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Examples ...

Course{Room allocation:

I Course registration and room location given

I minimize shifting distance

I room capacity constraints



Examples ...

Topology/Material Optimization:

I Topology which min. stress

I Given boundary conditions Show Video



Examples ...

Machine Learning:

Standing luxury bus

Zooming sedan

InputInput

Grammar

(Overloaded slow
moving bus)

(Robots admiring
a new car)
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Everything is an optimization
problem!

— Stephen Boyd



Computational Feasibility is Key!

Review of e.g.:

I Google map prob. — TSP — hard

I Course-room prob. — LP (easy), QAP (hard)

I Topology/mat. opt. — generic (hard), SOCP (easy)

I Machine Learning — generic (hard), SDP (easy)



Characterize easy problems?

I Un-answered

I Convex problems are definitely easy (appear in real-world)

I Not all non-convex are difficult (Unimodal [Invex],
Eigen-Value-Prob)
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If easy why study?

I Easy does NOT mean trivial

I Convexity inherent in many real applications
I Some can be convexified:

I Re-casting opt. prob.
I Assumptions, relaxations

I Knowledge of solvers
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Formal Syllabus

I. Theory

I Convex Analysis: Convex Sets, Convex Functions, Calculus of
convex functions

I Optimality of Convex Programs: 1st order nec. and suff.
conditions, KKT conditions

I Duality: Lagrange and Conic duality

II. Standard Convex Programs and Applications

I Linear and Quadratic Programs

I Conic Programs: QCQPs, SOCPs, SDPs

III. Optimization Techniques

I Smooth Problems: (proj.) Gradient descent, Nesterov’s
accelerated method, Newton’s methods

I Nonsmooth Problems: (proj.) Subgradient descent

I Special topics: Active set and cutting planes methods



Mode of Teaching

I Focus on opt. rather than appl.

I Formal, mathematical development

I Projects help in applying



Evaluation

S.No. Exam Weightage Date

1. End-Semester 30% 16th-28th Nov’11
2. Mid-Semester 15% 12th-17th Sep’11
3. Two Quizes 10+10% 19th Aug’11, 14th Oct’11
4. Project 20% 15thOct-14thNov’11
5. Bonus, Surprise tests 15% Anytime

Audit req: 100% attendance



Top Reasons for taking CS709

I I love it

I I like it

I I will use it



Top Reasons for junking CS709

I Allergic to or afraid of Math

I Want to take A for that B . . . for that CS709

I Friend said u can sleep and still pass

I If u think u are ... (play video)
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Lecture 1

� Closer look at an optimization problem

– Took 3 examples of real-world optimization problems

– Converted the physical description into a formal \Mathematical Pro-
gram" (MP) or an \Optimization Problem" (OP). Noted that this
conversion is non-unique, usually an \art", and is not the focus in this
course.

– Looked at the key ingredients of a formal MP

1. Variable space (X ) | the domain in which the variable lives, to-
gether with the algebraic operations/structures it is endowed with.
Primarily resposible for the key results in optimization theory in-
cluding duality and optimization techniques. The focus in this
course is on \�nite-dimensional Hilbert spaces" (which we will see
are equivalent to the Euclidean space)

2. Feasibility/Constraint set (F) | we will study special subsets1 of
vectors, which have nice properties and are easy to deal with. The
focus in this course is onMPs with Feasibility set as \convex sets".

3. Objective Function (O) | the focus is on \convex functions" from
X 7! R. We will study some algebraic, topological and calculus
properties of convex functions.

– We formally de�ned an MP (all combinations with min; inf;max; sup;
here P represents the parameters to the MP):

min
x2X

O(x;P )(1.1)

s.t. x 2 F(P )

1For us, subset itself means subset or equal to.

3



– Identi�ed and de�ned the related problem2 (argmin/argmax):

argmin
x2X

O(x;P )(1.2)

s.t. x 2 F(P )

� In course of the lectures, we will:

1. analyze these ingredients (this subject goes with the name \convex
analysis")

2. analyze MPs with convex objective functions and convex Feasibility
sets in �nite dimensional \Hilbert spaces" (Euclidean spaces for now)
| which are called as Convex Programs (CPs). Some of the key ques-
tions we will answer are: when is an MP bounded, solvable? Can we
characterize an optimal solution? Is it unique? etc.

3. understand the very important and useful notion of duality which gives
ways of arriving at equivalent optimization problems for the given
problem | this may lead to deep insights into the problem/solution-
structure or may lead to e�cient solving techniques.

4. Study standard CPs for which o�-the-shelf generic solvers are available.

5. Study special (scalable?) optimization techniques which work on generic
CPs.

� We started revising vector spaces3:

– Given a non-empty set V endowed with two operations + (vector addi-
tion: + : V � V 7! V ) and � (scalar multiplication: � : R� V 7! V ), if
(V;+) form an abelian group, and the operator � is commutative, asso-
ciative and identity element exists, and the distributive laws governing
interaction of + and � hold, then the triplet V = (V;+; �) is called a
vector space and elements of V are called as vectors.

– We gave a lot of examples of vector spaces | those with matrices,
polynomials, functions etc.

– We identi�ed linear combination as an important operation (V is
closed under lin. comb. by axioms).

– We outlined results about basis etc. We will discuss more in the next
lecture.

2Please revise notions of maximum, minimum, GLB(in�mum), LUB(supremum) and their exis-
tance results, atleast for sets of real numbers. http://en.wikipedia.org/wiki/Supremum should
be enough.

3Go through pages 1{13 in [Sheldon Axler, 1997]. Also go through related exercises.
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Lecture 2

� After a short recap, we continued with our question does every set of vectors
V , have a subset of vectors, say B, such that linear span of B, LIN(B), i.e.,
the set of all vectors which can be expressed as linear combinations of those
in B, is equal to V ? Obviously such sets exist (for example take B = V
itself). Such sets are called as spanning sets.

� A vector space is �nite-dimensional if there exists a spanning set of �nite
size.

� Given any v 2 V and B a spanning set of V , v can be written as lin. comb.
of vectors in B. We observed that if v is represented using a Euclidean
vector with components as the coe�. of lin. comb., then we get a compact
representation of vectors. Not only this, lin. comb. of vectors in V can be
got by simply applying the same lin. comb. to the corresponding Euclidean
vector representations.

� We said that it will be great if i) the spanning set is small (smallest). (Then
the proposed representation will be highly compact) ii) the proposed repre-
sentation is one-to-one.

� We proved1 that answer to both goals is the same: a Basis, which is a linearly
independent, spanning set. A linearly independent set is a set of vectors
whose non-trivial (not all zero) lin. comb. can never give a trivial vector
(zero vector). The common size of any basis is called the dimensionality of
the vector space.

� Hence a basis is like a pair of goggles, through which the vector space looks
\simple". The key result we showed is that every �nite dimensional vector
space has a basis and hence is essentially as simple as an Euclidean vector
space.

1Refer pages 21-36 in [Sheldon Axler, 1997].
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� We noted that there may be subsets of a set of vectors which themselves form
a vector space with the corresponding + and � | such a subset is called a
linear set or linear variety and the resulting vector space is called a subspace
of the original vector space. In lectures, we may interchangebly use the terms
subspace and linear set (as long as it does'nt create much confusion).

� We studied some examples of subspaces in various vector spaces and noted
their basis.

� A basis gives an inner/constitutional/compositional/primal description (a
description of an object with help of parts in it) of the vector space it spans.

� Euclidean vector spaces are interesting not only because of lin. comb., but
also because notions of dot-products, distances, projections and other such
interesting operations exist. In order to make abstract vector spaces inter-
esting, we added a new operator <>: V � V 7! R, called the inner-product,
which satis�es positive-de�niteness, symmetry and linearity properties and
extends the idea of a dot-product in Euclidean spaces2. A vector space en-
dowed with a valid inner-product is called an inner-product space.

� We gave many examples3 of inner-products with Euclidean vectors, Matrices
and polynomials.

� Encouraged by the results that a \basis" is the right goggles for the given
vector space, we asked the question is a \basis" the right one for an inner-
product space too? The answer is negative. However, we showed that if
the basis is a special one: orthonormal basis, where every pair of vectors
in the basis is orthogonal (i.e., inner-product is zero) and each vector in
basis is of unit length. (Length/norm of a vector is de�ned as the square-
root of the inner-product of the vector with itself). Then, the inner-product
between two vectors can be computed by simply taking dot-product of the
corresponding Euclidean representations. In other words, an orthonormal
basis is like a pair of goggles, through which an inner-product space looks
\simple".

2Refer pg 98-101 of [Sheldon Axler, 1997] for de�nition and examples.
3We discovered the positive-de�nite (pd) matrices (if M is pd, we denote it by M � 0)

naturally while giving examples of inner-products. Refer http://en.wikipedia.org/wiki/
Positive-definite_matrix. It is helpful if one is familiar with all results pertaining to pd matri-
ces, especially the one about its eigen value decomposition: M � 0, M = L�L>, where L is an
orthonormal matrix and � is a diagonal matrix with positive entries. The entries in the diagonal
matrix are called eigen-values and columns in the orthonormal matrix are called as eigen-vectors.
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� Gram-Schmidt algorithm gives a way of getting an orthonormal basis from
a basis4. As a result, every �nite dimensional vector space has an orthonor-
mal basis. Hence every �nite dimensional inner-product space is essentially
equivalent to the Euclidean inner-product space (with dot product as the
inner product).

� Once the notion of inner-product exists, one can de�ne the notions of,
length/norm5 of a vector, angle between vectors (cosine of angle between

vectors u; v is de�ned as hu;vi
kukkvk) and projections6 of vectors onto vectors or

onto subspaces/subsets. Projection of a vector onto a subset is the vector in
the subset which is closest to the vector in that inner-product space.

� In the next lecture we will see how inner-products can be used to give an
outer/dual/Veda view of a subspace (and later on for di�erent special sub-
sets).

4Refer pg 108, 109 for this algorithm.
5Refer pg. 102-106 for de�nition and examples
6Refer http://en.wikipedia.org/wiki/Projection_%28linear_algebra%29
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Lecture 3

� We began with illustrating (through examples) what the key bene�ts of the
abstract study of vector/inner-product spaces, we did in couple of previous
lectures, are from an optimization perspective:

1. The optimization theory we are to study is generic and applies to prob-
lems with varied variable spaces and geometries.

2. Alternatively, through orthonormal bases, one can reduce these varied
problems to those in Euclidean space and work.

� We completed our discussion on (�nite dimensional) inner-product spaces:

– We explained the signi�cance of a kernel in an inner-product: hx; yiM =
x>My (for Euclidean vectors), hf; gi = R

f(x)g(x)w(x) dx (for func-
tions/polynomials). M or w is called the kernel and determines the
geometry. Usually the application decides what the kernel is.

– Orthogonal complement of S is S? = fx j hx; vi = 0 8 v 2 Sg. It is
easy to show that S? is always a subspace.

– With orthonormal basis it is easy to �gure out the coe�cients of linear
combinations ... i.e., if fv1; : : : ; vng is an orthonormal basis, then for
any vector x we have: x =

Pn
i=1hx; viivi.

– We noted that there might be norms like kxk1 =
P

i jxij, which are
not induced from inner-products. We can talk about vector spaces
endowed with these norms { called as normed vector spaces or metric
spaces (ofcourse every inner-product space is a normed vector space
with the norm as that induced by the inner-product). However they
are not attractive for us ... as inner-product gives notions of angles,
projections, etc. which are fundamental to optimization algorithms.
Moreover, the inner-products (as we shall see) are the key to duality
theory.
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– In any inner-product space we can de�ne convergence of a sequence of
vectors: Let fxng be a sequence of vectors. If for any given � > 0;9N 3
8n � N; we have: kx � xnk < �, then the sequence is said to converge
to x i.e., fxng ! x. x is called the limit of the sequence fxng.

– We know that Euclidean spaces have no gaps (they are complete spaces)
i.e., every Cauchy sequence converges. Because of our equivalence, all
�nite dim. inner-product spaces are also complete and hence qualify to
be called as Hilbert spaces1 (complete normed vector spaces are called
as Banach spaces).

– We de�ned closed (or complete) sets and gave examples: A subset of
vectors S is said to be closed i� every convergent sequence in S has its
limit in S.

– We de�ned open sets and gave examples: A subset of vectors S is said
to be open i� for all v 2 S, 9r > 0 3 Br(x) = fy j ky � xk � rg � S.
We also gave examples of sets which are neither open nor closed and
noted that the trivial vector space (containing only zero) and the full
vector space are the only two subsets which are clopen i.e., both closed
and open.

– A subset S is said to be bounded i� a ball of �nite radius contains it.
We gave examples. Recalled Bolzano-Weierstrass theorem2.

– We de�ned compact sets as those which are closed and bounded.

– Given two inner-product spaces V1 = (V1;+1; �1; hi1) and V2 = (V2;+2; �2; hi2),
we de�ned the direct sum of those, V = V1�V2, which is another inner-
product space de�ned as V = (V;+; �; hi), where V = f(v1; v2) j v1 2
V1; v2 2 V2g. Given two vectors v = (v1; v2); w = (w1; w2) 2 V , we
have: v + w = (v1 +1 w1; v2 +2 w2), � � v = (� �1 v1; � �2 v2) and
hv;wi = hv1; w1i1 + hv2; w2i2. This is the natural way of stacking up
arbitrary spaces to form big space.

� We began discussing the second ingredient of anMP, which is the Feasibility
set, which (for us) is some subset of some �nite dimensional inner-product
space (RN). We de�ned some set operations like (arbitrary) union3 and
intersection4, sum and di�erence of sets | for two sets A;B, their sum
A + B = fz = x + y j x 2 A; y 2 Bg and their di�erence A � B = fz =
x� y j x 2 A; y 2 Bg. We begin with a subspace, which is a special subset.

1Refer http://en.wikipedia.org/wiki/Hilbert_space.
2Refer http://en.wikipedia.org/wiki/Bolzano%E2%80%93Weierstrass_theorem
3Refer http://en.wikipedia.org/wiki/Union_%28set_theory%29
4Refer http://en.wikipedia.org/wiki/Intersection_%28set_theory%29
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– For a subspace S, a basis B gives a compositional/inner/primal view.
A view made of parts inside an object. If dim. of S is n, then B has
n entries. So this description requires n units (of space/memory etc.).
Also this description employs lin. comb. as the fundamental operation.

– Whereas, one can also describe a subspace as that which is orthogonal
to its orthogonal complement. More speci�cally, suppose we consider
a matrix M> whose columns are a basis for S?. Then a dual/outer
description of S is: the set of solutions to the homogeneous system of
equations given by Mx = 0. This description does not involve vec-
tors in the subspace of discussion. Also, this description employs inner
products as the fundamental operation.

– If the entire vector space is of dim. N , then this description requires
N � n units (which is also the rank of the matrix M). Whenever
n < N=2, the primal description seems e�cient and whenever n > N=2,
the dual description seems e�cient.

– It is also easy to see the set of solutions of Ax = 0 always form a
subspace (for any A). Hence solution set of homogeneous equations is
a characterization for subspace.

– In the extreme case, where n = N � 1, the dual description looks
like a>x = 0 (here, a is a vector), which is exactly the equation of a
hyperplane through the origin (which we are familiar with from school
days).

– Easy to show every subspace is a closed set. The trivial and full sub-
spaces are also open.

– We can also show intersection of subspaces is a subspace. There are
two approaches for proving this | the primal approach (which involves
primal descriptions in proofs) and the dual approach (involves dual
descriptions). This pattern repeats for many proofs which we study
in this course. Below we outline both approaches for: given subspaces
S1; S2 show that S = S1 \ S2 is a subspace.

� Primal: Strategy is to show S is closed under lin.comb. Let v;w 2
S ) v;w 2 S1; v;w 2 S2. Since S1 is subspace, a (any) lin.comb.
of v,w is in S1 and since S2 is also a subspace this lin.comb. also is
in S2 and hence the (any) lin.comb. must be in S.

� Dual: S1 is a subspace hence is the solution-set of A1x = 0 (for
some A1). Similarly, S2 is a subspace and hence is the solution-set
of A2x = 0 (for some A2). The intersection set S is nothing but

the solution set of

"
A1

A2

#
x = 0, which is itself a homogeneous set
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of equalities and hence S must be a subspace.

– Easy counter-examples show union of two subspaces is not a subspace.

� We outlined the key intuitions/de�nitions behind another special class of
sets known as a�ne sets, which we will study in next the lecture.

� Mandatory book readings:

– Appendix sections A.1, A.2, A.4 and A.7 from Nemirovski [2005].
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Lecture 4

[A short quiz was conducted at the beginning of the lecture. A general note about
the formalism in the proofs u write is made. Proofs written in exams will be
evaluated if they are formal.]

We began with the discussion on A�ne sets1

� Based on the intuition that a�ne sets are shifted versions of linear sets, a
set A is de�ned as an a�ne set i� it can be expressed as fa0g + L, where
a0 2 V and L is some linear set.

� We showed that L = A � A and hence is determined uniquely (given A).
However a0 (above) could be replaced with any a 2 A.

� From this characterization of L, it is clear that any vector x 2 A can be
uniquely written as a0 + �1v1 + : : :+ �nvn where fv1; : : : ; vng is a basis for
L and �i 2 R8i. The emphasis is on the point that given x, �s are �xed.

� Once the vis are replaced with vectors in A, we will get an inner/primal
description. By de�nition of A, 9ai 2 A 3 ai = a0 + vi(8 i). Hence,
x = (1�Pn

i=1 �i)a0+ �1a1+ : : :+ �nan. Re-writing, �0 = (1�Pn
i=1 �i); �1 =

�1; : : : ; �n = �n, we have that x =
Pn

i=0 �iai;
Pn

i=0 �i = 1 and importantly, �s
are �xed given x. Since x was arbitrary we can say a�ne sets are closed under
a�ne comb.2 i.e., linear comb. with coe�. summing to unity. Conversely,
set closed under a�ne combinations, i.e., set which is equal to its a�ne-hull,
which is the set of all a�ne comb. with vectors in it, is also an a�ne set.
Hence a�ne sets exactly those which are closed under a�ne comb.

1Usually V = (V;+; �; hi) represents our inner-product space.
2We could have also started with this as our de�nition for a�ne sets or a de�nition like a�ne

sets are those closed under a�ne comb. with any two pair of vectors i.e., sets having lines. Realize
that everything is the same.
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� Any subset of an a�ne set whose a�ne hull is equal to the a�ne set itself
is called an a�nely spanning set. Sets in which two di�erent a�ne combi-
nations do not give the same vector are called as a�nely-independent sets
(representation under them is unique, mathematically the condition turns
out to be non-trivial lin. comb. of vectors with sums of coe�. in lin.comb.
being zero cannot be a trivial vector). Above discussion also shows that
for any a�ne set there exists an a�nely spanning, a�nely-independent set,
called the a�ne-basis, with which every vector in an a�ne set can be repre-
sented uniquely. Infact we showed how to build it.

� By above, the vector x =
Pn

i=0 �iai;
Pn

i=0 �i = 1 can be represented as an

n+1 dim vector

2
664
�0
...
�n

3
775 with restriction thatPn

i=0 �i = 1. This representation

is called barycentric co-ordinate rep. With this, it is easy to see that any
a�ne set in n-dim space is equivalent to a hyperplane in n + 1 dimensions
(and the equation of the hyperplane is 1>x = 1).

� The dual characterization was also simple and like primal case, it was got
by looking at dual description of L instead: consider a matrix M> whose
columns form a basis for the orthogonal complement of L. Then the solution
set ofM(x�a0) = 0 is A and moreover solution-set of any non-homogeneous
�nite set of consistent equalities is also an a�ne set. In case M has single
row, i.e., L is of dim. n� 1, then we get a hyperplane: m>x = b.

� We gave examples of a�ne sets with matrices and identi�ed hM;XiF = b as
the hyperplane expression.

� Arbitrary intersection of a�ne sets is a�ne; whereas union of a�ne sets may
not be a�ne.

� One can also talk about half-spaces associated with a hyperplane: H+ =
fx j m>x � bg is called the positive halfspace and H� = fx j m>x � bg is
called the negative halfspace. Note that half-spaces are neither linear sets
nor a�ne sets. We next study subset which are formed by intersections of
half-spaces formed by hyperplanes through origin { called as cones (or conic
sets).

We gave examples of cones (in 2d, to begin with) which motivated its defn.:

� Given a set of vectors W = fv1; : : : ; vng, their conic comb. is de�ned as
�1v1 + : : :+ �nvn for some �i � 0.
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� CONIC-HULL(W ) is de�ned as the set f�1v1 + : : :+ �nvn j �i � 0 8 ig.
� A set C is called a cone or a conic set i� C=CONIC-HULL(C).

� We then looked at more eg. of cones including the ones in 3d like the ice-
cream cone.

� We identi�ed two kinds of cones: i) polyhedral cones, where there is a �nite
subset whose conic comb. gives the cone ii) non-polyhedral cones. So by
defn., inner description is simple for polyhedral cones.

� We gave outer/dual description for polyhedral cones: solutions to Ax � 0
(i.e., intersection of half-spaces).

� We noted that for some cones, a simple norm-based locus description is
most e�cient. For eg., a (symmetric) ice-cream cone (in 3d) is described byp
x2 + y2 � z. Ice-cream cones with diamond, square and elliptical cross-

sections can be described3 by kvk1 � z; kvk1 � z and kvkM � z respectively;

here v =

"
x
y

#
.

� Examples also showed that with every cone, C, there is an associated cone,
called the dual cone, C�, which is de�ned as C� = fx j hx; vi � 0 8 v 2 Cg.
It is easy to show that it is a cone.

� We visualized dual cones for some examples. In the next class we will con-
tinue with cones.

� Mandatory Reading: Section A.3 from Nemirovski [2005]

3For de�nitions of 1,1 norms and others refer http://en.wikipedia.org/wiki/Norm_
%28mathematics%29. Also, kvkM =

p
v>Mv where M is a pd matrix (also known as kernel).
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Lecture 5

� We brie
y reviewed conic sets:

– The defn. and primal/inner description | this lead to a natural classi-
�cation of cones. Polyhedral cones are the ones which can be obtained
by conic combinations of �nite vectors.

– We informally argued that outer/dual description of cone is (arbitrary)
intersection of halfspaces: a>i x � bi; i 2 I (I could be an uncountable
index set). Also for polyhedral cones, I can be chosen �nite. These re-
sults regarding duality were not provided; however we gave an intuition
how a fundamental theorem known as separation theorem can help in
proving this1.

– We gave examples of cones where primal description is more e�cient
than dual and vice-versa. Basically, whenever the cone is 
at, then
primal must be e�cient.

– We also brie
y discussed open cones: intersection of open halfspaces
or equivalently positive linear combinations of vectors. In this context
we de�ned closure of a set M is the set M together with all limits of
convergent sequences or equivalently, the smallest closed set containing
M .

– We gave a (incomplete, one-way) proof of the following: If C is a cone
such that V = fv1; : : : ; vng gives its primal description (i.e., conic hull
of V is C) and the set A = fa1; : : : ; amg gives its dual description (i.e.,
C is intersection of halfspaces a>1 x � 0), then the primal and dual
descriptions of the dual cone are given by �A and �V respectively2.
Hence if primal view is e�cient for the primal cone then the dual view

1We will prove separation theorem after introducing convex sets, as it holds for the more generic
case of convex sets.

2Here �A is the set which has elements of A with negative sign. The minus sign is just appearing
because of the sign conventions we chose for dual description and dual cone which are opposing.
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will be e�cient for the dual cone and vice-versa. Proof for �V being
the dual description of the dual cone was easy and the other part of the
proof was left to the students to think over.

– We gave more examples of cones: ones containing lines3, cones which
are 
at, dual cones of various cones, cones in matrix spaces like the
polyhedral cone of all non-negative diagonal matrices, cone of all psd
matrices4 of a given size etc. We gave primal and dual descriptions for
(most of) these examples. Infact, we realized that the defn. of psd is
nothing but the dual description5.

– Cones which are equal to their dual cone are called as self-dual cones.
For eg. the cones kxk2 � y, the psd cone etc.

– As with other sets we studied, (arbitrary) intersection of cones is a cone;
whereas union of cones may not be a cone.

� All the sets studied till now are necessarily unbounded. We will now study
sets which can be bounded. Like how a�ne sets must have lines, cones must
have rays, convex sets are those which must have line segments.

� A set C is convex i� x; y 2 C ) [x; y] 2 C. Here [x; y] denotes the line
segment between x; y i.e., [x; y] = f�x+ (1� �)y j 0 � � � 1g.

� By induction, it is easy to show that convex sets are closed under convex
combinations: linear combinations with weights non-negative and summing
to unity. In other words, the convex-hull6 of a convex set is itself.

� After giving some examples, we asked the question what can be the in-
ner/primal description. This again lead to a natural classi�cation of convex
sets: those which are convex hulls of �nite sets | called as Polytopes. Eg.
simplex, square, tetrahedron, all polygons. Also, circle is an eg. of a convex
set which is not a polytope.

� We realized that intersections of halfspaces of hyperplanes, not necessarily
passing through the origin, are convex sets. Infact, intuitively we argued
any convex set can be realized as (arbitrary) intersection of halfspaces |
which gives the dual description. We also argued that for polytopes the dual
description is �nite. Again proving these will require separation theorem.

3Cones which do not contain any line are called as Pointed cones.
4A matrix M is psd i� i) M is symmetric ii) x>Mx � 0; 8 x. The set of all pd matrices form

an open cone. The closure of set of all pd matrices is nothing but the set of all psd matrices.
5What will be the primal description of the set of all psd matrices?
6Given a set S, the convex-hull of it (denoted by conv(S)) is de�ned as the set of all possible

convex combinations of the vectors in S.
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� We realized there are convex sets like wedges (formed by intersection of two
lines/planes in 2/3-d spaces) which are not polytopes, but dual description
is �nite. Convex sets where dual description is �nite are called as polyhedral
sets7.

� Extending the defn. of dual cones which are cones induced from sets, we
de�ned polar sets which give convex sets starting from a set: Given a set C,
the polar set of C, denoted by C�, is fx j < x; c >� 1 8 c 2 Cg. We gave
an example which lead to the famous Rangoli star pattern :)

� We will continue our study of convex sets in the coming lecture.

� Mandatory reading: appendix sections B.1.1-B.1.4 in Nemirovski [2005], sec-
tions 2.1,2.2 and relevant parts of 2.6 in Boyd and Vandenberghe [2004].

7By defn., all polytopes are polyhedra. Pritish Uday realized this classi�cation purely based on
primal view: polytopes have �nite, polyhedra have countably in�nite primal descriptions. I think
this is true. Thanks to him for pointing this out.
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Lecture 6

� We gave many examples of polytopes, polyhedra and generic convex sets in
Euclidean as well as matrix spaces. eg. Simplex1, Birkho� polytope; set of
stochastic matrices; normed balls and conic sections.

� We focussed on normed-balls (centered at origin i.e., fx j kxk � 1g, where k�k
is some norm and need NOT be the inner-product induced one) and looked
at their polar sets. We observed that the de�nition of polar set in this case
can be equivalently written as: fx j f(x) � 1g where f(x) = supkyk�1hx; yi
(again, here k � k need NOT be the norm induced by h�; �i). It is easy to
show that f(x) de�nes a norm over x and is called the dual norm (denoted
by k � k�) of the norm we began with.

� We gave examples of some dual norms. Infact we commented that in case

of norms with Euclidean vectors for a p-norm (i.e., kxkp = (
P

i jxijp)
1

p ; here
p � 0 and with p =1 we have kxk1 = maxi jxij), the dual norm is a q-norm,
where 1=p + 1=q = 1. This comes from Holder's inequality2. From this we
have that 2-norm (the Euclidean norm) is self-dual.

� We also argued that k � kM�1 is the dual norm of k � kM 3. Hence we can call
inverse of a matrix as the dual matrix. Again we got a fundamental Rangoli
pattern with this :)

� We de�ned dimension of a convex/conic set as that of the a�ne hull of it.
We noted that in many cases it might help to view the set restricted to its
a�ne-hull.

1Simplex in n-dim space is the convex hull of n+ 1 a�nely independent points.
2Refer http://en.wikipedia.org/wiki/H%C3%B6lder%27s_inequality. Note that this in-

equality is very generic and hence can characterize dual norms in many Hilbert spaces apart from
Euclidean, which we mentioned above.

3Bonus marks (max.5) will be awarded to the �rst student who communicates a proof of this
to me.
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� After some motivation, we de�ned terms like interior point, interior, bound-
ary (refer section B.1.6.B in Nemirovski [2005]); relatively interior point,
relative-interior and relative-boundary (refer section B.1.6.C in Nemirovski
[2005]). A useful observation is that a (non-empty) convex set always has a
non-empty rel.int.4. This is essentially because all (non-empty) convex sets
must have appropriate dimensional simplices in them and thats what gives
them interior (volume). Infact, if we change our model for object having
volume from a sphere to a simplex, then it is trivial to prove this.

� We noted statements for Caratheodary, Radon and Helly theorems (sections
B.2.1{B.2.3 in Nemirovski [2005]).

� We then introduced the notion of (linear) separability: Two (non-empty) sets
S1 and S2 are separable i� there exists a vector a such that supx2S1ha; xi �
infy2S2ha; yi and infx2S1ha; xi < supy2S2ha; yi. The vector a is said to sep-
arate the two sets. In this case one can always compute an appropriate
number b such that S1(S2) lies in the negative(positive) half-space of the
hyperplane a>x� b = 0, which is called the separating hyperplane.

� Our idea was to prove the separation theorem from the Projection theorem,
which we will detail in the coming lecture.

� Mandatory reading: appendix sections B.1, B.2.1{B.2.3, B.2.6 and B.2.8
in Nemirovski [2005], entire chapter 2 (except for generalized inequalities)
in Boyd and Vandenberghe [2004]

� Optionally read sections 1, 2, 3, 14, 17 and 19 in Rockafellar [1996]

4Refer theorem B.1.1 in Nemirovski [2005] for a proof.
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Lecture 7

� We showed that a non-empty closed convex set C and a point v =2 C are
separable using the projection theorem1:

Theorem 7.0.1. If C is a non-empty closed convex set and v =2 C, then:

1. Projection of v onto C i.e., PC(v) = argminy2Ckv � yk exists and is
unique.

2. hv � PC(v); x� PC(v)i � 0 8 x 2 C.

3. PC(v) must be a point on relative boundary of C.

� Separation of v and C is clear from result 2 in theorem above. Infact, we
showed that a separating hyperplane passing through PC(v), a point on the
rel.bound., can be drawn. Note that this hyperplane also separates PC(v)
from C. Such a hyperplane, which separates a point on the rel. bound. and
the set itself, is called as a supporting hyperplane of the set at that point.

� It was then easy to argue that every closed convex set is an intersection of
closed halfspaces (those corresponding to supporting hyperplanes obtained
by starting with v =2 C and considering all v =2 C).

� An obvious question was do all points on rel.bound. have a supporting
hyperplane ? One way to answer is to look at the Tangent cone and the
Normal cone at that point. Tangent cone of a convex set C at a point x 2 C
is de�ned as TC(x) = fh j 9t > 0 3 x + th 2 Cg. Normal cone is the dual
cone of the tangent cone. Take any direction which is negative of a vector
in the Normal cone, that must de�ne a supporting hyperplane.

1The outline of the proof we gave in lecture is at: http://en.wikipedia.org/wiki/Hilbert_
projection_theorem and http://www.convexoptimization.com/wikimization/index.php/
Moreau%27s_decomposition_theorem

23

http://en.wikipedia.org/wiki/Hilbert_projection_theorem
http://en.wikipedia.org/wiki/Hilbert_projection_theorem
http://www.convexoptimization.com/wikimization/index.php/Moreau%27s_decomposition_theorem
http://www.convexoptimization.com/wikimization/index.php/Moreau%27s_decomposition_theorem


� With this it is easy to conclude that for a closed convex set, take all support-
ing hyperplanes at all rel.bound. points and the intersection of their negative
halfspaces is the convex set and hence gives a dual description. (Normal cone
at an rel.int. point will be 0 as the Tangent cone is the entire a�ne hull of
the set. And hence we cannot extend the argument to show existence of a
separating hyperplane at an int. point).

� Now came the question will the above give the \most e�cient" dual descrip-
tion? Looking at polytopes we observed that not all rel.bound. points may
be needed only some which we de�ned as extreme points2 are enough. And
if the Normal cone at an extreme point has more than one vector then it is
enough to take the fewest vectors which provide a primal description of the
Normal cone and the negatives of them are the only supporting hyperplanes
which need to be considered at any extreme point. This we argued is the
most e�cient dual description.

� Interestingly, it turns out that for any compact convex set C, we have
C = conv(ext(C)), where ext(C) is the set of all extreme points of C and
gives the most e�cient primal description3. Hence extreme points are useful
for e�cient representations in both the primal/dual views. Easy counter
examples show that this theorem fails to apply on unbounded closed convex
sets even if they are polyhedral.

� We then noted that the above separation result can be generalized to the sep-
aration theorem (refer sec B.2.5.B in Nemirovski [2005] for details). We then
wrote down a lemma which follows from the separation theorem, known as
the Farkas lemma (refer sec.B.2.4), and saw that duality sometimes helps us
answer di�cult questions by posing the di�cult question as an easy question
on a dual. Here is one way of writing Farkas lemma:

Lemma 7.0.2. Consider two sets of linear inequalities (S1) given by:
Ax = b; x � 0 (here, x is the dummy variable) and (S2) given by
A>y � 0; b>y < 0 (here, y is the dummy variable). Separation theo-
rem gives that (S1) is solvable/consistent/feasible if and only if (S2) is
not-solvable/in-consistent/in-feasible.

There are many ways of writing down such results and in general are called
as \Theorems on Alternative". Some of them appear in theorem 1.2.1 and
exercises 1.2-1.4 in Nemirovski [2005]. We will see later that such theorems
form a basis for duality theory in optimization problems.

2Refer sec. B.2.7.A in Nemirovski [2005] for a de�nition of extreme point.
3This is known as the Krein-Milman theorem. Refer sec.B.2.7.B in Nemirovski [2005] for details.
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� We then went on to prove some results whose proves we skipped earlier: i)
polyhedral cones have �nite dual description ii) For a closed convex set C
which has 0, we have that polar(polar(C)) = C. In particular, for any closed
cone C we will have dualcone(dualcone(C)) = C.

� Here is a sketch of proof for i): We already know that the dual cone of a
polyhedral cone will have �nite dual description i.e., intersection of �nite
number of closed half-spaces. Using a result u will prove in problem sets
we showed that intersection of two polyhedral cones is a polyhedral cone
and hence by induction we get that the dual cone of a polyhedral cone is a
polyhedral cone. Using ii) we get that the dual of dual, which is primal, has
a �nite dual description (we infact complete a cycle and all required proofs).

� For proof of ii) refer Proposition B.2.2 in Nemirovski [2005].

� We intuitively argued results like exercise B.14 and B.15 in Nemirovski
[2005]. We noted that such characterizations are sometimes important.

� We concluded the lecture by summarizing key aspects of the subsets we learnt
about. We will begin discussing real-valued functions on �nite dimensional
Hilbert spaces from the next lecture.

� Mandatory reading: B.2.5, B.2.7, B.1.5, B.1.6 in Nemirovski [2005]. Option-
ally also read chp. 11 and 18 in Rockafellar [1996]
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Lecture 8

� We started discussing the third ingredient of optimization problems which is
the objective function| which is a real-valued function over a Vec.Spa/Inn.Prod.Spa.
i.e., f : V 7! R. We already know many examples for such functions: eg.
norms, etc.

� We then began discussing special classes of functions, starting with linear
functions | Given a vector space V = (V;+; �); a function f : V 7! R is
linear i� f(

Pn
i=1 �ixi) =

Pn
i=1 �if(xi) 8 (xi 2 V; �i 2 R; n 2 N) i.e., Image

of a linear combination of some points under the function is the same linear
combination of images of those points. Basically, functions where linear
intra-extrapolation is accurate. Note that since the domain is V itself, all
linear combinations of vectors must be in V .

� If the vec.spa. V is also equipped with an inner-product hi, then we showed
that f is linear i� f(x) = ha; xi 8 x 2 V , for some a 2 V (the trick was to
employ our usual saviour { the orthonormal basis). It also easy to show that
no two linear functions can have the same a and when as are di�erent then
the linear functions are di�erent. Hence there is a bijection between the set
V and the set of all linear functions on V (denoted by L say). Moreover, if
a de�ne +

0

and �0 over L, which is the usual point-wise + and point-wise �,
then a linear of two functions can be got by the same linear combination of
the corresponding a and hence the two vectors spaces: V and L = (L;+

0

; �0),
themselves are equivalent!1

� We discovered that linear functions and linear sets have a relation: graph2

of a linear function is a hyperplane through the origin in the vector space
which is direct sum of V and R. We stressed on the point that the graph is
a set in n+ 1 dim. if the function is in n dim.

1A name of the vector space of all linear functions over a set of vectors is conjugate-space.
2given a function f : S 7! R, where S � V and V = (V;+; �) is a vector space, the graph of f is

de�ned as graph(f) = f(x; y) 2 V � R j f(x) = yg

27



� Basing on this discussion we de�ned a�ne functions | a function f :
A 7! R, where A � V is an a�ne set in V , is a�ne i� f(

Pn
i=1 �ixi) =Pn

i=1 �if(xi) 8 (xi 2 A; �i 2 R;Pn
i=1 �i = 1; n 2 N) i.e., Image of an a�ne

combination of some points under the function is the same as the a�ne
combination of images of those points. By de�nition all linear functions are
a�ne functions (obviously the converse is not true).

� We took all a�ne functions de�ned on V itself3 and showed that f : V 7! R
is a�ne i� f(x) = ha; xi � b 8 x 2 V for some a 2 V; b 2 R. Now it is easy
to give numerous examples of a�ne functions.

� With this characterization of a�ne functions, it is easy to show that the
graph of an a�ne function f : A 7! R (A � V is an a�ne set)is always
a hyperplane in the vector space which is the direct sum of the subspace
associate with the a�ne set A and R.

� We then gave the obvious de�nition for conic functions (which would connect
them to conic sets): A function f : C 7! R, where C � V is a conic set, is
a conic function i� f(

Pn
i=1 �ixi) �

Pn
i=1 �if(xi) 8 (xi 2 C; �i � 0; n 2 N)

i.e., Image of a conic combination of some points under the function is over-
estimated by the same conic combination of images of those points. By
de�nition all linear functions are conic functions (obviously the converse is
not true).

� It is easy to show that f : C 7! R, where C � V is a conic set, is a conic
function if and only if epi(f) is a conic set. Here epi(f) is the epigraph4 of
f .

� We showed that f(x) = kxk where k � k is any norm, is a conic function.
Hence f(x) = kxkp(p � 1); f(x) = kxkQ(Q � 0); f(X) = kXkF are all conic
functions. Moreover, all semi-norms5 are conic functions for eg. f(x) =
kxkQ(Q � 0) is a conic function.

� We took the function f(A) = supkxk�1 x
>Ax, where A is a square matrix. It

was easy to check it was a conic function. If A is psd, then it indeed de�nes
a norm6 of A | the max. eigen value of a psd matrix.

3In probset u will show a similar thing will happen for all a�ne functions on A which is an
a�ne subset of V .

4given a function f : S 7! R, where S � V and V = (V;+; �) is a vector space, the epigraph of
f is de�ned as epi(f) = f(x; y) 2 V � R j f(x) � yg.

5Refer http://en.wikipedia.org/wiki/Norm_%28mathematics%29 for a defn.
6Refer http://en.wikipedia.org/wiki/Matrix_norm for norms over matrices. Note that

there are atleast 4 ways of de�ning norms over matrices.
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� We then de�ned the next natural class of functions those which are convex:
A function f : C 7! R, where C � V is a convex set, is a convex function i�
f(
Pn

i=1 �ixi) �
Pn

i=1 �if(xi) 8 (xi 2 C; �i � 0;
Pn

i=1 �i = 1; n 2 N) i.e., Image
of a convex combination of some points under the function is over-estimated
by the same convex combination of images of those points. By de�nition
all linear functions, a�ne function and conic functions are convex functions
(obviously the converse is not true).

� It is easy to show that f : C 7! R, where C � V is a convex set, is a convex
function if and only if epi(f) is a convex set.

� We showed that f(x) = x2 (parabola) is a convex function. With this it was
clear that squared norms f(x) = kxk2 are all convex7.

� We showed that if f and g are two convex functions (de�ned over the same
vector space), then h = max(f; g), which is the point-wise maximum i.e.,
h(x) = max(f(x); g(x)) 8 x, is also convex. By induction, the point-wise
maximum over any �nite number of convex functions is a convex function.
We gave examples of such convex functions.

� This extends to the case of point-wise maximum of an arbitrary (possibly
uncountable) set of convex functions (the proof is easiest if done from the
characterization of convex functions as those with epigraphs as convex sets).
Hence we have the function h de�ned8 as h(y) = supx2X f(x; y), where each
f(x; �) is a convex function (with �xed x, we have that f(x; y) is convex in
y), is itself is a convex function.

� In particular, we have that given any arbitrary set S of vectors, the function
s(y) = supx2S < x; y > is a convex function. Please visualize such func-
tions starting from 2-d examples. Infact u will observe (u can prove) that
this function is a conic function. Hence this gives a way of building conic
functions from arbitrary sets. The function s de�ned above is called the
support function of the set S. The name comes from the fact that this gives
supporting hyperplanes to the epigraph cone ... we will study more of this
in the next lecture.

� Before concluding, we mentioned the Jensen's inequality, which is a direct
consequence from the de�nition of a convex function, and its use. We noted
that it is a very fundamental and generic inequality from which many familiar
inequalities like AM-GM, Holder's inequality etc. can be derived.

7This is happening because squared norm is a composition of the functions x2 and the norm.
This motivates us to study compositions (and in general operations) of functions which preserve
convexity.

8X represents the arbitrary index set for the convex functions.
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� Mandatory reading: sec. 3.1,3.2 in Boyd and Vandenberghe [2004]. Sec. C.1
in Nemirovski [2005]. Optionally also read chp. 4 in Rockafellar [1996].
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Lecture 9

� After a quick recap, we focused on the support function de�nition. We
took examples support functions for some sets like i) f�1; 1g whose support
function was f(x) = jxj and the set ii) unit circle centered at origin whose
support function was f(x) = kxk2 (ice-cream cone). Encouraged by the
examples we asked whether support function of any set is a conic function
(ofcourse we proved in last lecture it is a convex function)? The answer is
yes and it is easy to show it using the very de�nition of conic functions.

� The converse question was given any closed conic function1, can it be always
written as a support function of some set? The answer is yes and the proof
follows from the fact that epigraph of closed conic function is a closed conic
set and hence a supporting hyperplane (through origin) exists at any point
on the graph. Re-writing such a dual description of the epigraph using the
sup notation gives us the required form. Hence support functions give a new
de�nition/characterization of (closed) conic functions | from now we refer
to this as the dual description of the conic function in question.

� Now encouraged by the dual norm de�nition we gave earlier which arose out
of the support function of a normed-ball, we asked the question can we in
general de�ne \duals" of (closed) conic functions (denoted by f�) such that:
epi(f�) is the dual cone of epi(f) ? If we do such a thing, then we will
achieve our goal of extending the dual-norm idea to all conic functions....
this is because, then epi(f��) will be the dual cone of epi(f�) which must
be epi(f) and hence epi(f��) = epi(f) and f�� = f . Looking at the dual-
norm de�nition we conjunctured that an appropriate de�nition might be:
f�(y) = supx2fz j f(z)�1ghx; yi. We took an example of a conic function which
is a semi-norm and show that all the nice results we desired are holding for
this example. Students were asked to prove or disprove this is general. The
answer will be revealed in next lecture.

1A closed function is a function whose epigraph is closed
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� These results (as expected) might not work with conic functions which are
not closed. We gave some examples of convex/conic functions which are not
closed and realized that they are pathetic cases and not of interest to us
anyway.

� The obvious question now was if we can repeat this business of duality with
convex functions? In particular, is there a dual description of a convex
function (like support function for conic functions)? Ofcourse the answer
is again given by the dual description of epigraphs of convex functions |
which are now supporting hyperplanes that need not pass through origin.
This gave us that a closed convex function f can always be expressed as
f(x) = supy2Y hy; xi�by. It is also easy to show that, starting from arbitrary
sets Y and by we can form convex functions by using the form above and
hence this gives a characterization for (closed) convex functions. This can
be called as the dual description of (closed) convex functions.

� Changing notation slightly and calling by as some f(y) (i.e., some function
which takes y and gives a number. Now Y is domain of f) we re-wrote
above dual form as: f�(y) = supx2dom(f)hy; xi�f(x). This is valid de�nition
for all y such that f�(y) < 1 i.e., y in the domain of f�. We called f� as
the conjugate of f . Sometimes it is also called as Legendre transformation
or Fenchel's dual of f . Obviously the conjugate of any function is a closed
convex function.

� We also gave a sketch of proof for the statement: If f is closed convex,
then f�� = f . We concluded the lecture with some examples of conjugate
functions.

� Mandatory reading: sec. 3.3 in Boyd and Vandenberghe [2004]. Sec. C.6.3
in Nemirovski [2005]. Optionally also read chp. 12,13,26 in Rockafellar
[1996]. The duality correspondences for functions are exhaustively dealt
with in the Rockafellar [1996] book and hence is best option for this topic.
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Lecture 10

� We answered the question about the right de�nition of dual of a (closed)
conic function. We began by taking an example1 of a conic function which

is not a semi-norm: f(x) =

(
x if x � 0
0 if x < 0

. On this example our previous

(wrong) de�nition of dual conic function did not give the desired result.
However it showed a quick and easy �x which lead us to the correct de�nition:
f�(y) = supx2fz j f(z)�1gh�y; xi. We call f� as the dual (conic) function of
f . With this de�nition it is easy to show that epi(f�) is dual cone of epi(f)
and hence f�� = f for any f which is a closed conic function.

� Some important uses of the conjugate/dual functions are notable:

1. it is easy to see that the value of conjugate function at the origin f�(0)
is the in�mum of the function values of f . This simple connection is
very useful: we can get a global property of f by looking at a local
property of f� and by duality we can get more such relations (we may
see some of them later).

2. it is easy to see that f(x) + f�(y) � hx; yi for all x 2 dom(f); y 2
dom(f�). This inequality is called the Conjugate/Fenchel's inequality.
This is again a very useful inequality (like the Jensen's) from which main
important inequalities like AM-GM and Holder's inequality follow.

� We know that the dual description of epigraph lead to discovery of dual and
conjugate functions. We will now re-write the same in another useful form:
consider any convex function f and a point in the rel.int. of its domain, say
x0. Note that (x0; f(x0)) is a point on the relative boundary of the epigraph of
f and existence of a supporting hyperplane at that point is assured. Let the
equation of the supporting hyperplane at (x0; f(x0)) be h(a; a0); (x� x0; z �

1Uma and Gopi gave simple linear functions which are examples of conic functions that are not
a semi-norm.
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f(x0))i = 0 for some a 2 dom(f); a0 2 R. We also know if (x0; z0) is a point in
the epigraph of f , then h(a; a0); (x0�x0; z0�f(x0))i � 0. In particular looking
at the inequality for a point (x0; z) 2 epi(f) gives that a0 � 0. Now a0 = 0
implies a \vertical" supporting hyperplane | which cannot occur at a rel.int.
point (we can prove this formally too after knowing about Lipschitz conts.
of f). Therefore we can divide the whole inequality by �a0 (which is > 0).
Rearranging terms and using z = f(x) gives for any x0 2 relint(dom(f))
that: f(x) � f(x0)+hrf(x0); (x�x0)i 8x 2 dom(f), whererf(x0) = �a=a0.
Infact we know that there might be multiple supporting hyperplanes i.e.,
multiple (a; a0). So we de�ne sub-gradient of f at x0, denoted by rf(x0), as
any vector (in dom(f)) which satis�es f(x) � f(x0)+hrf(x0); (x�x0)i 8x 2
dom(f). This later inequality will henceforth be referred to as the sub-
gradient inequality centered at x0. We already proved that for any convex
function a sub-gradient exists at any relint point of the domain.

� Conversely, one can easily show that2 if there is a function which satis�es
the sub-gradient inequality centered around any domain point then it must
be a convex function. One can limit the condition of sub-gradient inequality
satisfaction to all points in rel.int. of the domain, but assume the function is
continuous and prove the same result that the function must be convex. This
gives to the following characterizations for a closed convex and continuous
convex function:

Theorem 10.0.3. Let V = (V;+; �; hi) be a inner-product space and C � V
be a convex set. Let f : C 7! R be a function. Then the following
statements are true:

1. Assume that f is closed and x0 2 C, then f is convex if and only
if f(x) � f(x0) + hrf(x0); (x � x0)i 8x 2 dom(f). i.e., convexity
is characterized by sub-gradient inequality satisfaction centered at
any domain point.

2. Assume that f is continuous and x0 2 relint(C), then f is con-
vex if and only if f(x) � f(x0) + hrf(x0); (x � x0)i 8x 2 dom(f).
i.e., convexity is characterized by sub-gradient inequality satisfac-
tion centered at any relint point of the domain.

� The set of all sub-gradients at a point x0 is called the sub-di�erential at that
point and is denoted by @f(x0).

� The sub-gradient inequality infact gives a dual description of the sub-di�erential
set and proves that it is always a closed convex set. We brie
y mentioned
the possible use of such a realization.

2Refer to the problem set.
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� Most important bene�t of this characterization is an immediate answer to
the question of minimizers for a convex function de�ned on the entire vec-
tor space (or infact any open set; we �ll focus on this point later): i.e.,
argminx2V f(x). The statement is: x0 2 argminx2V f(x) if and only if
0 2 @f(x0). It is also was easy to see that the set of all minimizers i.e.
argminx2V f(x) is itself a convex set { which infact is a special level-set: we
de�ne level-set at � 2 R as L� = fx 2 dom(f) j f(x) � �g. For any � it is
easy to see that this set is a convex set.

� We motivate that when normal cone at a point is a singleton then the sub-
di�erential is also a singleton and in this case it corresponds to the (may be
familiar) notion of gradient. To see this we started looking at some convex
functional analysis.

� We began by asking if convex functions are bounded (i.e., are the function
values over the domain bounded). Easy counter-examples show the converse;
but what is true is that they are locally bounded and infact locally Lipschitz
continuous. Refer to Proposition C.4.1 in Nemirovski [2005] for related def-
initions and proofs. Important take-home is every convex function is locally
Lipschitz continuous at any rel.int point in the domain.

� From this it followed that all convex functions are continuous at any relint.
point in the domain. In the subsequent lecture we will see the connection
between gradients and sub-gradients etc.

� Mandatory reading: Sec. C.6.2, C.4 and C.5 in Nemirovski [2005]. Option-
ally also read chp. 10, sections on sub-gradient in chp. 23 in Rockafellar
[1996].
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Lecture 11

� We revised the notion of derivative of real-valued function de�ned over
reals at a point: Let C � R. A function f : C 7! R is said to be
di�erentiable at x 2 C i� there exists a number f 0(x) 2 R such that

limy!x
f(y)�f(x)�f 0(x)(y�x)

jy�xj = 0. In this case one can show that the number

f 0(x) is unique and is called as the derivative or gradient of the function
f at x. We wrote it this de�ntion in some equivalent forms and noted the
intuition about derivative representing instantaneous slope.

� Looking at this de�nition, we de�ned the concept of di�erentiability for real-
values functions de�ned over arbitrary Hilbert spaces: Let V = (V;+; �; hi)
be a Hilbert space, kk is the inner-product induced norm and C � V . A
function f : C 7! R is said to be di�erentiable at x 2 C i� there exists a
vector1 rf(x) 2 V such that limy!x

f(y)�f(x)�hrf(x);y�xi
ky�xk = 0. In this case one

can show that the vector rf(x) is unique and is called as the derivative or
gradient of the function f at x.

� We then wanted to see if our slope intuition is still valid for the generic
de�nition of the gradient. Since now there could be many directions we
chose to move along a vector, say u 2 V , and write y as x + hu where
h 2 R. Re-writing the gradient de�nition we obtained: hrf(x); ui =

limh!0
f(x+hu)�f(x)

h
. In the case kuk = 1, this quantity is called the directional

derivative. Ofcourse this gives back our instantaneous slop interpretation in
direction of u.

� If fe1; e2; : : : ; eng forms an orthonormal basis for the �nite dimensional Hilbert
space V in question, then it is easy to see that rf(x) is completely deter-
mined by n numbers: hrf(x); e1i; : : : ; hrf(x); eni. For the speci�c case of
Euclidean space with standard basis, these n numbers are simply the partial

1We are here using the same symbol for both sub-gradient and gradient. This is �ne as we shall
soon show that gradient is indeed a sub-gradient.

37



derivatives, and hence in this case the gradient vector is the vector of partial
derivatives. Similarly for Hilbert spaces of matrices with the standard basis,
the gradient (which is a matrix) is the matrix of all partial derivatives.

� From the directional derivative de�nition it is clear that the instantaneous
direction of maximum increase of the function is rf(x) and the instanta-
neous direction of maximum decrease is �rf(x). This observation actually
motivates algorithms like gradient-descent, which we will study later.

� We then proved2 the following theorem, which gives yet another characteri-
zation for convex functions (under di�erentiability assumptions):

Theorem 11.0.4. Let V = (V;+; �; hi) be an inner-product space and C �
V be a convex set. Let f : C 7! R be a continuous function. Assume that
the function f is di�erentiable at any rel.int. of C, say x0 2 relint(C)
and the gradient is rf(x0). Then f is convex if and only if f(x) �
f(x0) + hrf(x0); (x � x0)i 8x 2 dom(f). i.e., convexity is characterized
by sub-gradient inequality satisfaction centered at any relint point of the
domain.

� One immediate conclusion from the above theorem is that (for convex func-
tions) the gradient is indeed a sub-gradient. This is the reason we chose to
use the same symbol for both.

� We then computed gradients for various convex functions: i) f(x) = ha; xi�b
(a�ne function in any �nite-dim. Hilbert space). rf(x) = a ii) f(x) = kxk
(conic function which is the inner-product induced norm in any �n.dim.
Hilbert space; i.e., ice-cream cones). rf(x) = x

kxk if x 6= 0 and when x = 0

the sub-di�erential set3 is @f(0) = fy j kyk � 1g. We also noted that if
f(x) = kxk is any norm (need not be the inner-product induced one), then
@f(0) = fy j kyk� � 1g. iii) f(x) = kxk2 (norm-squared function with norm
as the induced one; i.e., paraboloids). rf(x) = 2x. iv) generalization of
norm-squared which is homogeneous quadratic functions4 f(x) = x>Ax (this
eg. is in Euclidean space and here A is symmetric). rf(x) = 2Ax. v) (non-
homogeneous) quadratic function f(x) = x>Ax+ b>x+ c. rf(x) = 2Ax+ b.

2Refer sec. C.3 in Nemirovski [2005] or sec. 3.1.3 in Boyd and Vandenberghe [2004] for a proof.
3This comes from defn. of dual norm and the fact that the inner-product induced norms are

always self-dual
4We also gave intuition for homogeneous quadratic functions in other spaces provided we know

how to built linear functions which take vector in that space and give another one in the same.
If we denote such a function by A, then f(x) = hx;A(x)i will be the homogeneous quadratic
functions. In case of Euclidean vectors, A(x) = Ax and in case of matrices they are given by
tensor-matrix multiplication. Insterested students can read up material on self-adjoint operators.
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The usual trick for computing rf was to guess the gradient and verify it
either in the limit de�nition or the sub-gradient inequality.

� We then noted (but did not prove) that the usual rules for computing deriva-
tive of a linear combination of functions do hold for gradients and subgradi-
ents i.e., if h = �f +�g, then rh(x) = �rf(x)+�rg(x). Infact many other
such rules hold but are beyond scope of our course.

� We then went on to second order derivatives (we restrict ourselves to Eu-
clidean spaces as the de�nition otherwise would require homogeneous quadrat-
ics in those spaces, which we skipped studying and mentioned in footnote
above): Let C � Rn. A function f : C 7! R is said to be double dif-
ferentiable at x 2 C i� there exists a symmetric matrix H(x) such that

limy!x
f(y)�f(x)�hrf(x);y�xi� 1

2
(y�x)>H(x)(y�x)

ky�xk2 = 0. In this case one can show

that the symmetric matrix H(x) is unique and is called as the Hessian (or
double derivative) of the function f at x.

� Again by �xing y = x+hu, we get 1
2
u>H(x)u = limh!0

f(x+hu)�f(x)�hhrf(x);ui
h2

.
From this two facts are evident: i) the Hessian matrix is simply the matrix of
all possible second-order partial di�erentials. ii) since term inside the limit
in RHS of above equation is non-negative (by the sub-gradient inequality
condition), we have that 1

2
u>H(x)u � 0 for all u in the tangent-cone of

the domain of the function at x. And for an interior point in domain, the
tangent-cone is the entire space and this amounts to the Hessian being psd.
Infact we can prove the Theorem C.2.1 in Nemirovski [2005], which gives the
second-order di�erential characterization of convex functions.

� Using this useful characterization we proved convexity of many functions: i)
f(x) = xp where p is even ii) f(x) = xp where x > 0 and p � 0 or p � 1
iii) f(x) = eax iv) f(x) = �loga(x) (here, x > 0 and a > 1) v) f(x) =Pn

i=1 xilog(xi) (negative entropy; here x > 0) vi) f(x; y) = x2

y
; y > 0 vii)

f(x;M) = x>M�1x;M � 0 (we wrote down one meaningful optimization
problem involving such a function).

� Mandatory reading: Sec. C.2.2 and C.3 in Nemirovski [2005]; Sec. 3.1.3
in Boyd and Vandenberghe [2004]. Optionally also read chp. 23, 24 and 25
in Rockafellar [1996].
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Lecture 12

[A bonus quiz asking to list down 5 possible de�nitions of convex functions (with
various assumptions) was 
oated.]

� We begin studying optimization problems (Mathematical programs): prob-
lems of the form

min
x2X

f(x)(12.1)

s.t. x 2 C;

where X is called the domain (space in which variable moves or equivalently
the function is de�ned); f { the function being minimized is called the
objective function; and C is called the constraint set of the optimization
problem in (12.1).

� We then de�ned various other terms which are relevant for an optimization
problem:

– Feasible solution: x is called a feasible solution i� x 2 X \ C.
– Feasibility set: set of all feasible solutions i.e., F = X \ C.
– A program is said to be feasible i� the feasibility set is non-empty. If
feasibility set is empty then we say the program is infeasible.

– Optimal value: is the in�mum of objective function values over the
feasibility set i.e., inf(f(x) j x 2 X \ C) provided the feasibility set is
non-empty and in case feasibility set is empty we de�ne it as `1'.

– If the optimal value is �1, then we call such a program an unbounded
one. If the optimal value is > �1, then we call it as bounded program.

– We say two optimization problems are equal i� their optimal values are
the same. Needless to say, with this the program is itself equal to its
optimal value.
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– Optimal solution: x is an optimal solution i� x 2 F and f(x) �
f(y) 8 y 2 F .

– Optimality set: the set of all optimal solutions is called the optimality
set and is denoted by the symbol:

argmin
x2X

f(x)

s.t. x 2 C;

– A program is said to be solvable i� optimality set is non-empty.

� We also listed down four fundamental questions we would like to answer:
questions regarding i) boundedness ii) solvability iii) uniqueness of optimal
solution iv) optimality conditions. The hope is that we can give necessary
and/or su�cient conditions for each of these.

� We said that the answers to these are simple and elegant for the case of a
special class of programs called Convex programs: programs with convex ob-
jective function and convex constraint set. Other names for convex programs
are convex optimization problems, or simply convex problems.

� We gave two examples of programs and commented on their convexity:

1. We said the program minx2Rn x>Ax+ b>x+ c is convex if and only if A
is psd. (this followed from the Hessian of objective, which in this case
is 2A).

2. We proved (using various results about convex sets and convex func-
tions) that the following nice geometrically meaningful problem, which
is that of �nding the smallest ellipsoid enclosing a given set of m points
(say, xi), is convex

1:

min
c2Rn;M�0;R2R

R(12.2)

s.t. kxi � ck2M�1 � R 8 i = 1; : : : ;m

� We conjunctured that convex programs with bounded feasibility sets are
themselves bounded (providing a su�cient condition for our �rst question).
We hinted that it follows from Theorem C.4.1 in Nemirovski [2005]. In the
next lecture we will detail the proof and carry-on with the other questions.

� Mandatory reading: Sec. D.1 in Nemirovski [2005]; Sec. 4.1, 4.2 in Boyd
and Vandenberghe [2004].

1The following were the key steps in the proof: i) ascertaining the domain, objective function
and constraint set for the problem ii) showing that the domain, objective and constraint set are
all convex
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Lecture 13

� We began by proving a su�ciency condition for the �rst fundamental ques-
tion of boundedness. We always assume that (P) represents the following
convex program:

min
x2X

f(x)

s.t. x 2 C(13.1)

Theorem 13.0.5. The convex program (P) is bounded if the feasibility
set F = X \ C is bounded.

� The proof depends on theorem C.4.1 in Nemirovski [2005]1 and the Hiene-
Borel theorem2 and the following lemma:

Lemma 13.0.6. Given a convex function f and convex set C in the
domain of f , we have that minx2C f(x) = minx2cl(C) f(x) = minx2relint(C).

� Lets �rst prove the lemma: Just looking at the size of constraint sets we know
minx2cl(C) f(x) � minx2C f(x) � minx2relint(C) f(x). But we also know that

minx2cl(C) f(x) = min
�
minx2relint(C) f(x);minx2relbnd(C) f(x)

�
. Starting from

sub-gradient inequality and then taking limit as xn 2 relint(C) approaches
x 2 relbnd(C), it followed that minx2relint(C) f(x) � minx2relbnd(C) f(x).
From this the result of the lemma follows.

� Here is a sketch of the proof for theorem 13.0.5: from theorem C.4.1 in Ne-
mirovski [2005] we get that f is lower bounded on K. Now if only this

1We also gave examples of functions like kxk and kxk2 and talked about their Lip. cont. We
noted that if a function is Lip. conts. and is di�. then the supremum of derivative over the set
considered must be less than less than or equal to the Lip.const.

2http://en.wikipedia.org/wiki/Heine%E2%80%93Borel_theorem
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theorem C.4.1 were true3 for any compact set (not necessarily in the relint),
then by looking at minx2cl(F) f(x) it is trivial to prove theorem 13.0.5. Now
unfortunately K is restricted to be in relint and one compact set in relint
cannot cover4 the relint, so the idea is to cover the relint with open balls:
one for each relint point such that the open ball is itself inside the relint
(this is possible by defn. of relint). Now over each of these balls by theo-
rem C.4.1, we have a lower bound for f (infact for the corresponding closed
balls itself we have a lower bound by the theorem). Now still there could
be in�nite balls and in�nite lower bounds and the in�mum can still go to
in�nity. So if we can somehow get a �nite cover then we will be done. The
idea is to use the Hiene-Borel Theorem (HBT), which actually talks about
�nite sub-cover. But again the HBT can be applied to only compact sets, so
we extend our existing open ball cover of relint to the relbnd of closure of F
and if we can show still at each ball there is a lower bound then we will get
a �nite sub-cover and then we will have to do a minimum over �nite number
of lower bounds which will give a lower bound > �1. For this extension of
cover simply take every relbnd point in the closure and put a open ball of
(say) unit radius. For the sake of lower bound we already know that none of
these balls matter (for e.g. we can simply choose the lower bound for these
balls as 1). Using the HBT on this open cover for closure of F gives the
result in the theorem and completes the proof.

� We emphasized on that point that the su�ciency condition in theorem 13.0.5
may no longer be a su�cient condition if (P) is not convex. We gave as the
example problem of minimizing log(x) over (0; 1]. Here feasibility set is
bounded but the problem is unbounded.

� We moved on to a su�ciency condition for the second fundamental question
(which was trivial to prove at this stage):

Theorem 13.0.7. The convex program (P) is solvable if the feasibility
set F = X \C is compact and the objective function f is continuous in
it.

� Then we ventured into determining when can the optimal solution be unique
this will be the case where near the optimal solution (atleast locally) the
function strictly increases on all sides (in tgt. cone). While this is a condition
on the optimal solution point, we said nevertheless we can get a su�ciency

3We know that the theorem is not true for any compact set and the restriction of being in
the relint is important. But just to ease the argument say we assume this (later we will correct
ourselves).

4http://en.wikipedia.org/wiki/Cover_%28topology%29
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condition by insisting on this \strict convexity" everywhere. This led to
de�ning strictly convex functions: A function f : C 7! R, where C � V is a
convex set, is strictly convex i� f(�x+(1��)y) < �f(x)+(1��)f(y) 8 � 2
(0; 1); x; y 2 C. It was immediate that all strictly convex functions are
convex. We also de�ned strictly convex program as a convex program with
strictly convex objective function. By a simple proof by contradiction, the
following theorem was immediate:

Theorem 13.0.8. A strictly convex program, if solvable has a unique
optimal solution.

� We also proved the �rst order and second order condition for strict convexity.
These appear in the problem sets. We gave examples of strictly convex and
non-strictly convex functions.

� We went on to characterize optimal solutions and the following was immedi-
ate: an x� 2 F will be optimal if and only if f(x�) � f(x) 8 x 2 F and this
is if and only if5 f(x�) � f(x� + hu) 8 u 2 TF(x�) and all appropriate h > 0
such that x+ hu 2 F . Now two special cases are easy and interesting:

1. Suppose x� 2 int(F). In this case the tangent cone TF(x�) has ALL
directions. By theorem C.5.1 in Nemirovski [2005], the above nec. and
su�. condition simply becomes f(x�) � f(x) 8 x 2 X i.e., in this case
the optimal solution is actually the optimal solution with feasibility set
as entire domain. By de�nition of sub-gradient, this is if and only if
0 2 @f(x�). This proves the following theorem:

Theorem 13.0.9. Let x� 2 int(F). x� is an optimal solution of (P)
if and only if 0 2 @f(x�).

In particular, the quali�cation that x� 2 int(F) is satis�ed by all points
in F if it is open or the entire vector space. Hence in this case all
solutions can be characterized by 0 2 @f(x�).

2. Suppose x� 2 F and f is di�erentiable at x�. By looking at the de�ni-
tion of directional gradients along u 2 TF(x�), the following theorem is
obvious:

Theorem 13.0.10. Let x� 2 F and f be di�erentiable at x�. x� is an
optimal solution of (P) if and only if hrf(x�); ui � 0 8 u 2 TF(x�).
In other words the gradient of f at x� belongs to the normal cone
of F at x� i.e., rf(x�) 2 NF(x�).

5TS(x) is the tangent cone of set S at point x.
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Lecture 14

� We continued our discussion on optimality conditions. We commented that
theorem 13.0.10 is very generic and applicable to any di�erentiable convex
program1. It talks about optimality characterization for any feasible solution,
including the cases where the optimality happens at the boundary of the
feasibility set. Though the nec.&su�. condition in the theorem is generic,
it involves computation of tangent/normal cones. Instead of repeating this
exercise for every problem we thought of identifying some speci�c CPs where
we will pre-compute these cones and re-write the nec.&su�. in a more usable
way. The idea is that whenever we encounter an optimization problem in
practice/research, we will try to put it in one of these standard forms and
then characterizing optimality conditions will be simple2.

� Before proceeding to the various special cases where we re-write theorem 13.0.10,
for the sake of completeness, we also conjunctured how the conditions will
look like for a convex program which is not di�erentiable (needlessly to say,
sub-di�erentiability at all feasible points is assumed): given a feasible so-
lution x� of (P), x� is an optimal solution of (P) if and only if for every
u 2 TF(x�) we can identify a rf(x�) 2 @f(x�) such that hrf(x�); ui � 0. It
was easy to prove the su�ciency part, which follows from the sub-gradient
inequality. We said that the proof for the necessity part follows from a
characterization of support function of the sub-di�erential set in terms of
one-sided directional derivative. Interested students are requested to read
section 23 from Rockafellar [1996] and speci�cally theorem 23.4 in it.

� Here are the special cases:

1A convex program (13.1) is said to be di�erentiable i� its objective function is di�erentiable
everywhere in the feasibility set.

2We stressed on the importance of the fact that the results will apply only to the standard
forms we assume. So if we make a mistake in posing the problem at hand into these standard
forms, then we are doomed.
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1. Suppose we know x� 2 int(F), then the conditions are simplyrf(x�) =
0 (because the normal cone has the zero vector alone). This is a spe-
cial case of theorem 13.0.9. So optimality characterization is simple.
Interestingly, in this case we also know that f(x�) = �f�(0). So the
optimal value of (P) can be simply got by looking at f� (and seemingly
x� needed not be computed for obtaining the optimal value).

In the following special cases we assume that the domain is an open set.
In particular, it can be the entire vector space3.

2. Suppose we know that (P)'s objective is a linear function and the con-
straint set is a polyhedron. Such a convex program is known as a Linear
Program (LP):

min
x2X

hc; xi;
s.t. hai; xi � bi; 8 i = 1; : : : ;m:(14.1)

We then have the following theorem (derived in MidSem and follows
from theorem 13.0.10:

Theorem 14.0.11. Suppose x� is a feasible solution of the LP (14.1)
i.e., x� 2 X; hai; x�i � bi; 8 i = 1; : : : ;m and the constraints indexed
by the set I � f1; : : : ;mg are active at x�, i.e., hai; x�i = bi; 8 i 2 I.
Then we have x� is an optimal solution if and only if there exist
�i � 0 8 i 2 I such that c +

P
i2I �iai = 0. Also, the optimal value

f(x�) = �P
i2I �ibi.

3. Suppose we have a convex program (P) with the constraint set as a
polyhedron, then we call it a Polyhedrally-Constrained Convex Program
(PCCP):

min
x2X

f(x);

s.t. hai; xi � bi; 8 i = 1; : : : ;m:(14.2)

It is then easy to write down the following theorem (from above case):

Theorem 14.0.12. Suppose x� is a feasible solution of (14.2) i.e.,
x� 2 X; hai; x�i � bi; 8 i = 1; : : : ;m and the constraints indexed by
the set I � f1; : : : ;mg are active at x�, i.e., hai; x�i = bi; 8 i 2 I.
Then we have x� is an optimal solution if and only if there exist
�i � 0 8 i 2 I such that rf(x�) +P

i2I �iai = 0. Also, the optimal
value f(x�) = �f�(�P

i2I �iai)�
P

i2I �ibi.

3Alternatively, we could have assumed domain is any convex set, however all the theo-
rems 14.0.11-14.0.13 need to have an assumption that x� 2 int(X)
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If the objective in a PCCP is a quadratic function, then it is called as
a Quadratic Program.

4. Suppose we have a convex program (P) which can be written in the
following form:

min
x2X

f(x);

s.t gi(x) � 0 8 i = 1; : : : ;m:(14.3)

Such a convex program is called an Ordinary Convex Program (OCP).
An OCP is said to be di�erentiable i� all f; g1; : : : ; gm are di�erentiable
in the feasibility set, which is fx j x 2 X; gi(x) � 0 8 i = 1; : : : ;mg. In
this case we have the following theorem:

Theorem 14.0.13. Let (P) be a di�erentiable OCP (refer equa-
tion 14.3) such that atleast one of the following is true:

(a) There exists �x 2 X such that gi(�x) < 0 for all i where gi is not
an a�ne function.

(b) Let x� 2 F and let I be the index set of non-a�ne constraints
which are active at x�. Assume that the set frgi(x�) j i 2 Ig is
a linearly independent set.

The �rst condition is called the Slater's condition. An OCP satis-
fying this condition is known as a regular CP. Note that the second
condition is not a condition on the OCP, but rather a condition on
the feasible point x�. A feasible point satisfying this constraint is
called a regular point.

We have that: x� is an optimal solution if and only if there exists a
�� = [��1 : : : �

�
m]

> such that (x�; ��) satisfy the Karush-Kuhn-Tucker
(KKT) conditions. A point (x�; ��) is said to satisfy KKT condi-
tions for a di�erentiable OCP (14.3) i�:

(a) x� 2 X and �� � 0 (domain conditions4).

(b) gi(x
�) � 0 8 i = 1; : : : ;m (feasibility conditions).

(c) ��igi(x
�) = 0 8 i = 1; : : : ;m (complementary-slackness condi-

tions).

(d) rf(x�) +Pm
i=1 �

�
irgi(x�) = 0 (gradient condition).

Such a point is called as a KKT point for the given problem.

In other words, for di�erentiable OCPs, the KKT conditions are nec-
essary and su�cient for optimality of a regular point. Moreover, for

4Again, if we dont assume X is open, then we must have x� 2 int(X)
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regular di�erentiable OCPs, the KKT conditions are necessary and suf-
�cient for optimality of any point.

Firstly, note that this theorem includes the previous theorems on LPs
and CPCs as special cases. We gave a simple sketch of proof of this
theorem: we proved this theorem by starting from theorem 13.0.10
and re-writing the Normal-cone in terms of gradients of gi. We will
complete the proof in the next lecture and discuss some examples where
we actually obtain closed form solutions for some non-trivial real-world
problems using the above KKT characterization of optimal solutions.

50



Lecture 15

� Using KKT conditions we showed that k � kM�1 is the dual norm of k � kM ,
where M � 0.

� Using KKT conditions we showed that the optimal solution of the following
problem:

min
p2Rn++

Pn
i=1 pi log(pi)� p>x;

s.t.
Pn

i=1 pi = 1;

which we said is frequently encountered in probability theory, is pi =
exiPn

i=1
exi
.

� The above examples illustrated the utility of KKT conditions. We then went
on to complete the proof of theorem 14.0.13. This proof is given at the end
of this notes in hand-written appendix-1.

� Most of the optimization algorithms try to use the optimality characteriza-
tions we learnt till now to arrive at the optimal solution. So the conditions
not only help us to arrive at analytical solutions when they exist (like in
above problems), but also help in devising numerical algorithms for (ap-
proximately) solving them. So these conditions form the core theory behind
optimization.

� It is very useful to know that KKT characterization is useful for non-convex
problems too. Infact, KKT conditions are useful in characterizing local opti-
mality (which we didnt formally de�ne, but must be familiar to alteast some
of you). For more details please non-linear optimization books by Fletcher
or Bertsekas etc. Hopefully while derving KKT conditions again from La-
grangian duality, we might realize some of these results.
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Lecture 16

� With the example of �nding minimum path between cities we concluded that
three main properties for a \dual" optimization problem are desirable. It is
desirable that the dual is such that:

1. Its objective value at any feasible point is a lower bound for the given
(primal) problem | Principle of Weak Duality.

2. Its optimal value must be that of the primal | Principle of Strong
Duality.

3. Its should be a computationally feasible problem; ideally a convex pro-
gram.

� We listed some schemes for obtaining duals for which all 3 desirable proper-
ties hold:

1. LP duality scheme | works on LPs only, but straight-forward to write
(even programmable).

2. Conic duality scheme | works for Conic programs (yet to be de�ned
formally), also straight-forward to write (programmable).

3. Lagrangian duality scheme | works for (regular) OCPs and hence very
generic, may not always be easy to write.

4. Fenchel/Conjugate duality scheme | very generic scheme, probably
covers all above and may not always be easy to write.

� We noted two generic methodologies/strategies, which all of these schemes
implement: one based on lower bounding the primal objective and the other
starting with a function of both primal and dual variables. We said that LP
and Conic duality schemes implement the former whereas the Lagrangian
and Conjugate duality schemes implement the latter strategy.
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� We then began with LP duality. Looking at the structure of optimal value
given by KKT conditions for LP (14.1), we focussed our attention on the
following function of �: g(�) = �Pm

i=1 bi�i when � � 0; �Pm
i=1 �iai =

c. We know that if it so happens that LP is solvable with x� as solution,
then there exists a �� satisfying the conditions above and additionally the
complementary-slackness conditions such that g(��) is the optimal value of
the original LP (14.1).

� We then analyzed the behaviour of g wrt LP's (14.1) objective: if x is any
feasible point of LP (14.1) and � is such that � � 0; �Pm

i=1 �iai = c, then
the following was immediate: hc; xi = h�Pm

i=1 �iai; xi = �Pm
i=1 �ihai; xi �

�Pm
i=1 �ibi = g(�). Hence optimal value of LP (14.1) will always be greater

than or equal to the optimal value of this problem:

max
y2Rm

�Pm
i=1 biyi;

s.t. y � 0; �Pm
i=1 yiai = c:(16.1)

In other words, weak duality holds between the primal LP (14.1) and the
dual problem (16.1) i.e., (16.1) is a weak dual of (14.1).

� More importantly, as noted above, if the primal LP is solvable, then by KKT
conditions we know that there exists a �� belonging to feasibility set of the
dual (16.1) such that g(��) is the optimal value of the original LP. In other
words, strong duality holds i.e., (16.1) is a strong dual1 of (14.1).

� Interestingly, the dual (16.1) can also be expressed as a LP and hence is a
convex program.

� Infact we showed2 some more interesting results about LP duality which are
summarized in theorem 1.2.2 in Nemirovski [2005].

� We noted as with duality is the case always, there are trade-o�s in using the
primal or dual form. Many times it is used to an advantage in designing
algorithms. Infact we said that many of state-of-the-art algorithms employ
both forms.

� We extended same methodology and showed that the following is a (weak,

1Usually when we say D is a dual of P, we actually mean that D is a weak as well as strong
dual of P.

2Only the part that dual of dual is primal (symmetry) we did'nt explicitly show in lecture;
nevertheless can be taken by reader as an exercise.
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strong) dual of PCCP (14.2):

max
y2Rm

�f�(�Pm
i=1 yiai)�

Pm
i=1 biyi;

s.t. y � 0:(16.2)

� Again the dual (16.2) is convex and it reduces to the LP dual if f is linear.

� Mandatory reading: Please read entire section 1.2 of Nemirovski [2005] in
detail. This gives an alternate way of deriving LP-duality using theorems on
alternative.
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Lecture 17

� We noted that the dual might also be used in for arriving at optimality
conditions (basically gives a way of re-writing the optimality conditions).

– In the context of LP or PCCP duality, given a pair (�x; �y) such that �x
is primal feasible and �y is dual feasible, the KKT conditions give that:
(�x; �y) form an optimal primal-dual pair if and only if the duality gap
i.e., the di�erence between primal and dual objective values at (�x; �y)
is zero. In case of LPs, the duality gap hc; xi + b>y must be zero for
optimality. Similarly, we can talk about the KKT-gap, which is the
\gap" in satisfying the constraints remaining to be satis�ed in the KKT
set beyond those implied by the primal-dual feasibility. For instance,
in case of LPs, the KKT gap �y>(b � A>�x) (where, A is a matrix with
columns as ai and b is column vector with entries as bi) must be zero for
optimality. Corresponding expressions for PCCPs can be worked out.
Though the expressions are di�erent, the idea behind duality gap and
KKT-gap remains the same and can be written down for all the duality
schemes which are going to encounter in this course.

– We noted that these duality gap and KKT gap conditions are not only
helpful in case of algorithms which maintain both the primal and dual
iterates, but also may be helpful in case of algorithms solving either of
them: for e.g., if we have an iterative algorithm maintaining only the
primal iterates, and further we assume that the dual variables can be
computed using the KKT conditions, then the duality/KKT gap can
indeed be computed and the optimality of the iterate can be veri�ed.

� We then focussed on a particular optimization problem, which was funda-
mental to the notion of duality: the problem of separating two closed convex
sets. We recalled we encountered this problem �rst in separation theorem,
which is the key theorem behind all duality. We also recalled the strategy
we used to arrive at a separating hyperplane: by �nding points closest in
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the two sets and taking the perpendicular bisector of the line joining them,
which infact gives the maximal separator between the two sets.

� We wanted to verify if the duality notion we developed till now in optimiza-
tion problems atleast gives back this fundamental duality: i.e., maximally
separating two (closed, convex) sets is same as minimizing distance between
them. In view of this, we began writing the maximal separation problem as
a mathematical program, infact as a PCCP:

max
a2Rn

SC(�a)� SD(a);

s.t. kak1 � 1:

Here, C;D are the two closed convex sets which need to be maximally
separated by the unknown a such that their separation, which is equal to
SC(�a)�SD(a), is maximized. Here, SA denotes the support function of A.
The bound kak1 � 1 is simply put to get a non-trivial solution.

� Using the PCCP duality result we showed in last class, we derived the fol-
lowing dual:

min
�2Rn;�2Rn

Pn
i=1 �i + �i;

s.t. � � 0; � � 0; �� � 2 C �D

which is equal to the following problem:

min
z2Rn

kzk1;
s.t. z 2 C �D;

which is indeed the problem of minimizing distance between the two given
sets. Infact, we noted that the last equality provides a generic way of repre-
senting kzk1 in terms of linear function and constraints.

� We later commented that the 1-norm in dual is appearing as we started with
its dual, the 1 norm, in the primal. With this we guessed the general form
of the duality, which we may prove at a later stage (with current duality
schemes we must be limited to polyhedral constraint sets).

� In the next lecture, we will look at a big class of CPs, called as conic pro-
grams. Interestingly, the duality in their case turns out to be as simple and
elegant as in LPs.
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Lecture 18

� We began by motivating the de�nition of conic programs in Euclidean spaces:

min
x2Rn

c>x;

s.t. b� A>x 2 K;(18.1)

where, K is a cone and A is an n�m matrix with columns as ai and b is a
m� 1 vector. It was evident that every conic program is a convex program.

� We noted few examples of programs we encountered in this course which
actually were conic programs. Infact, ifK is chosen to be the �rst quadrant of
Rn, then, the above conic program is exactly the LP (in the standard primal
form). We commented that we will later on see that many convex programs,
including many we already encountered, are actually conic programs.

� Nevertheless we began by deriving a dual for a conic program and ended up
with this conic duality theorem1 (please refer to theorem 1.7.1 in Nemirovski
[2005] and the corresponding proof):

Theorem 18.0.14. Consider the problem:

max
y2Rm

�b>y;
s.t. y 2 K�;�Ay = c:(18.2)

We have the following results:

1. (18.2) is a weak dual of (18.1).

2. If primal (18.1) is bounded, then (18.2) is bounded (and if (18.2)
feasible, then (18.2) is also solvable).

1We proved everything in lecture except the symmetry, which can be taken as an exercise.
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3. If (18.2) is bounded, then primal (18.1) is bounded (and if (18.1)
feasible, then (18.1) is also solvable provided K is a closed cone).

4. If K has non-empty interior and the primal is bounded and the
conic program satis�es a mild regularity condition (like Slater's
condition) that there exists an �x 3 b � A>�x 2 int(K), then infact
(18.2) is bounded, feasible, solvable and it is a strong dual of the
primal.

5. If K is pointed (then we know that K� has non-empty interior)
and if the dual is bounded and a mild regularity condition that
there exists a �y 2 int(K�) 3 �A�y = c, then infact the primal (18.1)
is bounded, feasible, solvable and the optimal value of the primal is
same as that of the dual.

6. If K is a closed cone, then the dual of the dual is the primal (sym-
metry).

To summarize, if we start with a primal conic program with a good cone
K, i.e., K is closed, pointed and has non-empty interior, then whenever
either of the problems are bounded, then the other is solvable and strong
duality holds. Also, symmetry holds i.e., the dual of the dual is exactly
the primal.

� In particular, this theorem is the same as the LP-duality theorem if K were
the �rst quadrant cone. However this theorem is more general and still as
easy to write as in the LP case (provided K� is known. In special case, K is
self-dual, then things are easier: K� = K).

� We then de�ned conic-quadratic program (CQ) or second-order cone pro-
gram (SOCP) as a conic program with K as cross-product of �nite number
of ice-cream cones (note that this K is a good cone and duality theorem
applies; moreover, it is self-dual! So writing the dual is a trivial job). We
commented that many convex programs in Euclidean spaces can be written
as CQs/SOCPs and hence are very useful. We will study SOCPs in the next
lecture. Then we will study conic programs in generic (�nite-dim) Hilbert
spaces | a particular case leads to Semi-de�nite programs, which are very
generic and yet easyto handle.

� Mandatory reading: Entire Lecture-1 in Nemirovski [2005].
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Lecture 19

� We de�ned Second Order Cone Programs (SOCPs) or Conic Quadratic Pro-
grams (CQs) as those conic programs with the cone K as a Cartesian-
product of �nite number of ice-cream cones i.e., K = Lp1 � Lp2 � : : :� Lpq ,

where Lp = fx 2 Rp j k[x1 : : : xp�1]>k2 � xpg. Assuming b =

2
66666664

d1
�1
...
dq
�q

3
77777775
and

A> =

2
66666664

�D>
1

�f>1
...

�D>
q

�f>q

3
77777775
, where each Di 2 Rn�pi�1; di 2 Rpi�1; fi 2 Rn; �i 2 R, we

can re-write any SOCP as:

min
x2Rn

c>x;

s.t. kD>
i x+ dik2 � f>i x+ �i; 8 i = 1; : : : ; q:(19.1)

Infact, many textbooks choose to de�ne SOCPs as OCPs of the above (19.1)
form. The constraints of the form those in an SOCP are called as Second
Order Cone Constraints (SOCs) or Conic Quadratic Constraints (CQCs).

� Since K here is a good cone (and infact self-dual), the conic-duality theo-
rem 18.0.14 can be applied and we showed that the dual turns out to be:

max
yi2Rpi�1;�i2R; 8 i=1;:::;q

Pq
i=1�d>i yi � �i�i;

s.t. kyik2 � �i; 8 i = 1; : : : ; q;
Pq

i=1Diyi + �ifi = c:(19.2)
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� Notice that the dual is again easy to write down (can write a computer
program to do it). Also, it is again an SOCP. So it is self-dual (like a LP).

� We took examples of three programs we encountered in this course and ac-
tually realized that they can be written as SOCPs (two of them appear in the
problem sets). One of them was the dual norm problem: minx2Rn x>y; s.t.kxkM �
1, where M � 0. We �rst wrote down this program as a SOCP (using the
EVD of M) and then the dual of this SOCP. Interestingly, the dual of this
SOCP was trivial to solve and essentially boiled down to the constant num-
ber kykM�1, which is indeed the optimal value of the original problem! We
concluded that sometimes the dual may turn out to be a simple problem,
which can be analytically solved; whereas this solution may not be obvious
for the primal.

� We later on pointed out that there are many sets, and functions whose epi-
graphs or level-sets may be represented using some �nite number of SOCs.
We stressed on the importance of familiarizing ourselves with all such \good"
functions/sets. For e.g., f(x) = kxkM is such a function. A huge list of such
good functions/sets appear in lecture-2 in Nemirovski [2005] and in Lobo
et al. [1998]. Such a knowledge will help in identifying SOC-nature of the
programs you might encounter in research.

� A problem-set problem also shows that any Quadratically Constrained Quadratic
Program (QCQP) can be written as an SOCP.

� We mentioned that cvx1 is a software, which identi�es many \good" func-
tions/sets and allows to use them in describing optimization problems. It
internally converts them to an SOCP and calls a suitable SOCP solver. Infact
it is capable of doing this with all named CPs we encounter in this course.
Examples of some SOCP solvers are Mosek2 and SeDuMi3. Unlike cvx, these
require the user to describe programs only in their standard form i.e., either
(19.1) or (19.2). Infact all of these toolboxes can also handle SDPs, which
form a big class of convex programs, which we will de�ne later.

� We then went on to see how conic programs in arbitrary (�nite-dim) Hilbert
spaces look like. We wanted to de�ne them generically where the cone K
may not lie on the space of the variables. In such a case we wanted to look
at how one can linearly transform vectors from one space to another.

1http://cvxr.com/cvx/
2http://www.mosek.com/
3http://sedumi.ie.lehigh.edu/
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� We showed that every linear function f : V 7! W can be represented using
a m � n matrix, say Mf ,where m is dim. of W and n is dim. of V . Infact
we showed that if v̂ is the representation of v 2 V using a basis of V and ŵv

is the representation of wv = f(v) 2 W using a basis of W , then ŵv = Mf v̂
(note that this is in sync with our notion of linear functions from Rn to Rm).
Moreover, if the basis of V and W were orthonormal, then we also showed
that for any w 2W and v 2 V , we have hw; f(v)iW = ŵ>Mf v̂ = v̂>M>

f ŵ =
hv; f>(w)iV , where f> is that linear function induced by the matrixM>

f and
is called as adjoint of f . In case f = f> (analogous to M = M>), we say
that f is self-adjoint4.

� In the next lecture we will use our knowledge about linear functions/transformations
and de�ne/study Semi-De�nite Programs (SDPs).

� Mandatory reading: Entire Lecture-2 in Nemirovski [2005]. Read Lobo et al.
[1998], which is a seminal work by Boyd and his team. This can be down-
loaded from: http://stanford.edu/~boyd/papers/socp.html.

4Because symmetric matrices have EVD, and every linear function has this associated matrix,
we can now talk about EVD of any self-adjoint linear function f . This is the natural generalization
of EVD.
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Lecture 20

� We started with the de�nition of a conic program in generic (�nite-dim)
Hilbert spaces:

min
x2V

hc; xiV ;
s.t b�W A>(x) 2 K �W;(20.1)

where V = (V;+V ; �V ; hiV ) is the Hilbert space in which the variable lives,
W = (W;+W ; �W ; hiW ) is the Hilbert space in which K, a cone, lies; c 2 V ,
b 2W and A> : V 7!W is a linear function, whose adjoint is A :W 7! V .

� It was left as an exercise to verify that a completely analogous conic-duality
theorem 18.0.14 can be written in this case and the (strong) dual is:

max
y2W

�hb; yiW ;
s.t. y 2 K�;A(y) +V c = 0V ;(20.2)

where 0V is the identity element for V.
� We looked at a special case of the conic program with V as the usual n-
dimensional Euclidean space, W as the usual space of symmetric matrices of
size m, K as the psd cone and A>(x) =

Pn
i=1 xiAi, where each Ai 2 Sm, the

set of all symmetric matrices of size m. This is de�ned as an Semi-De�nite
Program (SDP):

min
x2Rn

c>x;

s.t B �Pn
i=1 xiAi � 0;(20.3)

here B 2 Sm.

� The constraint of the form of that in an SDP (20.3) is called a Linear Matrix
Inequality (LMI).
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� The dual of SDP is immediate to write provided we determine the adjoint
A. We showed that A(Y ) = [hA1; Y iF : : : hAn; Y iF ]>. Moreover the psd cone
is self-dual in space of symmetric matrices. Hence the dual of an SDP (20.3)
is:

max
Y 2Sm

�hB; Y iF ;
s.t. Y � 0;�hAi; Y iF = ci; 8 i = 1; : : : ; n(20.4)

� We took two examples of problems i) �nding min. radius ellipse enclosing
given set of points ii) �nding a \simple" elliptic separator between two sets
of points. We gave a rough sketch of posing these problems as SDPs. The
key tricks employed were the clever use of Schur-complement lemma and
that every �nite number of LMIs can be written as a single LMI.

� We also showed that1 every SOC can be expressed as an LMI: kDx +
dk2 � f>x + � , (Dx + d)>(Dx + d) � (f>x + �)2; f>x + � � 0 ,"
(f>x+ �)I (Dx+ d)
(Dx+ d)> f>x+ �

#
� 0, which can be expressed as an LMI. Hence

SOCPs can be written as SDPs and in some sense form the \biggest" well
studied set of convex programs.

� As mentioned earlier, Mosek, SeDuMi and cvx all handle SDPs.

� We then focussed our attention to OCPs and their duality. We recalled
the connection of dual and optimality conditions and said that the KKT
conditions directly if employed in obtaining dual, then dual will involve the
optimal solution of x�, which then makes the dual unusable. Instead, we
wanted to re-write the problem in such form, where optimality conditions
(which ofcourse will be equivalent to KKT) may be more elegant. This
is what motivated us to write OCP (14.3) as an un-constrained problem:
minx2X f(x) + IC(x), where C is the constraint set of the OCP i.e., C =
fx j gi(x) � 0g.

� Moving towards duality, we re-wrote the indicator function in its \dual
form"2: IC(x) = max��0

P
i �igi(x). Thus the OCP 14.3 is equal to:

min
x2X

max
��0

L(x; �);

where L(x; �) = f(x) +
Pn

i=1 �igi(x). This is called the Lagrangian function
of the OCP (14.3). The domain of the Lagrangian function is X � Rm

+ .

1This proof is what I think Sami was suggesting. Somehow I failed to realize :(
2Rather than its conjugate form, which is the support function of C.
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� It was then easy to see that OCP (14.3) is greater than or equal to:

max
�2Rm

L(�);

s.t. � � 0;(20.5)

where L(�) = minx2X L(x; �) (usually called as the Langrangian dual func-
tion). Hence (20.5) is a weak dual of (14.3).

� Interestingly, the weak duality holds even if f; gi in OCP (14.3) are not
convex! Moreover, even in this case, �L, which is the point-wise maximum of
a�ne functions, is a convex function! In other words, the weak dual (20.5) is
ALWAYS a convex program; irrespective of convexity of the original ordinary
program. This result is very helpful in obtaining lower bounds (sometimes
tight) on the primal problem's optimal value.

� In case we assume (14.3) is indeed OCP, then we additionally get that L(x; �)
is convex in x. In this case it the optimization problem involved in obtaining
L(�) = minx2X L(x; �) is convex and hence \easy" to solve. Also, we have
that: L(x) = max��0 L(x; �) is convex (note that the primal problem is same
as minx2X L(x)).

� We visualized how the Lagrangian function for an OCP looks like and guessed
how the Lagrangian function of a perhaps non-convex ordinary program may
look like.

� In the next lecture, under some mild regularity conditions we will show that
the problem in (20.5) is infact a (strong) dual. This duality scheme is called
as Lagrangian duality.

� Mandatory reading: Entire Lecture-3 in Nemirovski [2005]. Read L. Vanden-
berghe and S. Boyd [1999], which is a seminal work by Boyd and his team.
This can be downloaded from: http://www.stanford.edu/~boyd/papers/

pdf/sdp-apps.pdf. Vandenberghe and Boyd [1996] is also worth reading.
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Lecture 21

� We set out for proving that (20.5) [denoted by (D) henceforth in this lecture]
is a (strong) dual of the primal problem (14.3) [denoted by (P) henceforth
in this lecture]; perhaps under some regularity conditions.

� Looking at the similarity in the expression of the Lagrangian function and
the gradient condition in the KKT conditions, we started by assuming the
primal (P) is a di�erentiable regular ocp. In such a case, we know that x� is
an optimal solution of (P) if and only if there exists a �� such that (x�; ��)
is a KKT point. The gradient condition in the KKT conditions gives us
that L(��) = L(x�; ��) = f(x�). Together with the weak duality proved in
previous lecture, this gives that �� is infact an optimal solution for (D) and
moreover, strong duality holds!

� For us this is the easiest way of proving Lagrangian duality. It however turns
out that the statement of Lagrange duality does not even require assumptions
of solvability of the primal (boundedness is enough) and (P) need not be
di�erentiable. Here is the generic statement which can be made:

Theorem 21.0.15. Let (P) given by (14.3) be an ordinary program (not
necessarily convex). Then:

1. (D) is a weak dual of (P). i.e., (P) � (D).

2. if (P) is regular bounded ocp, then (D) is a (strong) dual of (P)
i.e., (P)=(D). Further, (D) is solvable1.

1Note that (P) may be unsolvable. Infact, Theorem D.2.3 in Nemirovski [2005] shows that
x�; �� are optimal solutions of (P) and (D) respectively if and only if (x�; ��) is a saddle point of
the Lagrangian function. However this characterization of optimality may not be very useful to
us and hence we did not cover this theorem in lecture. Many books, including Nemirovski [2005],
infact prove KKT conditions from this saddle point characterization of optimality.
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3. if (P) is regular bounded and di�erentiable ocp, then in addition
to the above results, we have that x�; �� are primal, dual optimal
solutions (respectively) if and only if (x�; ��) is a KKT point.

� We outlined the proof of this theorem and not surprisingly, the key idea
is to employ the separation theorem. The detailed proof is in Theorem
D.2.2 in Nemirovski [2005].

� We took the example of a strictly convex QP and computed its Lagrange
dual. The dual was another strictly convex QP! In process, we noted that if
the QP was not strictly convex i.e., Hessian of the objective is psd, then there
is no \easy" way of eliminating the primal variables to write the dual. We
later on said the the most cumbersome part of writing the Lagrange dual is
infact computing L. And ofcourse, if the problem is not di�erentiable, then
computing L is mostly likely cumbersome.

� We then generalized the example by taking a PCCP and wrote down its
Lagrangian dual and the dual was same as that given by PCCP duality we
derived earlier. This was not surprising as we know that all the di�erent
duality schemes, though outwardly look di�erent, indeed use the separation
theorem and hence cannot be fundamentally di�erent.

� We then took example of an SOCP and tried to write its dual. Again,
computing L was the problem and there seemed to be no way of writing the
SOCP as a di�erential OCP (in which case computing L perhaps is easy).
This example motivated us to combine the \nice" aspects of Lagrange and
conic duality, and perhaps write down the \Lagrange-conic duality scheme"2.
We were able to easily establish weak duality:

max
y2Rm

�f�(�Pm
i=1 yiai)�

Pm
i=1 biyi;

s.t. y 2 K�:(21.1)

is the weak dual of

min
x2X

f(x);

s.t. b�A(x) 2 K;(21.2)

� Note the analogy with the PCCP duality. We further said that we can talk
about Lagrange-conic duality in problem of following form3:

min
x2X

f(x);

s.t. [�g1(x) : : :� gm(x)]
> 2 K;(21.3)

2This is studied under generalized inequalities in chp5. of Boyd and Vandenberghe [2004].
3Bonus marks to students who write down the duality theorem in this case and prove it.
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� Now the idea is to \push" the non-di�erentiabilities in the problem at hand
into the cone and have f; gi di�erentiable; so that computing L is easy.
Further if K is self-dual, then K� = K. Thus we expect that once the
problem is posed in (21.2/21.3) form (with di�erentiable f; gi), writing down
the dual will be easy.

� We concluded the lecture with a short discussion of non-convex problems,
in whose case it is desirable to obtain a lower bound on the optimal value of
the (non-convex) minimization problem at hand. One way is to write down
a dual of it. We noted that both conic (with K being arbitrary set) and
Lagrangian duality schemes (or the Lagrange-conic duality) can be applied
to obtain weak duals. The nice thing is that both ways we get a convex
problem as the dual, which can be solved \easily" to obtain a lower bound
on primal's optimal value. Another way is4, to write the given problem in
a form with convex objective (this can always be done) and then relax the
non-convex constraints. i.e., take a convex set which covers the non-convex
feasibility set. The resulting problem is convex and solving it will again give
a lower bound on primal's objective. Now, in general, in both these methods
the tightness of the bound is not known. However there are a very interesting
class of problems for which bounds are known. Please read sections 3.4 and
3.5 in Nemirovski [2005] to know more about them. Most interesting is the
case of a generic QCQP with a single constraint (it so happens that the
eigen-value-problem can be posed as one in this form). In this case both
the methods (Lagrangian dual and Shor's relaxation scheme) give a problem
whose optimal value is equal to the original problem! This also gives an
example of a non-convex program whose dual is strong!

� Mandatory reading: Entire Appendix section D in Nemirovski [2005]. Entire
chp.5 in Boyd and Vandenberghe [2004] (except may be sensitivity analysis).

4Suggested by Sami
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Lecture 22

� All along the course we mentioned that convex programs are \easy" to solve.
However we never clearly mentioned what easy was and what results about
solving them exist. To this end, we presented Theorem 4.1.2 in Nemirovski
[2005]1. The book presents a constructive proof of this theorem by presenting
the ellipsoid method which can solve a generic convex program (with not \too
di�cult" objective and feasibility set). In loose words, the statement is that
a generic convex program with reasonable objective and feasibility set can
be solved in polynomial time.

� Though this result gives immense relief, the ellipsoidal method is rarely
employed in practice. This is because it is too generic to achieve \fast"
convergence on the speci�c problem or class of problems at hand.

� We then began a theoretical study of optimization algorithms. The algo-
rithms we study are numerical procedures, and are iterative in nature. Hence
one usually is interested in knowing how many iterations does the algorithm
need to reach an �-accurate solution: x̂ is �-accurate if either i) kx̂� x�k � �
or ii) jf(x̂)�f�j � �, where f�; x� are optimal value and solution respectively.

� Since it does not make sense to compare algorithms (for number of iterations
for convergence) for a single instance of a mathematical program, the idea
is to talk about bounds on the number of iterations for convergence on a
pre-speci�ed class of programs.

� When it comes to comparing algorithms (in terms of no. iterations), it
makes sense to do so across algorithms with same per-iteration \information-
cost". For example, the ellipsoid method uses a gradient and feasibility-set
separator oracles at every iteration. So it makes sense to compare it with
other methods which also have this \information-cost" (i.e., same oracles).

1Please study the proof of this theorem from the book.
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Finally, an algorithm is said to be optimal if it has better convergence rate
(i.e., no.iterations for �-accuracy) than any other method in its class (i.e.,
any other method with same information-cost). We mentioned that such
analysis of algorithms is common in optimization theory and is called as
Information-based complexity2 (rather than computational complexity).

� Now that the setting is clear we began analyzing the performance of a well-
known method gradient-method, given by (1.2.9) in Nesterov [2004], on the
class of Smooth un-constrained convex programs, which are convex programs
with feasibility set as the entire Hilbert space and the objective function
is a di�erentiable everywhere convex function with the gradient function
(the function which takes a point and returns the gradient of the objective
function at that point) being Lipschitz continuous i.e., krf(x)�rf(y)k �
Lkx� yk;8 x; y 2 V for some L 2 R; L > 0.

� The key step in gradient method is its updated formula given by xk+1 = xk+
skrf(xk). We discussed two motivations for this update rule i) Any direction
which makes angle greater than 90o with the gradient is a direction of descent
i.e., the function locally decreases along that direction. Hence the idea is to
take appropriate steps of size sk along the negative gradient direction, which
gives the \steepest descent" ii) consider the problem of minimizing the �rst
order approximation of the function around xk i.e., f(xk)+hrf(xk); (x�xk)i
rather than the function itself. Now, since this approximation is valid locally,
lets try to minimize this approximation while also insisting on not moving
far o� from the current iterate xk. Thus one way of obtaining xk+1 is:

xk+1 = argminx2V f(xk)+ hrf(xk); (x�xk)i+
1

2sk
kx�xkk2 = xk�skrf(xk)

Intutively, both explainations suggest that the choice of step-size might be
crucial for convergence. This is indeed the case.

� We noted that many variants of gradient method exist with various schemes
for choosing step sizes (where convergence can be gauranteed). The simplest
of them is a constant step size of 1

L
.

� We repeated the proof of corollary 2.1.2 in Nesterov [2004]. In summary, the
result is that with the gradient method (sk = 1

L
), we have: f(xk) � f� �

2Lkx0�x�k2
k+4

. This results shows many things: i) �rstly it shows that, the
method when started with any x0, asymptotically converges to the optimal
value f�. i.e., as k ! 1, f(xk) ! f�. If any algorithm satis�es such a

2Refer section 1.1 in Nesterov [2004].
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property, then it is known as globally convergent. Hence, we have that the
gradient method with constant step size 1

L
is globally convergent on the

class of smooth unconstrained convex programs with Lipschitz const. L ii)
To reach �-accuracy, we need atmost k / O(1

�
) iterations. This is called the

rate of convergence. Note the keyword atmost: it means that there might
be speci�c problems where we get better convergence rate iii) higher the L,
\complex" is the objective and the bound shows that the number iterations
for �-accuracy grows with it iv) similarly, as the initial guess x0's distance
from optimal solution increases, more iterations are needed.

� We then asked the question is the gradient method optimal? It turns out that
in view of theorem 2.1.7 in Nesterov [2004], all methods with information-cost
being �rst-order i.e., �rst-order (gradient returning) oracles are assumed to
be available, and xk 2 xo+LIN(frf(x0; : : : ;rf(xk�1))g), will atleast need
O( 1p

�
) iterations. Hence the gradient method, which does fall under this

class of algorithms, may not be optimal.

� Infact, Nesterov presented a modi�ed gradient method, which is as easy
to code as the gradient method, but has convergence rate atmost O( 1p

�
),

showing that it is an optimal method! Infact it turns out that it is hard to
prove such a good bound (under global convergence) with other traditional
methods like conjugate gradient or bundle methods or even second-order
methods like the Newton method. We refer to this as the Nesterov method;
refer eqn. (2.2.8) in Nesterov [2004].

� Mandatory reading: Sections 2.1 and 2.2 in Nesterov [2004].
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Lecture 23

� We began by listing out practical di�culties in implementing the (simple
looking) gradient-method with constant step-size, whose convergence was
established in the previous lecture1. Firstly, the gradient might not have
an analytical expression, in which case one has to resort to numerical tech-
niques. An example is the Lagrangian dual function2. Now convergence with
exact gradient is proven; what about such an approximate gradient? There
are some results along this direction (but beyond scope of this course). In
any case, if the gradient computation itself is computationally challenging,
then we are doomed. Secondly, L (the Lipschitz const.) is not given in ap-
plications and more often than not, it is di�cult to estimate it. Also, if a
pessimistic estimate of L is used, then the convergence in practice might be
terribly slow.

� Fortunately, the second problem has an easy way out: there are many
other \easier" schemes for step-sizes for which convergence can be shown: i)
Armijo's rule (refer eqn. 1.11 and corresponding section on pg.29 in Bert-
sekas [1999]) ii) diminishing step-sizes i.e., sk ! 0;

P1
k=1 sk ! 1 (for eg.

sk =
1
k
). Proposition 1.2.1 and 1.2.4 in Bertsekas [1999] show the convergence

with these step-size schemes, infact on generic (non-convex) smooth pro-
grams3. In the convex smooth case, essentially both theorems prove global
convergence under the condition that the sequence fxkg is bounded or an
objective with bounded level sets. From results it clear that in the convex
smooth case, the diminishing step sizes is an easy option4; while the Armijo
rule is best to try in a generic setting. Note that, however, Armijo rule
assumes a function value oracle (i.e., zero-order oracle in addition to the

1Similar comments hold for the Nesterov's method
2Interested students look up Danskin's theorem
3Infact, prop. 1.2.1 doesn't even insist on smoothness. Di�erentiability seems enough!
4This doesn't mean that always this gives fastest convergence. For di�erent speci�c instances

of programs, di�erent step-size schemes may perform better.
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�rst-order one) being present. Such variants in step-sizes are also studied
for the Nesterov's method: Refer sec. 10.2.1 in Nemirovski [1995].

� We then studied variants of gradient method, where the direction chosen at
each step is not negative of gradient, but other valid descent direction. One
way of representing updates with such methods is: xk+1 = xk�skDkrf(xk),
where Dk � 0 is a pd matrix. Such methods are called as Descent methods5.
We also showed the connection between descent methods and methods which
locally approximate the function by second-order terms (instead of �rst-order
terms in the gradient method):

xk+1 = argminx2Rnf(xk)+rf(xk)>(x�xk)+ 1

2sk
(x�xk)>D�1

k (x�xk)+
k
2
kx�xkk22;

which6 is equal to xk+1 = xk �
�
s�1k D�1

k + 
kI
��1rf(xk) and exactly gives

back the Descent method when 
k = 0. Gopi pointed out that though

k = 0 initially seems bad for convergence (as second-order approximation
holds locally), the other quadratic term infact acts as the regularizer7 instead
of kx� xkk22.

� Two special cases of the Descent methods are particularly interesting: i)
Newton method: here, 
k = 0; sk = 1 8 k and Dk = Hf(xk)

�1, the in-
verse of the Hessian of the objective f at xk. Hence this method applies to
cases where Hessian is pd at all xk rather than psd (psd alone is guaranteed
for convex functions) ii) Levenberg-Marquardt (LM) method (refer sec.5.2
in Fletcher [2000]): here, 
k > 0; sk = 1 8 k and Dk = Hf(xk)

�1. Note that
this method applies to any convex unconstrained program as the Hessian is
always psd and hence Hessian plus a positive diagonal matrix is always pd
(and hence invertible).

� We mentioned that convergence with both variants can be proved (in case of
Newton with suitable assumptions about invertibility of Hessian). However,
what is more interesting is an extremely fast convergence of these methods,
when x0 is \close" to an optimal solution. This analysis is called local-
convergence analysis (as opposed to the global one we saw earlier). To this
end we presented theorem 1.2.5 in Nesterov [2004]. This shows that k /
log(1

�
) is the (local) rate of convergence of the Newton's method | which

is extremely fast when compared to the ones we saw till now. While this is
encouraging, proving such rates for global convergence is di�cult!

5Infact, the propositions in Bertsekas book noted book prove convergence with descent methods.
6Note that with Dk = Hf (xk)

�1, the inverse of the Hessian of the objective f at xk, this method
uses the Taylor expansion for the second-order term.

7This is true, and hence the Bertsekas book manages to prove convergence of Descent methods.
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� Namit and Sami then gave an interpretation to the LM method: with high 
k
it is like gradient method and with low 
k it is more like Newton and hence
it is kind of a hybrid method. For faster rate of convergence one might want
lower 
k, provided the Hessian + 
kI stays pd (and not ill-conditioned); this
explains the funny 
k scheme in LM. To summarize, LM method tries to
achieve a mix of the goodness in gradient method (that of global convergence)
and the Newton method (extremely fast local convergence) | and hence is
preferred in practice than the Newton's method, unless it is known that the
Hessian is pd.

� Now comes the question whether to prefer LM-method or the Nesterov
method. Ofcourse these methods are not comparable. Empirically also there
is no clear winner. It is best to try both and then zero-in.

� In the next lecture we will present schemes which avoid the Hessian compu-
tation and inversion in Newton/LM methods and try to achieve comparable
rates. These are known as Quasi-Newton methods.

� Mandatory reading: Entire chapter 1 in Nesterov [2004]. Recommended
reading: sections 9.1-9.5 in Boyd and Vandenberghe [2004]
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Lecture 24

� The key overhead in Newton/LM methods is the Hessian computation and
its inversion at each iteration (which is O(n3)). If we have a descent method
with Dk as not the inverse of Hessian, but rather some-other pd matrix,
then Hessian computation/inversion can be avoided. Ofcourse we have to
still ensure we take a pd matrix and one which atleast matches gradients.
The methods which achieve this goal are called as Quasi-Newton (or Variable
Metric) methods, which not only update the iterate, but also the matrix Dk

using a suitable \simple" update rule.

� We started by saying that we will have a simple 1-rank update Dk = Dk�1+
�uu> (where � > 0). This update rule ensures that all Dk are pd, provided
D0 is pd. Later on we can repeat the exercise with rank-2 update: Dk =
Dk�1 + �uu> + �vv> (�; � > 0).

� The key constraint imposed on D is that the corresponding objective func-
tion second-order approximation's gradient will match that of the objective
function itself. i.e., gradient of f(xk)+rf(xk)>(x�xk)+ 1

2
(x�xk)>D�1

k (x�
xk) at xk and xk�1 equals rf(xk) and rf(xk�1) respectively. This leads to
the Quasi-Newton rule: Dk(rf(xk) � rf(xk�1)) = xk � xk�1. One way of
choosing u and � with this rule being satis�ed is given on pg. 41 in Nesterov
[2004] (under the name rank-1 correction scheme).

� The rank-2 update schemes on Dk and D�1
k respectively are also in pg. 41

under the names DFP and BFGS respectively. As mentioned there, the
BFGS scheme is the most preferred.

� Quasi-newton methods have local convergence rates faster than gradient
method (exact form again appears in pg. 41). However wrt. global conver-
gence no bounds with rates better than gradient method are proven. These
methods require O(n2) computations in each iteration.
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� We then moved on to conjugate-gradient methods which are variants with
O(n) computations in each iteration and infact are directly comparable with
Nesterov/gradient method (�rst-order black box). The nice thing about
these methods is i) n-step convergence in case of quadratic functions ii) local
convergence rate faster than gradient method.

� Since these methods were originally developed for quadratic (unconstrained)
minimization, we outlined the method with suitable motivations for this case:
f(x) = 1

2
x>Ax+ b>x+ c, where A � 0. From EVD knowledge we know that

there exist a basis (infact, orthogonal) fd1; : : : ; dng such that they form a
A-orthogonal (conjugate-direction) set i.e., d>i Adj = 0 whenever i 6= j and
not zero otherwise. It was easy to see that once these directions are known,
then the optimal solution x� =

Pn
i=1 �

�
idi can be computed using: ��i =

b>di
d>
i
Adi

(i.e., in O(n2) operations).

� Now the idea is to come up with these directions iteratively using O(n)
operations at each iteration such that movement along these directions at
each step guarantees optimality at the end of n steps (this will again be O(n2)
computations). One way to do this is by taking steps xk = xk�1 + sk�1dk�1
and update dk = �rf(xk�1)+�k�1dk�1. Now the idea is to choose sk and �k
such that i) the directions dk indeed form a A-orthogonal set ii) the directions
dk are descent directions iii) xn+1 is optimal solution i.e., rf(xn+1)>di = 0
for all i = 1; : : : ; n.

� We will now show that it is enough to choose sk�1 appropriately to satisfy
iii): xk = xk�1 + sk�1dk�1

) rf(xk) = rf(xk�1) + sk�1Adk�1(∵ multiply by A)

) d>k�1rf(xk) = d>k�1rf(xk�1) + sk�1d>k�1Adk�1(∵ dot product with dk�1)

) d>k�1rf(xk) = 0(If clever choice of sk�1 =
�d>k�1rf(xk�1)
d>k�1Adk�1

)

It remains to show d>i f(xk) = 0 8 i = 1; : : : ; k � 2. This can be shown
provided di indeed form a A-orthogonal set: taking dot product on both
sides with dk�2 in above equations, we have d>k�2rf(xk) = d>k�2rf(xk�1) +
sk�1d>k�2Adk�1 = 0, because, the �rst term in the sum is zero by choice of
sk�2 and the second term in sum is zero again because of A-orthogonality
(or conjugacy). Now because of the additive nature of the update formula,
we also have: rf(xk) = rf(xk�i) + Pi

j=1 sk�jAdk�j. Again repeating the
above exercise we have: d>i rf(xk) = 0 8 i = 1; : : : ; k� 1. In particular, this
is true with k = n+ 1, and hence iii) is satis�ed.
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� We will now show that it is enough to choose �k�1 appropriately to satisfy
i):

dk = �rf(xk�1) + �k�1dk�1 ) d>k�1Adk = �d>k�1Arf(xk�1) + �k�1d>k�1Adk�1

) d>k�1Adk = 0(with clever choice of �k�1 =
d>k�1Arf(xk�1)
d>k�1Adk�1

Analogous to the iterate update, since the direction update is also additive
in nature, we obtain i). A slight re-writing of the formula for � gives the
Fletcher-Rieves formula in pg. 45 in Nesterov [2004].

� In summary, the conjugate-gradient method with the above choice of sk
and Fletcher-Rieves direction update, converges in n steps to the optimal
solution in case of quadratic (unconstrained) minimization problems.

� Now this method \as is" will not work for generic smooth functions. The
conjugate-gradient method for smooth functions is presented in pg. 45
in Nesterov [2004]. Note the key changes: i) the choice of sk is by ex-
act line search ii) Polak-Ribbiere direction update is the most preferred iii)
the interpretation for dk is lost after n iterations (as there can be only n
LI vectors in n-dim space). Hence, after every n conjugate-gradient steps,
one sets � = 0 i.e., takes a gradient-descent step. And this procedure is
repeated. With this one gets local convergence rate which is better than
gradient method and is near to Newton method's rate for low-dimensional
problems (exact expression again appears on pg. 45). Global convergence
rate again is not proven to be better than the gradient method.

� This completed our discussion about algorithms for smooth-unconstrained
problems. We gave some tips for choosing the appropriate algorithm:

1. Ofcourse if nothing is known about a problem, except that it is uncon-
strained i.e., not even convexity is established, then gradient method is
the choice.

2. If additionally it is known that it is convex, then one can try cvx.

3. Additionally if it is smooth, then Nesterov's method is the �rst choice
and the best bet.

4. If for some reason Nesterov's method is \slow" in your problem, and
the problem at hand is high-dimensional (where O(n2) or beyond oper-
ations are infeasible), then one can try conjugate-gradient with Polak-
Riebbiere direction update or gradient method with Armijo rule etc.

5. If the problem is moderate dimension (O(n2) operations is ok), then
one may try Quasi-Newton method with BFGS update.
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6. Additionally if Hessian information is available and the problem di-
mension is small (O(n3) operations are �ne), then LM-method can be
a choice.

� Also, on the class of smooth unconstrained problems no known algorithm,
including the ones using second-order information, beats the global conver-
gence rate of the Nesterov's method! However on speci�c problems, or on
special class of smooth problems more interesting results exist. For e.g.:

1. For strictly convex quadratic ones (which are not ill-conditioned), conjugate-
gradient is the best (converges in n steps).

2. For strongly convex functions (refer section 2.1.3 in Nesterov [2004]),
the convergence rate achieved by gradient method itself is comparable
to local convergence rate of Newton's method (refer theorem 2.1.15 in
Nesterov [2004]).

3. For self-concordant convex functions, the Newton method (actually
modi�ed Newton method called damped Newton method, which has
a step-size parameter) globally converges with an extremely fast rate
(refer section 9.6 in Boyd and Vandenberghe [2004] and/or section 4.1
in Nesterov [2004])!

� We then began discussing algorithms for non-smooth unconstrained mini-
mization i.e., we assume a sub-gradient oracle. We gave an intuition why
this class is more di�cult to optimize | because the negative of sub-gradient
direction may actually be a direction of increase of the function (even lo-
cally)! Hence in a simple algorithm like sub-gradient method: xk = xk�1 +
sk�1rf(xk�1), where r represents sub-gradient, is NOT a descent method.

� We then de�ned the sub-gradient method (equation 3.2.8 in Nesterov [2004])
and repeated theorem 3.2.2. in the same book, which proves asympotic
convergence of the method (in some sense).

� We noted that the sub-gradient descent is \optimal" on the class of non-
smooth unconstrained problems (refer to theorem 3.2.1 in Nesterov [2004]).

� Mandatory reading: Sections 1.3.1, 1.3.2 and 3.2.3 in Nesterov [2004]. Rec-
ommended reading: sections 9.6-9.7 in Boyd and Vandenberghe [2004].
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Lecture 25

� We brie
y reviewed the sub-gradient method, which is in some sense optimal.
We noted that, analogous to the case of smooth problems, there might be
special class of non-smooth (uncons.) problems which might be easier to
solve: for eg. objectives of the form f(x) = maxi=1;:::;m fi(x) with each fi(x)
smooth. Note that f may not be di�erentiable. However we can compute
f 's sub-gradient1. In this case a method which converges in O( 1p

�
) can be

devised. The details are in section 2.3 in Nesterov [2004].

� We then moved on to solving smooth convex programs: minx2C f(x), where
C is closed convex set and f is smooth convex function. In this case we wrote
down the following simple update rule, which is analogous to that in the
gradient method: xk+1 = argminx2Cf(xk)+rf(xk)>(x�xk)+ 1

2sk
kx�xkk22 =

argminx2Ckx � (xk � skrf(xk))k22 = PC(xk � skrf(xk)). In simple words,
take the usual gradient step and projected it back to the constraint set. This
is called the Projected Gradient Method (PGM)

� It was easy to show convergence once we proved ky � zk22 � ky � PC(y)k22 +
kPC(y) � zk22, for all y =2 C and z 2 C (refer Lemma 3.1.5 in Nesterov
[2004]). This gives that kPC(xk � skrf(xk))� x�k � kxk � skrf(xk)� x�k,
where x�, the optimal solution. After this step, once can repeat the proof2

of convergence in the unconstrained case and obtain the same convergence
rate. Though the convergence rate is the same, it is coming at a cost of an
extra projection step at each iteration.

� It is easy to see that PGM is well-suited to problems where projection onto
the constraint set is easy: for eg. a box, ball, simplex, ellipse etc.

� As in case of unconstrained problems, PGM is not optimal. There exist

1A problem set problem characterizes the sub-di�erential set.
2A lengthy proof (but more insightful one) of the same is in Nesterov [2004].
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projection versions of Nesterov method which are indeed optimal (refer eqn.
2.2.19 in Nesterov [2004]).

� Now what if the constraint set is described by functional inequalities i.e., the
case of an ordinary convex program? It so happens that in this case one can
avoid the projections and do the following: de�ne �g(x) = maxi=1;:::;m gi(x)
and if g(xk) < 0, then take a (sub)gradient step; else take a step which
deceases �g i.e., go in negative direction of r�(g)(xk) (i.e., (sub)gradient step).
A slightly modi�ed version of this method with appropriate step-choice is
in eqn. 3.2.13 in Nesterov [2004]. By theorem 3.2.3, it is guaranteed to
converge and infact, the rate is same as that in the unconstrained problem
case! Note that unlike the projected gradient method, this method has no
\big" overhead compared to unconstrained case. This shows that in some
sense constrained optimization is as easy/di�cult as the unconstrained case.

� Some algorithms pose/approximate the constrained problem as an uncon-
strained one and then solve using unconstrained problem techniques. The
interior-point algorithms (refer chapter 4 in Nesterov [2004] or chapter 11
in Boyd and Vandenberghe [2004]), which are at the heart of the standard
toolboxes, employ this very idea. The alternate way is to look at the La-
grange dual and if it is smooth, then since the constrained set is �rst quad-
rant, one can employ projected gradient method. However with this one can
recover optimal solution for dual and the optimal value. One may need to do
extra work to arrive at optimal solution for the primal. We gave an example
of a convex QP with equality constraints to illustrate various points. Please
read chapter 10 in Boyd and Vandenberghe [2004] for such special cases.
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