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Lecture 1

1.1 Summary

This lecture is an introduction to the Statistical Learning Theory (STL). Using
the knowledge of probability theory we pose the problem of picking a \good"
learning function as that of minimizing the Risk functional. The Risk functional
is impossible to evaluate whereas an estimate of Risk can be easily obtained using
the training data. Hence we suggest \minimizing the Empirical Risk functional"
instead (for some loss functions this minimization itself may be NP-hard). Using
notions of convergence of empirical processes, we try to arrive at conditions where
\Empirical Risk Minimization (ERM)" is \good"; in sense that it is \as good as"
minimizing the true Risk functional. We concluded the lecture by mentioning
the key theorem in STL by Vapnik and Chervonenkis [1991]. Discussion of this
theorem will start the next lecture.

1.2 Further Reading

Here are some pointers to further readings:

Math Basic math used in this lecture requires knowledge in these topics: a)
notions of expectation and convergence of random variables b) law of large
numbers c) Concentration Inequalities. Good reference for topics a) and b)
is Saketh [2009] (lectures 8, 9,22, 23, 24) and for c) is Boucheron et al. [2004].

ML We covered pages 125{134 in Sch�olkopf and Smola [2002].
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Lecture 2

2.1 Summary

After revising the concepts explained in the previous class, we attempted to
formalize the notion of consistency of the principle of ERM. Basically we saw
that in cases where there exists a global minimizer for the loss function, i.e.
9f� 2 F 3 l(f�(X); Y ) � l(f(X); Y ) 8 f 2 F , consistency of ERM is trivially
achieved. Though we did not go into further details, we noted that there are no-
tions of \non-trivial" consistency, the necessary and su�cient conditions of which
are sought for.

For the purposes of this course we say ERM is consistent i� in probability

inf
f2F

Rm
emp[f ]! inf

f2F
R[f ]

Subsequently, we proved that one-sided uniform convergence:

P [sup
f2F

R[f ]�Rm
emp[f ] > �]! 0; 8 � > 0

as m ! 1 is a su�cient condition for consistency (refer supplementary for the
proof) and noted that for \non-trivial" consistency these are infact necessary. This
completed the discussion of the key theorem in learning theory due to Vapnik and
Chervonenkis [1991] mentioned in last class.

Once this is done, we saw that in cases where F has �nite number of
functions, the ERM is consistent. This involved simple application of union
and cherno� bounds. However this wont work if number of functions is in�-
nite. The following is a key observation which gives us a way to handle generic
cases: however large F is, on a �nite set of examples (say training examples),
many of the functions look the same. Infact, for the case of binary classi�cation,
on m points there cannot be more than 2m di�erent functions. Thus though
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the functions are di�erent, on a �nite sample they essentially look the same!
The idea is to exploit this observation and the only term hindering the devel-
opment is the true risk term in the uniform convergence criterion. This term
is eliminated using the trick of symmetrization or ghost sampling which gives:
P [supf2F R[f ] � Rm

emp[f ] > �] � 2P [supf2F R̂
m
emp[f ] � Rm

emp[f ] > �=2]. Now since
the RHS involves only empirical terms i.e. deals with 2m (�nite) examples, the
class F would essentially look �nite | the number of functions is given by notions
of shattering coe�cient etc. de�ned in the lecture. Using shattering coe�cient,
union and (modi�ed) Cherno� bound, one can arrive at the conclusion that as
long as the shattering coe�cient does not exponentially grow with m, consistency
of ERM is guaranteed. The lecture ended with a hint that hyperplane classi�ers
do satisfy this in some sense. More discussions on this would constitute the next
lecture.

2.2 Further Reading

� Read Sch�olkopf and Smola [2002] pages 131{136.

� For de�nition of non-trivial consistency (also empirical processes) refer Vap-
nik [1998] pages79-86.

� Simple proof for symmetrization and �nal bound using union and (modi�ed)
cherno� tricks is in Bousquet et al. [2004], section 4.4.

� Shattering coe�cient etc. is explained well in Burges [1998].
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Lecture 3

3.1 Summary

In detail, with examples, we studied notions of shattering coe�cient N (F ;m), the
variant of N which depends on the training sample N (F ; Zm), growth function
G(F ;m). Using the notion of shattering coe�cient, it was then easy to generalize
the bound obtained in case of �nite F to the case of F having in�nite functions.
This analysis gave the su�cient conditions for consistency of ERM (in the case
of indicator loss functions) to be: limm!1 G(F ;m)=m = 0. Infact, we noted that
this condition is necessary and su�cient for exponentially fast rate of convergence
in context of ERM (ofcourse in the case of indicator loss functions) irrespective
of what the underlying probability distribution is! Encouraged by this, we went
ahead and looked at a related concept of VC dimension which would neatly sum-
marize the concept of \capacity" of a set of functions. We saw an important
relation between growth function and VC dimension [Vapnik and Chervonenkis,
1971] which helps us make the following strong statement: \For the special case
of binary classi�cation problems with 0-1 loss functions, VC dim. being �nite
implies exponentially fast convergence in context of ERM and VC dim. being
in�nite implies no exponentially fast convergence".

Subsequently we re-wrote the bounds obtained as what are known as VC-type
inequalities: \with probability 1� �, we have R[f ] � Remp[f ] +�(m;h; �)" (the �
term is called the con�dence term). A closer look at VC-inequalities motivated the
Structural Risk Minimization (SRM) principle; where instead of minimization
empirical risk alone, one minimizes the sum of the empirical risk and con�dence
terms. After outlining SRM, we took the speci�c case of canonical hyperplane
classi�ers and saw how implementing the SRM leads to the famous maximum-
margin principle of Support Vector Machines (SVMs).

The bounds derived previously work with any underlying distribution, which
is both the greatest advantage and disadvantage of them. Data-dependent bounds,
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which work only with the speci�c underlying (unknown) distribution, may be are
more tighter. Employing the quantity N (F ; Zm) inplace of shattering coe�cient
is obvious for this purpose; however the di�culty is that N (F ; Zm) is a random
quantity in itself. This problem was eleviated by using the notion of conditional
expectation and introducing Rademacher variables as dummy variables to con-
dition on. The bounds thus derived lead to the de�nition of annealed entropy
NAnn(F ;m). The necessary and su�cient conditions for exponentially fast con-
vergence with the speci�c underlying probability distribution turns out to be
limm!1NAnn(F ;m)=m = 0. Since annealed entropy is di�cult to compute (as
underlying distribution is unknown), the idea of Rademacher averages is intro-
duced. The lecture ended with a very very brief introduction to Rademacher
averages for function classes.

3.2 Further Reading

� Pages 137-142 in Sch�olkopf and Smola [2002]

� In Bousquet et al. [2004], read section 3 for topics covered in this lecture.
Interested students can read sections 5.2, 6.4 in the same.

� For derivation of important relation between growth function and VC dim,
look into section 4.10 in Vapnik [1998]. Another version of this proof is
in Ben-David [2003]. An easy proof is here Smolensky [1997].

� Some further reading on VC dimension: Burges [1998], Sontag [1998] and
works on VC dim. stu� by Peter Bartlett1.

� Conditional expectation is explained in Lectures 18,19 [Saketh, 2009].

1At http://www.stat.berkeley.edu/~bartlett/publications/pubs-93.html
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Lecture 4

4.1 Summary

One of the main take-home from previous lecture was the fact that, in case of
binary classi�cation problems (with 0-1 loss functions), ERM is consistent with
exp. fast convergence if and only if VC dimension is �nite. Moreover, according
to SRM, it is desirable to have low VC dimension while doing well on the training
dataset. Given this and the fact that hyperplane classi�er's VC dim. grows linearly
with the dimensionality of the data, it may not recommendable to employ even
\simple" classi�ers like the hyperplane classi�ers for data in very high dimensions.
With this observation, we seek a modi�ed class of hyperplane classi�ers whose VC
dimension (ideally) does not grow with the dimensionality of the problem.

We study the class of canonical hyperplane classi�ers whose VC dimension
can be shown to be independent of the dimensionality! These classi�ers enforce a
separation of positive and negative data points with some non-zero margin. We
proved an important theorem [Bartlett and Shawe-Taylor, 1999] which showed that
the VC dim. of canonical hyperplane classi�ers is /W 2R2 (and hence independent
of the dimensionality). Using this result and the principle of SRM, we noted the
famous (hard-margin) Support Vector Machine (SVM) formulation, which is
an instance of a (regular) convex Quadratic Program (QP) and hence e�ciently
solvable. We ended the lecture with some discussion of convex functions and
convex optimization problems.

4.2 Further Reading

� Pages 142-146 in Sch�olkopf and Smola [2002]

� More on the theorem: Shawe-Taylor et al. [1998]
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� Jensen's inequality: Lecture 9 [Saketh, 2009]

� On SOCPs: Lobo et al.
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Lecture 5

5.1 Summary

The lecture started with a brief review of the theorem on VC dim. of canonical
hyperplane classi�ers and its use in motivating the SVM formulation through the
application of SRM. After a little thought it was clear that we (purposefully)
overlooked a technicality and the theorem cannot be directly applied under the
framework of SRM. This is because, the VC dim. as we derived in last lecture
is dependent on the training set of examples given! We noted that in case of
all the CV-type inequalities derived till now, the con�dence term is either data-
independent or data-dependent; in the sense that they are either valid for all prob.
distributions or the particular (unknown) prob. distribution under consideration.
However in this case since VC dim. is dependent also on the particular sample
(training set) from the prob. distribution and hence the bounds do not apply
directly. This is what motivates the principle of data-dependent SRM [Shawe-
Taylor et al., 1998, Shawe-Taylor and Cristianini, 1998] where the structure of
the learning functions (i.e. arrangement of the learning functions in F in non-
decreasing order of complexity) itself could be dependent on the training set1.

Subsequently we looked at a result by Bartlett and Shawe-Taylor [1999] which
provides a VC-type inequality suitable for data-dependent SRM. Using this result
we derived both the hard-margin and soft-margin versions of the SVM formula-
tions. In the course of the derivation we also discussed notions of Ivanov [Ivanov,
1976], Tikhonov [Tikhonov and Arsenin, 1977] and Morozov [Morozov, 1984] reg-
ularizations and the concept of hinge-loss function.

We concluded the lecture with a brief introduction to Lagrange multiplier
and duality theory.

1Note the two di�erent senses in which data-dependent term is used: once for saying speci�c

to underlying prob. distribution and once for being speci�c to the training sample
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5.2 Further Reading

� Pages 189{195 in Sch�olkopf and Smola [2002] and other references cited in
the summary

� Duality theory: Section 6.3 in Sch�olkopf and Smola [2002], sections 5.1{5.5
in Boyd and Vandenberghe [2004]

� Soft-margin SVMs were proposed in Cortes and Vapnik [1995]. This is ac-
tually the second paper in SVMs.
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Lecture 6

6.1 Summary

We brie
y revised the duality theory and (Karush-Kuhn-Tucker) KKT conditions
for optimality. Subsequently we derived the dual of the hard-margin SVM formu-
lation and wrote down the KKT conditions (which are in this case necessary and
su�cient). This analysis gave some key insights: i) at optimality, w is a linear
combination of the training points ii) moreover, the linear combination is sparse
in sense that only few of the training points are involved iii) geometrical interpre-
tation of dual is that of minimizing distance between convex hulls of positive and
negative datapoints (Derivation for soft-margin SVM case is here Bennett and Bre-
densteiner [2000]) iv) both while training the SVM and while making predictions
knowledge of dot-products involving the datapoints are enough; the actual feature
representation of them is not needed. Interestingly, these insights were exploited
in order to arrive at e�cient solvers (which are faster than generic interior point
methods) for the SVM problem: a) SMO algorithm [Platt, 1999, Keerthi et al.,
2001] which exploits the fact that the solution for dual is sparse b) Nearest point
alg. for min. distance between convex hulls [Keerthi et al., 2000].

Till now we learned that SVMs are supported by rigorous statistical theory
as well as enjoy computationally e�cient solving techniques. However, the gen-
eralization ability would still be restricted because after all the set of classi�ers
realizable are linear discriminators. Through assignment problems we note that
polynomial discriminators are \richer" class of functions than linear discrimi-
nators and one can give numerous examples of data where linear discriminators
are inherently very restrictive. With this observation, we set out with a dream of
coming up with a framework where we can bene�t from advantages of canonical
hyperplane classi�ers (i.e. VC dim. being dimension independent) while employ-
ing polynomial or in general, non-linear discriminators.

As a �rst step, we saw that d degree polynomial discriminators are essentially
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linear discriminators in a higher dimensional space expanded using all possible
monomials constructed with input features of degree d. Further, we saw that
the dot-products in the exanpded feature space can be computed using usual
dot-product in input space. Hence computationally this trick of dealing with
polynomial discriminators as linear ones is feasible as SVMS require knowledge of
dot-products alone! Encouraged by this, we seek to extend these ideas for dealing
with generic input spaces (which need not be vector-spaces) and generic non-linear
discriminators using the notion of kernels.

6.2 Further Reading

� Derivation of dual and geometrical interpretation: section 2 in Keerthi et al.
[2000]

� Pages 25{30 in Sch�olkopf and Smola [2002] and other references cited in the
summary

� Chp. 2 in Shawe-Taylor and Cristianini [2004]
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Lecture 7

7.1 Summary

We reviewed the de�nition of positive kernel and some of the implications of it.
We then noted that if input-space is Euclidean, then the dot-product is indeed
a kernel (we call this linear kernel). Then we went on to examples which made
it clear that as long as the given function is an inner-product in some Euclidean
space, then it is a kernel e.g. polynomial kernels. We then wrote down a rough
version of Mercer's theorem [Mercer, 1909] which basically assured that given an
inner-product it is a kernel and given a kernel there exists some (Hilbert) inner-
product space where kernel is an inner-product. We noted a rough constructive
proof of the latter part of the claim. The construction gave many insights: i) each
element of input-space is mapped to a function which measures similarity between
the element and all others using the kernel itself ii) This functional representation
provides a very rich description of elements of input-space iii) a (\smallest") inner-
product space containing the \feature representations" of these elements is then
constructed such that the inner product in that space is the given kernel.

Subsequently we noted the equation of a hyperplane in the feature space and
with examples of some kernels argued that a hyperplane discriminator in feature
space would essentially be a non-linear discriminator in the input space. The
concept of Gaussian kernel was introduced as a natural extension of polynomial
kernels. We also noted that normalization, sum, products of kernels is again a
kernel. A theorem by Micchelli [1986] helped us to argue that a Gaussian kernel
essentially maps data to an in�nite dimensional space and represents a non-linear
discriminator in the input space.
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7.2 Further Reading

� Pages 31-36 in Sch�olkopf and Smola [2002]

� Theorem on Gaussian kernels: thm.2.8 in Sch�olkopf and Smola [2002]

� First use of kernel trick: Aizerman et al. [1964] and second use (�rst paper
on SVMs): Boser et al. [1992]
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Lecture 8

8.1 Summary

Lecture started with a review of the key theorem discussed in previous lecture
regarding positive kernels. We then briefed the actual Mercer theorem [Mercer,
1909] and summarized the main take-home: a) Mercer's theorem presented another
inner-product space (actually an RKHS) where the given kernel is an inner-product
b) There is no unique RKHS for a given kernel (though uniqueness for converse
statement can be proved) c) This representation had obvious links like Euclidean
spaces (and hence notions of ortho-normal basis etc. are immediate); however the
mapping � itself is not intuitive. On the contrary, for the representation discussed
in the previous lecture, the mapping � was very intuitive; whereas notions of
ortho-normal basis etc. were not obvious (atleast for us). Subsequently we proved
that for any arbitrary inner-product space, the inner-product is a positive kernel.
To summarize, the key points to note are: i) given a positive kernel there exits
are RKHS in which the kernel is an inner-product (and hence measures similarity)
and vice-versa ii) the representation of input-space objects in this RKHS is very
rich!

Later on, we completed our discussion on operations preserving positivity
of kernels: in particular, we showed that sum, scaling, product, polynomials,
exponential of positive kernels is again a positive kernel. We gave examples of
kernels not de�ned on Euclidean spaces esp. dealing with probability spaces: i)
kernel on event space of a random expt. with � as mapping �(A) = 1A�P (A) and
the inner-product space as the usual vec. spa. of mean zero rvs., endowed with
E[XY ] as the inner-product. ii) probability product kernels [Jebara et al., 2004].
We saw that when all the training points are assumed to be noisy with spherical
covariance and Normally distributed then the prob.prod. kernel is nothing but
the Gaussian kernel. This throws more light on the usefulness/appropriateness of
Gaussian kernel in Kernel methods.
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Subsequently we derived the dual of the SVM formulation built in an RKHS
corresponding to a given kernel. This was done using what is known as the Rep-
resenter theorem [Sch�olkopf et al., 2001] (we will state the general version in next
lecture). We noted that by virtue of theorem discussed in last class, the gram ma-
trix of training examples can never be rank-de�cient (i.e., gram-matrix is always
positive de�nite) when the Gaussian kernel is employed (assuming there are no
duplicates in the training examples) and hence the solution of soft-margin SVM
is unique in this case. We also noted that the primal of hard-margin SVM always
has a unique solution.

8.2 Further Reading

� Pages 36{39 in for Mercer kernels and 89{91 for representer theorem in Sch�olkopf
and Smola [2002] and citations in above summary

� Supplementary for derivation of dual

� For uniqueness arguments for SVM refer Burges and Crisp [2000]

� For various other eg. of kernels NOT de�ned on Euclidean spaces see chp.
9-12 (part-3) of Shawe-Taylor and Cristianini [2004]

18



Lecture 9

9.1 Summary

The issue of recovering the hyperplane parameters (w; b), and in particular, de-
termining f(x) = sign(w>x � b) for a test datapoint x from the solution of the
dual of SVM (i.e, from optimal Lagrange multipliers) was discussed. Notions of
bounded and non-bound support vectors etc. were clari�ed. It was noted that
in case the gram-matrix of training datapoints was non-singular, the term w>x is
determined uniquely and b can be computed using the margin of support vectors
(refer supplementary). In the case where the gram-matrix is singular, the recovery
is not unique and can be chosen such that computation of f(x) involves as few
support vectors as possible. Lesser no. support vectors is desirable as it implies
better e�ciency at prediction stage.

The SLT results for linear discriminators (with non-zero margin) can be
extended to many loss functions (other than the 0-1 loss function we always con-
sidered). We donot venture into the details, but nevertheless it is easy to imagine
this will again lead to solving optimization problems which will minimize the em-
pirical loss and the complexity term kwk. We noted that the representer theorem
can easily be extended to handle these cases. Hence all of these methods can be

kernelized: e.g., ridge-regression [Hoerl, 1962] (loss function is
�
y � (w>x� b)

�2
),

SVM-regression [Drucker et al., 1996, Smola and Sch�olkopf, 2004] (loss function is
�-insensitive loss: max(0; jy � (w>x � b)j � �) or Huber loss) etc. (see also table
3.1 in Sch�olkopf and Smola [2002]). Further, some loss functions like the hinge
loss, �-insensitive loss etc., promote sparse solutions, i.e., the prediction f(x) can
be computed using relatively small number of training datapoints usually called
as Support Vectors | and hence are known as \Support Vector Methods".

Also, motivated by the equivalence of norms in Euclidean spaces, once can try
replacing the usual kwk2 (regularization/complexity term) by other norm-based
regularizers like kwk1; kwk1 etc. It was noted that in general such formulations
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cannot be kernelized however may be employed in practice owing to the merits of
these regularizers: for example, kwk1 promotes sparsity in optimal w and hence is
suitable for feature selection tasks, similarly kwk1 promotes equal values for com-
ponents of w at optimality and hence is suitable for situations where all features
are known to be more-or-less equally important.

The lecture concluded with a brief discussion of choosing model parameters
like C (regularization parameter) and other kernel parameters. Methods based on
validation sets, minimizing upper bounds on risk were briefed.

9.2 Further Reading

� E.g. of works which try to minimize/control the number of support vectors
(with intention of reducing computational e�ort in prediction stage): Burges
and Sch�olkopf [1997], Sch�olkopf et al. [2000], Keerthi et al. [2006] and refer-
ences therein.

� Look at chp.3 in Sch�olkopf and Smola [2002] for discussion on alternative
loss functions and the subsequent chapter for alternative regularizers.

� Chapelle et al. [2002] is an example of work where the idea is to choose
model parameters by minimizing various bounds on risk. At each step an
SVM problem is solved.
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Lecture 10

10.1 Summary

Ever since the notion of kernels was introduced, we felt the need for exploring
ways of automatically coming up with the kernel which suits a given application
(training dataset). The need is furthered by observations from various applications
that the performance of SVMs critically depends on the choice of kernel employed.
Hence we set out to address the problem of Kernel Learning | simultaneously
optimize for the right kernel as well as the discriminating function (classi�er) given
the training data.

In order to motivate an interesting way of formulating the Kernel Learning
problem, we revisit the SLT and derive new learning bounds which are based on an
alternate way of computing complexity of a set of learning functions (rather than
VC dim., covering no. etc.) | known as Rademacher Complexity or Rademacher
Average [Kolchinskii et al., 2001, Bartlett and Mendelson, 2002]. As a �rst step
we derived the McDiarmid's inequality [McDiarmid, 1989].

10.2 Further Reading

� Bousquet et al. [2004], Mendelson [2003] are good references for the deriva-
tion in this lecture.
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Lecture 11

11.1 Summary

Notion of Rademacher average (Rademacher complexity, R) was introduced and
learning bounds involving R were derived. The major steps involved are: i) not-

ing that T = maxf2F
n
R[f ]�Rm

emp[f ]
o
is a function of independent (infact, iid)

random variables Z1; : : : ; Zm satisfying the bounding di�erence property (conse-
quence of assuming loss function is bounded) and then upperbounding bounding
P (T �E[T ] > �) using McDiarmid's inequality. This leads to a VC-type inequality
where true risk is upper bounded by sum of empirical risk, E[T ] and con�dence
terms, ii) upper bounding E[T ] by twice R of induced set of loss functions. iii)
upper bounding R by sum of conditional R.A. (Rm | which is computable) and
con�dence term.

In case of binary classi�cation (with 0-1 loss), the bound was further written
in terms of Rm of F itself. Intuition for Rm being a measure of richness of set of
classi�ers was given and bounds relating Rm to VC-dim. were presented. It was
noted that the new bounds are \tighter" than the usual VC-dim. based bounds
derived earlier.

Encouraged by this, we presented a neat upper bound on Rm of the set
of a�ne functions in RKHS (associated with a given kernel k) which are norm
bounded and are linear combinations of images of training datapoints in feature

space (recall representer theorem): Rm(F) �
W
m

q
trace(K), where K is the gram-

matrix of training datapoints with kernel k. This will motivate a good kernel
learning formulation, which will be studied in the next lecture.
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11.2 Further Reading

� Refer Bartlett and Mendelson [2002] for detailed derivation of the trace
bound.
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Lecture 12

12.1 Summary

A small technical note on bounding Rm of real-valued functions rather than
f�1; 1g-valued functions was presented. Based on the margin-trace bound de-
rived in the previous lecture, a kernel learning formulation was motivated [Lanck-
riet et al., 2002, 2004]. The problem can be posed as an SDP (Semi-De�nite Pro-
gram) and solved. However solving this formulation gives the optimal gram-matrix
for training datapoints and the corresponding optimal hyperplane. Prediction is
impossible because the kernel evaluated at any test and training datapoint is un-
known. Realizing the importance for coupling the training adn test datapoints,
it was proposed to search the space of all trace bounded conic combinations of a
given set of base (positive) kernels rather than all kernels which are trace bounded
and psd. It is easy to see that predictions using this methodology can be done,
once the problem is re-written in terms of these kernel weights, and solved for
the unknowns. Also, from practical perspectives the methodology is useful: i)
tuning kernel parameters ii) combining bene�ts of carefully designed kernels iii)
Multi-modal tasks. Researchers from various �elds like vision and bio-informatics
have observed encouraging results by employing this new formulation. Since the
formulation learns the combination of kernels as wells as the corresponding clas-
si�er, it is called as Multiple Kernel Learning (term coined by Bach et al. [2004]).
The problem of MKL was posed as a quadratically constrained linear program,
which can be solved e�ciently using o�-the-shelf solvers. This derivation gave
more insights into the nature of the solution: at optimality essentially the single
\best" kernel of the given base kernels is picked!
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12.2 Further Reading

� Refer Bartlett and Mendelson [2002] for detailed discussion of technical note
presented at start of lecture.

� Vandenberghe and Boyd [1996] is a good reference for SDPs.

� Sion [1958] is paper on minimax theorem used in derivation.
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Lecture 13

13.1 Summary

In this lecture we studied the various ways in which researchers have attempted to
solve the MKL formulation. Since the MKL essentially selects few kernels from the
given base kernels, it can be employed for non-linear feature selection (construct
base kernels using individual features!). Hence algorithms for solving the MKL
need to be scalable wrt. no. base kernels as well as no. training examples in
order to perform e�cient feature selection. The methods suggested in the original
paper [Lanckriet et al., 2004] and in Bach et al. [2004] are not scalable to large
datasets. Hence researchers attempted to solve this formulation using e�cient
�rst-order techniques.

Sonnenburg et al. [2006] pose the MKL problem as a Semi-In�nite Linear
Program (SILP) and solve it e�ciently using a cutting-plane algorithm (exchange
algorithm in context of SILP). Essentially, the algorithm solves an regular SVM
problem and a LP (Linear Program) in each iteration. Since this algorithm re-uses
SVM code, it can be e�cient if e�cient SVM solvers are employed. Cutting-plane
algorithms achieve global convergence; however convergences rates are unknown
(in general). The proposed algorithm infact takes large no. iterations (large no.
SVMs solved) to converge in this case. Taking this method as inspiration, subse-
quently many have attempted to solve MKL by solving series of SVMs; however
with as less number of SVM calls as possible. Sonnenburg et al. [2006] also propose
few modi�cations to regular SMO-based SVM solvers which further increases the
e�ciency of the methodology. Refer the paper for further details.

Rakotomamonjy et al. [2007, 2008] propose to solve MKL by posing it as a
problem of minimizing a convex (Lipschitz conts.) function (whose gradient can be
computed using Danskin's theorem) over a simplex by employing reduced-gradient
technique. We brie
y reviewed gradient-descent methods for unconstrained and
constrained optimization problems. Also we saw how Danskin's theorem can be
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applied in case of MKL. Under proper choices of step-sizes, gradient-descent algo-
rithms are gauranteed to converge and infact rates of convergence are also estab-
lished.

13.2 Further Reading

� Refer sec. 1.1-1.3, 2.1-2.3, 6.3.3 in Bertsekas [1999] for some e�cient �rst-
order methods

� Also in Luenberger and Ye [2008] chp.7,8 for revising basics and sec.12.4-12.9
for gradient-based methods including reduced-gradient method; sec.14.7 for
cutting-plane alg.

� Danskin's theorem | prop. B.25 in Bertsekas [1999]
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Lecture 14

14.1 Summary

We saw how to apply the projected gradient descent (pgd) and reduced gradient
descent (rgd) algorithms to the MKL formulation. Both methods have proofs
of convergence and infact, bounds on rates on convergence can be derived. At
every iteration, pgd solves an SVM problem for calculating gradient and involves
a projection onto a simplex. The step-size can be chosen easily (diminishing step-
sizes). Hence per-iteration cost is atleast O(SVM) + O(d2). rgd on the other
hand solves an SVM for obtaining gradient and solves few more SVM problems
for evaluating the objective during step-size selection with Armijo's rule. So per-
iteration cost is solving few SVM problems. In practice the training time of both
the methods is comparable and far lower than that with cutting plane methods
derived in previous lecture. Also these methods are more scalable wrt. n.

We then introduced a variant of pgd which is known asMirror-descent [Ben-
Tal et al., 2001, Beck and Teboulle, 2003]. The idea is to employ a Bregmann
Divergence based regularization term rather than a Euclidean-norm based term
(in order to constrain that the next iterate is close to the prev. iterate) such that
the projection problem is \easy" to solve. Infact, for the case of simplex, if the
Bregmann divergence is selected as KL-divergence, then this problem has a closed
form solution which can be easily computed; these details we will see in the next
lecture.

14.2 Further Reading

� Refer sec. 5.3.1 in Nemirovski [2005] for review of pgd and sec. 5.4.1, 5.4.2
for nice explanation of mirror descent. Also look into sec. 5.5.1.

29



30



Lecture 15

15.1 Summary

Application of Mirror-Descent (MD) to the problem of MKL was the main focus
of the lecture. Since the feasibility set is a simplex (a standard set-up well-known
in optimization literature), the entropy function was chosen as the generating
function. With such a choice we showed that the per-step optimization problem
(which involves projection) is easy to solve i.e., the values of � can be updated
in O(n) time (compared to O(n2) for pgd which employs Euclidean regularizer).
The algorithm is also expected to be faster than rgd as it employs \diminishing"
step-sizes instead of Armijo's rule (which is very costly in our case as it involves
few SVM calls for objective function evaluation). We also noted that MD has
good convergence rates: if step-sizes are chosen in a particular \optimal" way
(exact formulae have been noted in lecture or refer Nemirovski [2005]), then the
number of iterations required for the deviation in objective from true optimal
objective to be less than � is proportional to log(n)=�2, which is good news as
one can approximately solve problems with high-dimenisonality easily. MD can
be applied to any optimization problem of the form minx2X f(x) where:

1. f is convex

2. X is compact

3. Oracle which gives (sub-)gradient of f exists (f itself may not be com-
putable/known) | this is known as \black-box" setting

4. f is Lipschitz

In such settings with X being a simplex, one can show that in some sense, one
cannot beat the MD algorithm! Standard set-up's for MD are: X being a sphere,
simplex, full-simplex, spectrahedron, full-spectrahedron. MD when applied to
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MKL performs far better than simpleMKL | we saw some simulation results sup-
porting this [Nath et al., 2009]. For sake of completeness of discussion of various
strategies of solving MKL we noted methods of Chapelle and Rakotomamonjy
[2008], Xu et al. [2008].

We recalled two reasons why MKL basily is a kernel selection algorithm
rather than a kernel combination algorithm (hence may not suit multi-modal ap-
plications!). One of the reasons is the fact that we are essentially employing l1
regularization over the kernel weights (i.e., �'s). Hence most of �'s will be zero
at optimality. As soon as we note this, a little thought will motivate formulations
which employ lp; p � 1 regularization over the kernel weights [Cortes et al., 2009,
Kloft et al., 2009]. These ofcourse will promote non-sparse combination of kernels
and are shown to achieve varied degrees of success in applications. Nevertheless
more principled ways of inducing sparsity and non-sparsity can be devised by
exploring another view of the MKL problem:

A \primal" view of the problem was sought. We noted a formulation which
is motivated from SVMs itself (rather than from trace-margin bound) which is
equivalent to the MKL formulation. We will discuss this further in the next
lecture.
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Lecture 16

16.1 Summary

We began by discussing the primal view of the MKL problem, which is motivated
purely from an alternate regularization (l1 norm of l2 norms) in context of SVM.
Using a lemma (which we called as \lambda trick") we presented a dual of this
formulation which turned out to be the (l1)MKL. It was interesting to note that a
purely optimization result naturally lead to MKL which was motivated from the
trace-margin bound!

Once this interesting equivalence was in place, it was easy to see a more
generic equivalence: primal formulation with an lq � l2p=(p+1) norm based regu-
larizer is equivalent to lp-MKL (p � 1). Now clearly, q 2 [1; 2] for p � 1. Hence
we noted that one can obtain more generic MKL formulations by playing around
with the primal regularizers (than with the dual's in some sense). Once this is
established, researchers started to play around with norms leading to i) MKL for-
mulations capable for handling multi-modal tasks [Nath et al., 2009, A
alo et al.,
2010] ii) MKL formulations leading to structured sparsity [Szafranski et al., 2008,
Bach, 2008]. We concluded this lecture with a discussion on Nath et al. [2009],
A
alo et al. [2010] and reserved Bach [2008] for the subsequent lecture.

MKL for Multi-Modal tasks: The key idea was to choose a mixed-norm based
regularizer in the primal MKL formulation which would support the prior infor-
mation available in the case of multi-modal tasks. A particular dual of this formu-
lation was noted, which again had nice interpretation of an SVM with weighted
kernel | now weights exist for each mode of description of data as well as for
the kernels. It was also noted that provably convergent and highly scalable algo-
rithms based on Mirror-descent exist for solving this formulation (see A
alo et al.
[2010] for details). Some empirical results showing the bene�ts both in terms of
generalization and scalability of the proposed methodology were discussed. The
conclusion was that indeed good generalization can be achieved by clever regu-
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larizers which encode prior information regarding the task at hand. In the next
lecture we will see another clever use of this idea for entirely a di�erent purpose
| of exploring large feature spaces using MKL [Bach, 2008].

16.2 Further Reading

� Details of the primal view and its equivalence to the MKL are detailed
in Rakotomamonjy et al. [2008] (see also Bach et al. [2004], Rakotomamonjy
et al. [2007]).

34



Lecture 17

17.1 Summary

The main goal of the lecture was to summarize the results in Bach [2008]. The
goal of the work is to be able to perform l1-MKL using exponentially large (in
terms of no. input features) number of kernels e�ciently. The key idea was to
employ kernels which can be expressed as product of sums of kernels and can also
be decomposed into a large sum of kernels. E.g., a speci�c polynomial kernel,
ANOVA kernel etc. The next basic idea was to embed the large no. kernels in
a DAG. The arrows in the DAG indicate: if the kernel at a node is not selected
none of its descendents are not selected. In case of the polynomial and ANOVA
kernels this turns out to represent that if a feature is not selected then none of
the features constructed using this feature will be selected. Once this is in place
few key theorems essentially lead to a simple iterative algorithm which solves a
usual MKL problem (with few no. kernels) using say Mirror-descent or simpleMKL
at each step. The computational e�ort is shown to be polynomial in the no. of
selected kernels for such a setting.
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Lecture 18

18.1 Summary

This lecture introduces the paradigm of Multi-Task Learning (MTL) [Caruana,
1997]. In contrast to a regular learning problem, in case of MTL, the goal is to
simulataneously learn concepts regarding multiple related tasks. It was noted that
di�erent ways of speci�cfying task relatedness leads to di�erent learning scenarios
(including multi-modal, multi-class learning applications).

Following Evgeniou et al. [2005] it was noted that one way to encode task
relatedness is to change the regularizer from w>w to say, w>Qw for some psd
Q. E.g., of Q was represented and it was noted that Q = I gives the scenario of
unrelated tasks, in which case the whole excerise boils down to learning the tasks
individually. It was also noted that playing with Q is equivalent to playing with
the kernel. For related tasks, the kernel for examples from di�erent tasks would
have non-zero entries; whereas for unrelated tasks they would be zero.

We then looked at another way of playing with the regularizer which intro-
duces yet another way of specifying task relatedness | all the tasks share the the
same low-dimensional feature space (see eqn.(5) in Argyriou et al. [2008a]; this
paper will be discussed in detail in the next lecture). This formulation was shown
to be a special case of the MKL formulation; and hence can be e�ciently solved
using mirror-descent (see supplementary for details). For sake of completeness we
noted few related learning theoretic bounds (refer Maurer [2006] for details).
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Lecture 19

19.1 Summary

The paper by Argyriou et al. [2008a] was the main topic of discussion in this lec-
ture. The key idea was to learn a low-dimensional subspace of features which a
important for all the tasks. The notion of task relatedness was ofcourse again that
all tasks share same feature-representation; however in contrast to the formulation
discussed during end of last lecture, here the features are also learnt. Using the
lambda trick and the formulation was written in a dual form whose interpretation
was simple: learn a kernel which is k(x;y) = x>Qy;Q � 0 using data from all the
tasks. We noted that mirror descent algorithm can be applied since the feasibility
set was essentially a spectrahedron (which is a well-known case). However Ar-
gyriou et al. [2008a] choose to re-write the formulation in the primal form itself in
such a way that applying an alternating minimization algorithm was the obvious
thing to do. For a �xed Q, the problem is solving SVMs for each task individually
and for �xed feature-weightings, the problem in Q interestingly had a close form
solution in terms of EVD of the matrix of feature-weightings. So per-iteration
computational cost is essentially T �OSVM +O(d3).

Since the problem in Q has a closed form solution we can actually re-write
the formulation eliminating Q | leading to a trace-norm regularization problem.
We had a brief discussion of matrix norms and noted the analogy between l1
norm (promotes sparsity in entries of vector) and trace-norm (promotes sparsity
in singular values i.e., low rank matrix rather than in entries)! We also noted
that trace-norm is \best" convex relaxation of the rank constraint (which is like
l0-norm). Interestingly the trace-norm minimization problem can be solved very
e�ciently [Ji and Ye, 2009]. At each iteration it requires to compute an SVD of a
d�T matrix and hence per-step computational cost is O(min(d; T )3+T 2d+d2T ).
After brie�ng discussing the main idea behind this optimization methodology
(which is originally due to Nesterov [2005]), we concluded the lecture with some
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interesting simulation results.

19.2 Further Reading

� Some linear algebra stu� can be refreshed using Saketh [2009].

� Some references for the Nesterov's method: Nesterov [2003], Beck and Teboulle
[2009]

� Details of mirror-descent with spectrahedron set-up are in Nemirovski [2005]
(sec. 5.4.1, 5.4.2, 5.5.1)
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Lecture 20

20.1 Summary

In this lecture we completed a left over proof in Argyriou et al. [2008a] regarding
the case of non-invertible Q. The proof essentially follows from knowledge of EVD.
We then had a look at kernelizing the formulation under discussion. The key idea
is to come-up with an extension of the representer theorem for this case. It was
clear that if the formulation involved a Frobenius norm (instead of a trace-norm)
then the representer theorem is immediate | showing that the feature loadings
of each task (wt) are linear combinations of training datapoints of that (t

th) task.
However this does not hold in our case because of the presence of the trace-norm
(inplace of Frobenius norm). However using some results regarding matrix mono-
tone functions [Bhatia, 1997] we were able to show that wt are linear combinations
of all training datapoints (across all tasks) | thus arriving at the representer the-
orem needed. Once this is clear, borrowing ideas from kernel PCA [Sch�olkopf
et al., 1998] we noted a way to kernelize the formulation (refer Argyriou et al.
[2008a] for all details). We also discussed related simulation results.

Once this formulation is in place (recall similarity of this formulation to
l1-MKL through the spectrahedron constraints), it is natural to think about ex-
tending the formulation to other shatten-norms using ideas similar to lp-MKL.
This is discussed in detail in Argyriou et al. [2007, 2009]. There are also works on
corresponding representer theorems [Argyriou et al., 2008b]. This ends our dis-
cussion on Multi-task learning. We will begin with Robust Learning in the next
lecture.
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Lecture 21

21.1 Summary

We started by motivating the need for learning algorithms being robust to vari-
ous kinds of noise/uncertainties present in the training datapoints (We postponed
discussion on issues of handling uncertainty in test datapoints, labels and kernel-
ization of robust algorithms). We argued that if no explicit information regarding
the underlying uncertainties in the datapoints is provided, then SVMs are good
enough in the sense that they are already robust to noise. In particular, we showed
that the (hard-margin) SVM classi�er obtained with nominal training datapoints
and that obtained using training datapoints with spherical noise balls around
them are the same! Infact, this is happening is because 2-norm is the dual-norm
of itself i.e., maxkxk2�1 w>x = kwk2. From a regularization point of view, l2-norm
based regularization for linear models hence provides robust solutions i.e., small
perturbations of the data do not e�ect the model. As a passing note we formally
de�ned dual norms and some relevant formulae. We also described the principle of
robust optimization and noted that the above (and subsequent) discussions follow
the ideas of robust optimization. According to this principle, the constraints of
the optimization problem are ensured to be satis�ed for all possible values of the
parameters (here datapoints) | thereby the variables (hyperplane parameters in
our case) remain feasible even for adverse values of the parameters (datapoints in
our case). Thus in some sense, we are optimizing (designing) for the worst-case
scenario.

With this background we considered scenarios where explicit (partial) infor-
mation regarding the uncertainties is known. We considered the following cases:
i) sperical noise (with given radii of noise balls) ii) elliptical noise iii) Extreme
values of features are known i.e., rectangular noise iv) mean and covariance of
noise distribution is known and noise distribution is Normal v) mean and covari-
ance of noise distribution is alone known vi) extreme values, mean, variance of
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feature values are known. Note that these are listed in increasing order of amount
of partial information available.

Cases i), ii), iii) easily follow from above discussion. i) and ii) can be posed as
SOCPs [Bi and Zhang, 2004] whereas iii) as QP [Ghaoui et al., 2003]. iv) is a classi-
cal result and is discussed in many books (e.g., sec. 2.6 in [Lobo et al.]) and follows
from posing the SVM problem as a chance-constrained program (CCP [Ben-Tal
et al., 2009]). CCPs are in general hard problems to solve. However, interest-
ingly, iv) is similar to ii) with only di�erence being interpretation of the radius
of ellipsoid. In case of iv), radius has nice interpretation and is dependent on
the probability � with which we wish to satisfy the feasibility (classi�cation) con-
straints. If � = 1, radius turns out to be 1, which is intuitive and when � = 0:5,
the constraints are equivalent to restricting the means (alone) of datapoints to lie
on the correct side of the hyperplane. For � < 0:5 (which is unintersting), the
formulation is no more convex. In the next lecture we will discuss formulations
for the remaining scenarios.

21.2 Further Reading

� Ben-Tal et al. [2009] is an excellent book on robust optimization describing
state-of-the-art techniques; however is very technical and may be di�cult to
read.

� Lobo et al. is a good manuscript describing problems which can be posed
as SOCPs.
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Lecture 22

22.1 Summary

In this lecture we concentrate on scenario v). The key aspect in iv) which helped us
re-write chance-constraints with usual constraints is the fact that the distribution
of any linear combination of jointly Normal rvs, when normalized i.e., after mean
substraction and sclaing by std.div., is the standard Normal distribution (which is
independent of the optimization variables!). Moreover, the resultant constraints
conviniently turn out to be convex. However this cannot be expected to happen
with other distributions. In addition, for scenario v), the noise distribution is not
even known. Such generic chance-constraints are indeed very di�cult to handle
and usually are highly non-convex.

One way out is to further the ideas of robust optimization and design/solve
the optimization problem for some \worst-case" distribution i.e., come up with an
(tight) upper bound on the required probability and contrain that the bound itself
is greater than �. Such constraints are tighter than required (hence conservative)
however, it is in some sense the best we can do if it is gauranteed that the bound
is attained for some distribution. Ofcourse the bound must be chosen depending
on the partial information known about the noise distribution.

In scenario v), mean and covariance of noise distribution (alone) is known
and hence it is wise to employ a one-sided version of Chebyshev's inequality1

(which is tight i.e., there exits a distribution with the given moments for which
the inequality is active). We presented a short proof of this inequality and used
it to derive a relevant bound in our case. Interestingly, the resultant constraint
(bound greater than �) is convex and moreover similar to case iv)! Hence the
problem is again of maximum-margin classi�cation of ellipsoids! Only di�erence
is in the radius term which in this case turns out to be � =

q
�

1��
. Again, note

1See http://www.btinternet.com/~se16/hgb/cheb.htm
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that, when � = 1, radius is 1 and when � = 0, radius is 0 and the problem is
equivalent to maximum-margin classi�cation of mean datapoints.

In case of vi), additionally extreme values of features are given. The easiest
way of incorporating this additional information is by considering uncertainty
region around each datapoint as intersection of ellipse (given by the Chebyshev's
inequality) and the hyper-rectangle (formed using the extreme values of features).
However one can do better if \Bernstein" inequalities [Ben-Tal et al., 2009] are
employed.

Now in case of most of the above discussed scenarios, the moments need to
be estimated (for example, in case of micro-array datasets, replicates of each data-
point which represent di�erent runs of the same experiment are provided and the
moments can thus be estimated from them). However now the formulations need
to made robust to moment estimation errors! Statisticians have put some e�ort in
determining how far an empirical estimate of moments can be from the true ones.
Atleast in case of Normal distributions, these con�dence regions can be analyti-
cally computed. Now given these con�dence regions, in which the true moments
can lie around the estimated ones, following the principle of robust optimization,
one can insist on the constraints being satis�ed for any pair of moments in these
con�dence regions. Thus most of discussed formulations can also be made robust
moment estimation errors.

Finally, we concluded with a brief discussion of some relevant results.

22.2 Further Reading

� Formulations for scenario v) are discussed in Bhattacharyya et al. [2004],
Shivaswamy et al. [2006]

� Formulations for scenario vi) are discussed in Bhadra et al. [2009], Ben-Tal
et al.

� Some reading on con�dence regions for true moments: Arnold and Shavelle
[1998]
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