First order methods

FOR CONVEX OPTIMIZATION

Saketh (IIT Bombay)

Topics

- Part − I
 - Optimal methods for unconstrained convex programs
 - Smooth objective
 - Non-smooth objective
- Part II
 - Optimal methods for constrained convex programs
 - Projection based
 - Frank-Wolfe based
 - Functional constraint based
 - Prox-based methods for structured non-smooth programs

$$x^*$$
 is optimal $\Leftrightarrow \nabla f(x^*)^T u \ge 0 \ \forall \ u \in T_F(x^*)$

Two Strategies

- Stay feasible and minimize
 - Projection based
 - Frank-Wolfe based

Two Strategies

- Alternate between
 - Minimization
 - Move towards feasibility set

Projection Based Methods

CONSTRAINED CONVEX PROGRAMS

$$\min_{x \in X} f(x)$$

X is closed convex

• $x_{k+1} = \operatorname{argmin}_{x \in X} f(x_k) + \nabla f(x_k)'(x - x_k) + \frac{1}{2s_k} ||x - x_k||$

$$\min_{x \in X} f(x)$$

•
$$x_{k+1} = \operatorname{argmin}_{x \in X} f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2s_k} ||x - x_k||^2$$

$$\min_{x \in X} f(x)$$

•
$$x_{k+1} = \operatorname{argmin}_{x \in X} f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2s_k} ||x - x_k||^2$$

= $\operatorname{argmin}_{x \in X} ||x - (x_k - s_k \nabla f(x_k))||^2$

$$\equiv \Pi_X(x_k - s_k \nabla f(x_k))$$

X is simple: oracle for projections

$$\min_{x \in X} f(x)$$

•
$$x_{k+1} = \operatorname{argmin}_{x \in X} f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2s_k} ||x - x_k||^2$$

$$= \operatorname{argmin}_{x \in X} \|x - (x_k - s_k \nabla f(x_k))\|^2$$

$$\equiv \Pi_X(x_k - s_k \nabla f(x_k))$$

Will it work?

•
$$||x_{k+1} - x^*||^2 = ||\Pi_X(x_k - s_k \nabla f(x_k)) - x^*||^2$$

 $\leq ||(x_k - s_k \nabla f(x_k)) - x^*||^2$ (Why?)

Remaining analysis exactly same (smooth/non-smooth)

- Analysis a bit more involved for projected accelerated gradient
 - Define gradient map: $h(x_k) \equiv \frac{x_k \Pi_X(x_k s_k V_f(x_k))}{1}$
 - Satisfies same fundamental properties as gradient!

Will it work?

•
$$||x_{k+1} - x^*||^2 = ||\Pi_X(x_k - s_k \nabla f(x_k)) - x^*||^2$$

 $\leq ||(x_k - s_k \nabla f(x_k)) - x^*||^2$ (Why?)

Remaining analysis exactly same (smooth/non-smooth)

- Analysis a bit more involved for projected accelerated gradient
 - Define gradient map: $h(x_k) \equiv \frac{x_k \Pi_X(x_k s_k \nabla f(x_k))}{s_k}$
 - Satisfies same fundamental properties as gradient!

Simple sets

- Non-negative orthant
- Ball, ellipse
- Box, simplex
- Cones
- PSD matrices
- Spectrahedron

Summary of Projection Based Methods

- Rates of convergence remain exactly same
- Projection oracle needed (simple sets)
 - Caution with non-analytic cases

Frank-Wolfe Methods

CONSTRAINED CONVEX PROGRAMS

Avoid Projections

•
$$y_{k+1} = \operatorname{argmin}_{x \in X} f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2s_k} ||x - x_k||^2$$

= $\operatorname{argmin}_{x \in X} \nabla f(x_k)^T x$ (Support Function)

- Restrict moving far aways
 - $X_{k+1} \equiv S_k Y_{k+1} + (1 S_k) X_k$

Avoid Projections [FW59]

•
$$y_{k+1} = \operatorname{argmin}_{x \in X} f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2s_k} ||x - x_k||^2$$

= $\operatorname{argmin}_{x \in X} \nabla f(x_k)^T x$ (Support Function)

Restrict moving far away:

•
$$x_{k+1} \equiv s_k y_{k+1} + (1 - s_k) x_k$$

Illustration

[Mart Jaggi, ICML 2014]

On Conjugates and Support Functions

On Conjugates and Support Functions

- Convex f is point-wise maximum of affine minorants
- Provides dual definition:
 - $f(x) = \max_{y \in Y} a_y^T x b_y$, equivalently:
 - $\exists f^* \ni f(x) = \max_{y \in dom \ f^*} y^T x f^*(y)$
 - f^* is called **conjugate** or Fenchel dual or Legendre transformation $(f^{**} = f)$.

On Conjugates and Support Functions

- Convex f is point-wise maximum of affine minorants
- Provides dual definition:
 - $f(x) = \max_{y \in Y} a_y^T x b_y$, equivalently:
 - $\exists f^* \ni f(x) = \max_{y \in dom \ f^*} y^T x f^*(y)$
 - f^* is called conjugate or Fenchel dual or Legendre transformation $(f^{**} = f)$.
- If $f^*(y)$ is indicator of set S we get conic f:
 - $f(x) = \max_{y \in S} y^T x$
- If S is a norm ball, we get dual norm

Connection with sub-gradient

Let,

- $y^* \in \underset{y \in dom \ f}{\operatorname{argmax}} y^T x f(y)$ i.e., $f^*(x) + f(y^*) = x^T y^*$
- Then y^* must be a sub-gradient of f^* at x
 - dual form exposes sub-gradients

Conjugates e.g.

f(x)	$f^*(x)$	Projection?
$\ x\ _p$	$\ x\ _{\underline{p}-1}$	No $(p \notin \{1,2,∞\})$
$\ \sigma(X)\ _p$	$\ \sigma(X)\ _{\frac{p}{p-1}}$	No $(p \notin \{1,2,∞\})$

- $||x||_1$ Projection, conjugate = $O(n \log n)$, O(n)
- $\|\sigma(X)\|_1$ Projection, conjugate = Full, First SVD

Rate of Convergence

Theorem[Ma11]: If X is compact convex set and f is smooth with const. L, and $s_k = \frac{2}{k+2}$, then the iterates generated by Frank-Wolfe satisfy:

$$f(x_k) - f(x^*) \le \frac{4L \ d(X)^2}{k+2}.$$
 Sub-optimal

Proof Sketch:

- $f(x_{k+1}) \le f(x_k) + s_k \nabla f(x_k)^T (y_{k+1} x_k) + \frac{s_k^2 L}{2} d(X)^2$
- $\Delta_{k+1} \le (1 s_k)\Delta_k + \frac{s_k L}{2} d(X)^2$ (Solve recursion)

Rate of Convergence

Theorem[Ma11]: If X is compact convex set and f is smooth with const. L, and $s_k = \frac{2}{k+2}$, then the iterates generated by Frank-Wolfe satisfy:

$$f(x_k) - f(x^*) \le \frac{4L d(X)^2}{k+2}.$$

Proof Sketch:

•
$$f(x_{k+1}) \le f(x_k) + s_k \nabla f(x_k)^T (y_{k+1} - x_k) + \frac{s_k^2 L}{2} d(X)^2$$

•
$$\Delta_{k+1} \le (1 - s_k)\Delta_k + \frac{s_k^2 L}{2}d(X)^2$$
 (Solve recursion)

Sparse Representation – Optimality

- If $x_0 = 0$ and domain is l_1 ball, $x_k \in \mathbb{R}^{k,n}$
 - We get exact sparsity! (unlike proj. grad.)
- Sparse representation by extreme points

- $e \approx O(1.00) / J_{\odot}$ need atleast k non-zeros [Ma11
- Optimal in terms of accuracy-sparsity trade-of
 - Not in terms of accuracy-iterations

Sparse Representation – Optimality

- If $x_0 = 0$ and domain is l_1 ball, $x_k \in \mathbb{R}^{k,n}$
 - We get exact sparsity! (unlike proj. grad.)
- Sparse representation by extreme points

- $\epsilon \approx O(\frac{L d(X)^2}{k})$ need at least k non-zeros [Ma11]
- Optimal in terms of accuracy-sparsity trade-off
 - Not in terms of accuracy-iterations

Summary comparison of always feasible methods

Property	Projected Gr.	Frank-Wolfe
Rate of convergence	+	_
Sparse Solutions	-	+
Iteration Complexity	_	+
Affine Invariance	-	+

Functional Constrained

BASED METHODS

Assumptions

$$\min_{x \in R^n} f_0(x)$$

$$s. t. f_i(x) \le 0 \ \forall i = 1, ..., n$$

- All f_0 , f_i are smooth
- L is max. const. among all

Algorithm

At iteration $1 \le k \le N$:

- Check if $f_i(x_k) \le \frac{R}{\sqrt{N}} \|\nabla f_i(x_k)\| \ \forall i$
 - If yes, then "productive" step: i(k) = 0
 - If no, then "non-productive" step: i(k) set to a violator

•
$$x_{k+1} = x_k - \frac{R}{\sqrt{N} \|\nabla f_{i(k)}(x_k)\|} \nabla f_{i(k)}(x_k)$$

• Output: \hat{x}_N , the best among the productive.

Does it converge?

Theorem[Ju12]: Let X be bounded and L be the smoothness const. (upper bound). Then,

•
$$f_0(\widehat{x}_N) - f_0(x^*) \le \frac{LR}{\sqrt{N}}$$

•
$$f_i(\hat{x}_N) \leq \frac{LR}{\sqrt{N}} \ \forall \ i$$

Proof Sketch: Let
$$f_0(\hat{x}_N) - f_0(x^*) > \frac{LR}{\sqrt{N}}$$

•
$$\sum_{k=1}^{N} (x_k - x^*)^T \nabla f_{i(k)}(x_k) / \|\nabla f_{i(k)}(x_k)\| \le RN$$

• Non-productive:
$$\frac{R}{\sqrt{N}}(x_k - x^*)^T \nabla f_{i(k)}(x_k) / \|\nabla f_{i(k)}(x_k)\| \ge \frac{R^2}{N}$$

• Productive:
$$\frac{R}{\sqrt{N}}(x_k - x^*)^T \nabla f_{i(k)}(x_k) / \|\nabla f_{i(k)}(x_k)\| > \frac{R^2}{N}$$

Composite Objective

PROX BASED METHODS

Composite Objectives

Non-Smooth g(w)
$$\min_{w \in R^n} \Omega(w) + \sum_{i=1}^m l(w'\phi(x_i), y_i)$$

Key Idea: Do not approximate non-smooth part

Proximal Gradient Method

•
$$x_{k+1} = \operatorname{argmin}_{x} f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2s_k} ||x - x_k||^2 + g(x)$$

- If g is indicator, then same as projected gr.
- If g is support function: $g(x) = \max_{y \in S} x^{t} y$
 - Assume min-max interchange

$$x_{k+1} = x_k - s_k \nabla f(x_k) - s_k \Pi_S \left(\frac{1}{s_k} \left(x_k - s_k \nabla f(x_k) \right) \right)$$

Proximal Gradient Method

•
$$x_{k+1} = \operatorname{argmin}_{x} f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2s_k} ||x - x_k||^2 + g(x)$$

- If g is indicator, then same as projected gr.
- If g is support function: $g(x) = \max_{y \in S} x^T y$
 - Assume min-max interchange

Again, projection

$$x_{k+1} = x_k - s_k \nabla f(x_k) - s_k \Pi_S \left(\frac{1}{s_k} (x_k - s_k \nabla f(x_k)) \right)$$

Rate of Convergence

Theorem[Ne04]: If f is smooth with const. L, and $s_k = \frac{1}{L}$, then proximal gradient method generates x_k such that:

$$f(x_k) - f(x^*) \le \frac{L||x_0 - x^*||^2}{2k}.$$

- Can be accelerated to $O(1/k^2)$
- Composite same rate as smooth provided proximal oracle exists!

Bibliography

- **[NeO4]** Nesterov, Yurii. *Introductory lectures on convex optimization : a basic course*. Kluwer Academic Publ., 2004. http://hdl.handle.net/2078.1/116858.
- [Ne83] Nesterov, Yurii. A method of solving a convex programming problem with convergence rate O (1/k2). Soviet Mathematics Doklady, Vol. 27(2), 372-376 pages.
- [Mo12] Moritz Hardt, Guy N. Rothblum and Rocco A. Servedio. Private data release via learning thresholds. SODA 2012, 168-187 pages.
- [Be09] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal of Imaging Sciences, Vol. 2(1), 2009. 183-202 pages.
- [De13] Olivier Devolder, François Glineur and Yurii Nesterov. First-order methods of smooth convex optimization with inexact oracle. Mathematical Programming 2013.
- [FW59] Marguerite Frank and Philip Wolfe. An Algorithm for Quadratic Programming. Naval Research Logistics Quarterly, 1959, Vol 3, 95-110 pages.

Bibliography

- [Ma11] Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD Thesis,
 2011.
- [Ju12] A Juditsky and A Nemirovski. First Order Methods for Non-smooth Convex Large-Scale Optimization, I: General Purpose Methods. Optimization methods for machine learning. The MIT Press, 2012. 121-184 pages.

Thanks for listening