylI2 v z € R

Rate of Convergence — Accelerated gradient

Theorem [Be09]: If f is smooth with const. L and s;, = - then accelerated
gradient method generates x;, such that:

o) — £e7) < 2200 cr

(k + 1)2

Proof Sketch:

fla) < f@) + L0 —)T — %) +Z llx — ylI2 v z € R

Convex combination at z = x3,,z = x™ leads to:

k 2 2
et) () T~ (FCe-1) =) + 11¥h-1 — x*||?

(fCa) =) + 1y — %71 <

< ||xo —x"||?

A Comparison of the two gradient methods
_min_log (%O e(a?x+bi)>

i=1

— gradient
- - FISTA

[L. Vandenberghe EE236C Notes]

Junk variants other than Accelerated gradient?

Accelerated gradient is
Less robust than gradient method [Moritz Hardt]
Accumulates error with inexact oracles [De13]

Who knows what will happen in your application?

Summary of un-constrained smooth convex programs

Gradient method and friends: ¢ = 0(/,)
Sub-linear and sub-optimal rate.

_1\2k
Additionally, strong convexity gives: € =~ O ((%) > Sub-optimal but

linear rate.

Summary of un-constrained smooth convex programs

Gradient method and friends: ¢ = 0(/,)
Sub-linear and sub-optimal rate.

e-1

Additionally, strong convexity gives: € =~ O ((Q+1

2k
) . Sub-optimal but
linear rate.

Accelerated gradient methods: € ~ 0(*/, ;)
Sub-linear but optimal
O (n) computation per iteration

2k
Additionally, strong convexity gives: ¢ = O ((g:)) Optimal but still

linear rate.

Non-smooth unconstrained

What is first order info?

* (X0, f (x0))

What is first order info?

% L(x) = f(x) + Vf(x)" (x — x)

A (0, f(x0))

/
/
/
/
/

What is first order info?

g is defined as
a sub-gradient

~ ~ \
S~ N\ (%1, f (1))
~
~

Canonical form: L(x) = f(xy) + g7 (x — x4).
Multiple g exist such that L(x) < f(x) Vx

First Order Methods (Non-smooth)

Theorem: Let f be a closed convex function. Then

At any x € ri(dom f), sub-gradient exists and set of all sub-gradients
(denoted by df (x); sub-differential set) is closed convex.

If f is differentiable at x € int(dom f), then gradient is the only sub-
gradient.

Theorem: x € R™ minimizes f if and only if 0 € df (x).

Sub-gradient Method

Assume oracle that throws a sub-gradient.

Sub-gradient method:
. 1
Xi+1 = argmingegn f(xg) + gf(xk)T(x — Xi) + 25% [— xp |12

Xk+1 = Xk — Skgf(xk)

Can sub-gradient replace gradient?

No majorization minimization

—gr(x) not even descent direction
E.g. f(x1,%2) = [x1] + 2|, (1,2)

e S\

How far can sub-gradient take?

How far can sub-gradient take? Always exists!

Theorem[Ne04]: Let ||[x, — x*|| < R and L the Lip. const. of f over
this ball. Then sequence generated by sub-gradient descent satisfies:

ierg}l?..r,lk}f(xi) AR Vk+1

How far can sub-gradient take?

Theorem[Ne04]: Let ||[x, — x*|| < R and L the Lip. const. of f over
this ball. Then sequence generated by sub-gradient descent satisfies:

iera?.?k}f(xi) AR Vk+1

Proof Sketch:
2
2530 STE — T+ Sl%”gf(xk)”

s +EiostlorGall” _ R+EE, 712

: _ R
LHS < 25 s, S Tovks Choose s;, = /\/m

s this optimal?

Theorem[Ne04]: Forany k < n — 1, and any x, such that

lxo — x*|| < R, there exists a convex f, with const. L over the ball,
such that with any first order method, we have:

LR
f(xk)_f(x)22(1+\/k—-l—1)'

Proof Sketch: Choose function such that
Xy € lin (gf(xo), ...,gf(xk_l)) c RFM

Summary of non-smooth unconstrained

Sub-gradient descent method: € = O (%) .

Sub-linear, slower than smooth case
But, optimall!
Can do better if additional structure (later)

Summary of Unconstrained Case

Chart Title
1.2

0.2 \

0 —
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Non-smooth =—=Smooth Gr. Smooth Acc. Gr.

Bibliography
[Ne04] Nesterov, Yurii. Introductory lectures on convex optimization : a basic course. Kluwer
Academic Publ., 2004.

[Ne83] Nesterov, Yurii. A method of solving a convex programming problem with convergence
rate O (1/k2). Soviet Mathematics Doklady, Vol. 27(2), 372-376 pages.

[Mo12] Moritz Hardt, Guy N. Rothblum and Rocco A. Servedio. Private data release via
learning thresholds. SODA 2012, 168-187 pages.

[Be09] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM Journal of Imaging Sciences, Vol. 2(1), 2009. 183-202 pages.

[Del13] Olivier Devolder, Francois Glineur and Yurii Nesterov. First-order methods of smooth
convex optimization with inexact oracle. Mathematical Programming 2013.

http://hdl.handle.net/2078.1/116858

