Assignments for TIML-10 (CS-689)

Note: The marks, deadline and difficulty for each of the problems are

marked. A problem with a ‘*’ may require use of results obtained by others
which can be got through internet/library etc. These problems are not
expected to be solved by the students without such aids. Problems marked
‘“*%’ may require numerical computation/plotting. In general, problems not
marked with stars MUST be solved by the student by himself.

1

Statistical Learning Theory

. Suppose the optimal (linear) classifier for some 2-D data is sign(w 'x—

b = 0) where w = [0.6667, —1]",b = 0. Suppose a test data point
X = [X;, X" is given; however X is not known exactly (it is un-
certain, say modeled by a random variable). What is known about
X is that it has mean [2, 0.75]", 0.5 < X; < 25,05 < X, < 1.5
and it can be assumed that X; is independent of X,. Can you now
lower-bound the probability that the given test data point lies on the
positive side of the line w'z —b=0 ? (Hint: Use the Hoeffding and
Chernoff bounds introduced in lecture-1).

[1 Mark, 26-Jan-09]

. Derive some kind of uniform convergence based sufficient conditions

for consistency of Empirical Risk Mazimization. Your proofs must
not use the results for the case of ERM (minimization).

[1 Mark, 26-Jan-09]

. Prove that the VC dimension of hyperplane classifiers (linear discrim-

inators) in R% is d + 1.



[1 Mark, 26-Jan-09, %]

. Suppose F is the set of all functions f which are “elliptical dis-
criminants” in R? and are parallel to the x and y axes ie., f(z) =
sign ((a: —¢)'S(z—¢)— 1) where ¢ € R? and S is a 2 x 2 diagonal
matrix with non-negative entries. What is the VC dimension of F
? Now, suppose F additionally also includes elliptical discriminants
whose principal axes are at 45 degrees to the x and y axes. What is
the VC dimension of this modified F ? Give (intuitive) justifications
for your answers.

[1 Mark, 26-Jan-09]

. Based on above problem you can now imagine what would be the
definition of polynomial discriminators (else google!). What is the
VC dimension of such an m degree polynomial discriminator in n
dimensional space ?

[1 Mark, 26-Jan-09, %]

. In class we derived an upper bound on the probability that the worst-
case difference between true and empirical risks is greater than a tol-
erance ¢ involving VC dim. Now, plot (either print or hand-drawing)
how this bound varies with ¢ and m (the no. examples) for a hy-

perplane classifier in 2-d. For what m and/or € is this bound useless
?

[1 Mark, 26-Jan-09, *x]

Support Vector Machines

. Consider two variants of the soft-margin SVM formulation in the
input-space (linear kernel), where the squared Euclidean-norm (I-
norm) regularizer is replaced with /;-norm (i.e., sum of absolute val-
ues) and [,-norm (i.e., maximum of absolute values). You may want



to pose these new variants as Linear Programs (LPs) or even oth-
erwise using MATLAB (optimization toolbox) or SeDuMill] or MoseX?| or
cvx| or any other opt. toolbox’ you are familiar with, solve these
three formulations. You might also want to use your favorite SVM
solverP|for tackling the usual /;-norm formulation. Generate synthetic
data, in say 10-d (consider linearly separable data as well as almost
linearly separable data), and compare the optimal w obtained with
the three formulations as a function of the regularization parameter
C (consider C = 0,173,172)...,10%,10%,00) on the synthetic data.
Summarize your findings. Students might be asked for individual
demosd®]

[6 Marks, 22-Feb-10, *x]

2. Inthe lecture, we came up with some threshold values of W (the upper
bound on ||w]|) for which the VC-dimension of canonical hyperplane
classifiers in R? changes. Repeat the same in R®.

[1 Mark, 06-Mar-10]

3. Derive the dual of the (linear) SVM formulation using the square-
hinge-loss rather than the hinge-loss. The dual resembles some for-
mulation which we discussed in class; can you recognize it. Comment
on the uniqueness of the dual solution. How do you recover w, b from
the dual solution ?

[1 Mark, 06-Mar-10]

4. Consider the following kernel defined on Euclidean space:

_ 0 ifz=y,
k(:ﬂ,y)—{ fBTy 1f:r7éy

"http://sedumi.ie.lehigh.edu/

2Student’s free trial at http://www.mosek.com/index.php?id=7

Shttp://www.stanford.edu/~boyd/cvx/

‘Look at http://en.wikipedia.org/wiki/Linear_programming#Solvers_and_
scripting_.28programming.29_languages

°http://www.support-vector-machines.org/SVM_soft.html

6With such a wide choice of re-formulations, solvers, data generation there is very less
probability that two students give “same” answers :)
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Is this a positive/negative/indeﬁniteﬂ kernel 7 Justify your answer.
[1 Mark, 06-Mar-10]

5. Let Q be a non-empty set of finite cardinality. Consider a kernel
defined on the subsets of Q i.e., k : 22x2% — R given byf} k(A1 4;) =
exp{3|A4; N A|?}. Show that k is a positive kernel. You MUST give
two “different” arguments/proofs for showing positiveness (may be
come up with two “different” inner-product spaces where the given
kernel or a related kernel is an inner-product).

[1.5 Marks, 06-Mar-10]

6. Describe the v-SVM formulation highlighting its merits over usual
SVM formulation.

[1 Mark, 06-Mar-10, *

7. Consider the regression problem of predicting a real-world variable
such as rainfall in a particular week. Assume that the training data-
points lie in a sphere of radius R in a Euclidean space R? and F is set
of all linear regressors in that space through origin with ||w| < W.
Assume loss function is I(f(z),y) = (v — f(z))?>. Now justify the
Ridge-regression formulation using SLT.

[1 Mark, 06-Mar-10]

8. Write a brief note on Martingale difference sequences and applica-
tions.

[1 Mark, 06-Mar-10, *]

9. Suppose the optimal discriminant function employed for a binary clas-
sification application with 2-d data is f(X1, X2) = sign{1.5(X; —1)>+
1.5(X5 — 1)+ (X; — 1)(Xy — 1) — 1}, where X, X, are the two fea-
ture values of a datapoint X. You are now required to lower bound

"k is negative if —k is positive. k is indefinite if it is neither positive nor negative
8Here, | A| denotes cardinality of A.



probability that an uncertain (noisy) test datapoint X is labeled pos-
itive by this f. Only partial information regarding X is known:
-2 < X; <2,-1 < X, <1,E[X;] =05,E[X,] = —0.5,var(X;) =
0.75,var(X,) = 0.25 and X;, X, are independent. Compute this up-
per bound using two different conc. ineq. discussed in class.

[1.5 Marks, 06-Mar-10]

3 Kernel Learning

1. Solve the MKL formulation by posing it as a QCLP (Quadratically
Constrained Linear Program). Again, you are free to use your favourite
solver. Run your solver on random 50 datapoints sampledﬂ from the
Sonar dataset]¥| taking five base kernels which are all Gaussian kernels
but with different parameters: 102,10 *...,102 and C = 100, B = 1.
How do you obtain optimal kernel weights from the solution ? Are
the kernel weights always uniquely determined? Are they uniquely
determined in this case 7 If yes, can you play around with the choice
of your kernels so that the soln. is not unique ? If no, does the choice
lead to differences in terms of test accuracy 7 Verify that your code is
correct by comparing it with reduced-gradient based solver'!] Is the
problem equivalent to solving a single SVM with the “optimal” kernel
(“optimal” kernel is any base kernel that has non-zero kernel-weight
at optimality) ? If so, can you solve the MKL problem by simply
running SVM code n (number of base kernels) times ? How ? How is
MKL different than tuning kernel parameters using cross-validation
? How does MKL compare to an “SVM that uses kernel which is a
simple sum of all the base kernels” in terms of accuracy (u may want
to tune C' parameter for MKL and SVM for doing this comparison)?
Can u come-up with situations where MKL will beat SVM convinc-
ingly and vice-versa? As far as possible justify your answers through
the simulation results.

9the remaining can be used as validation/test sets

Ohttp://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,
+Mines+vs.+Rocks)

1 Available at http://asi.insa-rouen.fr/enseignants/~arakotom/code/
mklindex.html
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[10 Marks, 19-Mar-10, *x|
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