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Topics

Part — |
Optimal methods for unconstrained convex programs

Smooth objective

Non-smooth objective

Part — Il
Optimal methods for constrained convex programs

Projection based
Frank-Wolfe based
Functional constraint based

Prox-based methods for structured non-smooth programs



Constrained Optimization - lllustration

f
=




Constrained Optimization - lllustration
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Two Strategies

e Stay feasible and minimize
* Projection based
* Frank-Wolfe based




Two Strategies

* Alternate between
* Minimization
 Move towards feasibility set




Projection Based Methods



Projected Gradient Method

mel)r(l f(x) X is closed convex



Projected Gradient Method
min £ (2
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Xk+1 = argmingey f(xg) + Vf(xk)T(x — xp) + 25% |x — xkllz



Projected Gradient Method

min f (x)
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* Xp41 = argminyey f(xg) + Vf(xk)T(x — xp) + 25% l|x — xkllz
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Projected Gradient Method
min f (x)
* Xpr = argmingex f () + V()7 (x = x00) + 5[l = 2l
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Will it work?

1xke1 — 2|17 = IITx (e — sV (xx)) — x7||2
< || (xx — sk Vf(xx)) — x*||%
Remaining analysis exactly same (smooth/non-smooth)



Will it work?

1xke1 — 2|17 = IITx (e — sV (xx)) — x7||2
< || (xx — sk Vf(xx)) — x*||%
Remaining analysis exactly same (smooth/non-smooth)

Analysis a bit more involved for projected accelerated gradient

xp—Tx(xg—skVf(xk))
Sk

Satisfies same fundamental properties as gradient!

Define gradient map: h(xy) =



Simple sets

Non-negative orthant
Ball, ellipse

Box, simplex

Cones

PSD matrices

Spectrahedron



Summary of Projection Based Methods

Rates of convergence remain exactly same

Projection oracle needed (simple sets)
Caution with non-analytic cases



Frank-Wolfe Methods



Avoid Projections

] 1
Vi+1 = argmingey /(x;,) + Vf(xk)T(x — X)) +}T_K/U)"x/k”2

= argmin,cy Vf(xx) x (Support Function)



Avoid Projections [FW59]

] 1
Vi+1 = argmingey /(x;,) + Vf(xk)T(X — X)) +}—>KJ1/X/1<||2

= argmin,cy Vf(xx) x (Support Function)

Restrict moving far away:

Xk+1 = SpVr+1 T (1 = sp)xg,



lllustration

[Mart Jaggi, ICML 2014]



lllustration

[Mart Jaggi, ICML 2014]



On Conjugates and Support Functions

* Convex f is point-wise maximum of affine minorants



On Conjugates and Support Functions

* Convex f is point-wise maximum of affine minorants
* Provides dual definition:
*  f(x) = maxajx — by, equivalently:

yeY
e 33 () =_max_yTx—f*()
yedom f
 f¥iscalled conjugate or Fenchel dual or
- \ Legendre transformation (f** = f).



On Conjugates and Support Functions

* Convex f is point-wise maximum of affine minorants
* Provides dual definition:
 f(x) = max ayx — by, equivalently:

yeY
e« If*"3 f(x) = ErC}laX y X—f )
 f¥iscalled conjugate or Fenchel dual or
Legendre transformation (f** = f).

* If f*(y) isindicator of set S we get conic f:
e f(x) =maxy’x
YES

 |fSisanorm ball, we get dual norm




Connection with sub-gradient

Let,

e y*€argmaxylx—f(y) ie, f*(x)+f(y*) =xTy"
yedom f

* Then y* must be a sub-gradient of f* at x
* dual form exposes sub-gradients



Conjugates e.g.

Projection?
lx]l, x| »_ No (p & {1,2, })

e (Ol “U(X)”Ll No (p & {1,2, %})

* ||x||; Projection, conjugate = O(nlogn), O(n)
* |la(X)]||l; Projection, conjugate = Full, First SVD



Rate of Convergence

Theorem[Mall]: If X is compact convex set and f is smooth with
2

const. L, and s;, = P, then the iterates generated by Frank-Wolfe
satisfy:
2
4L d(X) —

k+2 optimal

flxg) —f(x¥) <



Rate of Convergence

Theorem[Mall]: If X is compact convex set and f is smooth with
const. L, and s;, = ﬁ, then the iterates generated by Frank-Wolfe

satisfy: AL d(X)?
Ld(X

k + 2

flep) —f(x7) <
Proof Sketch:

f(xre1) < flxg) +5VFO)" Wr — xx) + 5 SkL d(X)?

SkL

Ariq < (1 —s)A, +2=d(X)? (Solve recursion)



(0,1)

Sparse Representation — Optimality

If xo = 0 and domain is [;ball, x;, € R*"
- We get exact sparsity! (unlike proj. grad.)

(=1,0) (1,0)

* Sparse representation by extreme points

(0) _1)



(0,1)

Sparse Representation — Optimality

* If xo, = 0 and domain is I ball, x, € R®"
- We get exact sparsity! (unlike proj. grad.)

(=1,0) (1,0)

* Sparse representation by extreme points

(O) _1)

* Optimal in terms of accuracy-sparsity trade-off
- Not in terms of accuracy-iterations

2
// e = 047/ ) need atleast k non-zeros [Ma11]



Summary comparison of always feasible methods

Property Projected Gr. Frank-Wolfe
Rate of convergence

Sparse Solutions

Iteration Complexity

Affine Invariance



Functional Constrained



Assumptions

min fo(x)
XERM
s.t.fi(x)<0Vi=1,..,n

All fo, f_i are smooth

L is max. const. among all



Algorithm
At iteration1 < k < N:

Check if f;(x,) < % IV F o) Vi

If yes, then “productive” step: i(k) = 0
If no, then “non-productive” step: i(k) set to a violator

R
Xk+1 — Xk — \/N”Vfi(k)(xk)“ Vfi(k) (xk)

Output: Xy, the best among the productive.



Does it converge?

Theorem[Jul2]: Let X be bounded and L be the smoothness const.
(upper bound). Then,

foEn) = folx") < =

. LR , .
fi(Xn) S



Composite Objective



Composite Objectives

Non-Smooth g(w) Smooth f(w)
J—

WERN

Key Idea: Do not approximate non-smooth part



Proximal Gradient Method

. 1
X1 = argminy f () + VF ()" (x — x5) + on 1x — x 1% + g (x)

If g is indicator, then same as projected gr.



Proximal Gradient Method

. 1
* Xp41 = argming f(x) + V()" (x — xp) + on 1x — xl1* + g (x)
* If g is indicator, then same as projected gr.

* If g is support function: g(x) = max xTy
y

- Assume min-max interchange -

1
Xp+1 = Xk — SV (xg) — sills (g (o — Ska(Xk))>




Rate of Convergence

Theorem[Ne04]: If f is smooth with const. L, and s, = %, then
proximal gradient method generates x;, such that:

) fx < P =% TP
2k

Can be accelerated to O(1/k?)

Composite same rate as smooth provided proximal oracle exists!
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Thanks for listening



