
Assignments for TIML-10 (CS-689)

Note: The marks, deadline and di�culty for each of the problems are
marked. A problem with a `�' may require use of results obtained by others
which can be got through internet/library etc. These problems are not
expected to be solved by the students without such aids. Problems marked
`��' may require numerical computation/plotting. In general, problems not
marked with stars MUST be solved by the student by himself.

1 Statistical Learning Theory

1. Suppose the optimal (linear) classi�er for some 2-D data is sign(w>x�
b = 0) where w = [0:6667; �1]>; b = 0. Suppose a test data point
X = [X1; X2]

> is given; however X is not known exactly (it is un-
certain, say modeled by a random variable). What is known about
X is that it has mean [2; 0:75]>, 0:5 � X1 � 2:5, 0:5 � X2 � 1:5
and it can be assumed that X1 is independent of X2. Can you now
lower-bound the probability that the given test data point lies on the
positive side of the line w>x� b = 0 ? (Hint: Use the Hoe�ding and
Cherno� bounds introduced in lecture-1).

[1 Mark, 26-Jan-09]

2. Derive some kind of uniform convergence based su�cient conditions
for consistency of Empirical Risk Maximization. Your proofs must
not use the results for the case of ERM (minimization).

[1 Mark, 26-Jan-09]

3. Prove that the VC dimension of hyperplane classi�ers (linear discrim-
inators) in Rd is d+ 1.
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[1 Mark, 26-Jan-09, �]

4. Suppose F is the set of all functions f which are \elliptical dis-
criminants" in R2 and are parallel to the x and y axes i.e., f(x) =

sign
�
(x� c)>S(x� c)� 1

�
where c 2 R2 and S is a 2 � 2 diagonal

matrix with non-negative entries. What is the VC dimension of F
? Now, suppose F additionally also includes elliptical discriminants
whose principal axes are at 45 degrees to the x and y axes. What is
the VC dimension of this modi�ed F ? Give (intuitive) justi�cations
for your answers.

[1 Mark, 26-Jan-09]

5. Based on above problem you can now imagine what would be the
de�nition of polynomial discriminators (else google!). What is the
VC dimension of such an m degree polynomial discriminator in n

dimensional space ?

[1 Mark, 26-Jan-09, �]

6. In class we derived an upper bound on the probability that the worst-
case di�erence between true and empirical risks is greater than a tol-
erance � involving VC dim. Now, plot (either print or hand-drawing)
how this bound varies with � and m (the no. examples) for a hy-
perplane classi�er in 2-d. For what m and/or � is this bound useless
?

[1 Mark, 26-Jan-09, ��]

2 Support Vector Machines

1. Consider two variants of the soft-margin SVM formulation in the
input-space (linear kernel), where the squared Euclidean-norm (l2-
norm) regularizer is replaced with l1-norm (i.e., sum of absolute val-
ues) and l1-norm (i.e., maximum of absolute values). You may want

2



to pose these new variants as Linear Programs (LPs) or even oth-
erwise using MATLAB (optimization toolbox) or SeDuMi1 or Mosek2 or
cvx3 or any other opt. toolbox4 you are familiar with, solve these
three formulations. You might also want to use your favorite SVM
solver5 for tackling the usual l2-norm formulation. Generate synthetic
data, in say 10-d (consider linearly separable data as well as almost
linearly separable data), and compare the optimal w obtained with
the three formulations as a function of the regularization parameter
C (consider C = 0; 1�3; 1�2; : : : ; 102; 103;1) on the synthetic data.
Summarize your �ndings. Students might be asked for individual
demos6.

[5 Marks, 22-Feb-10, ��]

2. In the lecture, we came up with some threshold values ofW (the upper
bound on kwk) for which the VC-dimension of canonical hyperplane
classi�ers in R2 changes. Repeat the same in R3.

[1 Mark, 06-Mar-10]

3. Derive the dual of the (linear) SVM formulation using the square-
hinge-loss rather than the hinge-loss. The dual resembles some for-
mulation which we discussed in class; can you recognize it. Comment
on the uniqueness of the dual solution. How do you recover w; b from
the dual solution ?

[1 Mark, 06-Mar-10]

4. Consider the following kernel de�ned on Euclidean space:

k(x; y) =

(
0 if x = y;

x>y if x 6= y

1http://sedumi.ie.lehigh.edu/
2Student's free trial at http://www.mosek.com/index.php?id=7
3http://www.stanford.edu/~boyd/cvx/
4Look at http://en.wikipedia.org/wiki/Linear_programming#Solvers_and_

scripting_.28programming.29_languages
5http://www.support-vector-machines.org/SVM_soft.html
6With such a wide choice of re-formulations, solvers, data generation there is very less

probability that two students give \same" answers :)
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Is this a positive/negative/inde�nite7 kernel ? Justify your answer.

[1 Mark, 06-Mar-10]

5. Let 
 be a non-empty set of �nite cardinality. Consider a kernel
de�ned on the subsets of 
 i.e., k : 2
�2
 7! R given by8: k(A1; A2) =
expf3jA1 \ A2j

2g. Show that k is a positive kernel. You MUST give
two \di�erent" arguments/proofs for showing positiveness (may be
come up with two \di�erent" inner-product spaces where the given
kernel or a related kernel is an inner-product).

[1.5 Marks, 06-Mar-10]

6. Describe the �-SVM formulation highlighting its merits over usual
SVM formulation.

[1 Mark, 06-Mar-10, *]

7. Consider the regression problem of predicting a real-world variable
such as rainfall in a particular week. Assume that the training data-
points lie in a sphere of radius R in a Euclidean space Rd and F is set
of all linear regressors in that space through origin with kwk � W .
Assume loss function is l(f(x); y) = (y � f(x))2. Now justify the
Ridge-regression formulation using SLT.

[1 Mark, 06-Mar-10]

8. Write a brief note on Martingale di�erence sequences and applica-
tions.

[1 Mark, 06-Mar-10, *]

9. Suppose the optimal discriminant function employed for a binary clas-
si�cation application with 2-d data is f(X1; X2) = signf1:5(X1�1)2+
1:5(X2 � 1)2 + (X1 � 1)(X2 � 1) � 1g, where X1; X2 are the two fea-
ture values of a datapoint X. You are now required to lower bound

7
k is negative if �k is positive. k is inde�nite if it is neither positive nor negative

8Here, jAj denotes cardinality of A.
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probability that an uncertain (noisy) test datapoint X is labeled pos-
itive by this f . Only partial information regarding X is known:
�2 � X1 � 2;�1 � X2 � 1;E[X1] = 0:5;E[X2] = �0:5; var(X1) =
0:75; var(X2) = 0:25 and X1; X2 are independent. Compute this up-
per bound using two di�erent conc. ineq. discussed in class.

[1.5 Marks, 06-Mar-10]

3 Kernel Learning

1. Solve the MKL formulation by posing it as a QCLP (Quadratically
Constrained Linear Program). Again, you are free to use your favourite
solver. Run your solver on random 50 datapoints sampled9 from the
Sonar dataset10 taking �ve base kernels which are all Gaussian kernels
but with di�erent parameters: 10�2; 10�1 : : : ; 102 and C = 100; B = 1.
How do you obtain optimal kernel weights from the solution ? Are
the kernel weights always uniquely determined? Are they uniquely
determined in this case ? If yes, can you play around with the choice
of your kernels so that the soln. is not unique ? If no, does the choice
lead to di�erences in terms of test accuracy ? Verify that your code is
correct by comparing it with reduced-gradient based solver11. Is the
problem equivalent to solving a single SVM with the \optimal" kernel
(\optimal" kernel is any base kernel that has non-zero kernel-weight
at optimality) ? If so, can you solve the MKL problem by simply
running SVM code n (number of base kernels) times ? How ? How is
MKL di�erent than tuning kernel parameters using cross-validation
? How does MKL compare to an \SVM that uses kernel which is a
simple sum of all the base kernels" in terms of accuracy (u may want
to tune C parameter for MKL and SVM for doing this comparison)?
Can u come-up with situations where MKL will beat SVM convinc-
ingly and vice-versa? As far as possible justify your answers through
the simulation results.

9the remaining can be used as validation/test sets
10http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,

+Mines+vs.+Rocks)
11Available at http://asi.insa-rouen.fr/enseignants/~arakotom/code/

mklindex.html
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[10 Marks, 19-Mar-10, ��]

6


	Statistical Learning Theory
	Support Vector Machines
	Kernel Learning

