CS 709 Problem-set

1  Theory: Convex Analysis

1.1 Domain: Hilbert Space

1. Verify whether the following are linear sets. For cases where the set is linear, provide a basis, a
dual basis and determine the dimensionality:

(a) Set of all bisymmetric matrices of size n

Let B be set of bisymmetric matrices of size n

B = {{Uij}i,jzl...nwi,j =1...n, Uiy = Uj; = U(n—i+1)(n—j+1) = u(nfj+1)(n7i+1)}

[a b ¢ d]

b e f c
A 4 x 4 Bisymmetric Matrix looks like

c f e b

d ¢ b a

Let u,v € B,

au+v = {a.u;+ vi}ij=1.n

But we have

Uiy = Uj; = U(n—i+1)(n—j+1) = U(n—j+1)(n—i+1) and

Vij = Vji = U(n—i+1)(n—j+1) = U(n—j+1)(n—i+1)

= QLUjj + Ui = QU+ Vji = QUn—it1)(n—j+1) T U(n—i+1)(n—j+1)
= QU(n—j+1)(n—i+1) T V(n—j+1)(n—i+1)

= au-+veB.

= B is linear set

Basis for B will be,

(1 0 ... 0 0] [o00 ... 0 0] (0 1 ... 0 0] 0 0 ... 1 0]
00 ...00| |01 ...00 10 ...00 00 ...01
00 0ol (00 1 0 0 0 0 1 10 00
00 0o 1| [0 0 00 0 0 10 0 1 00




()

[0 0 0 0] [o o 0 1]
0 0 1 0| oo 0 0
01 ...00[ o0 ...00
00 ...00[ [1t0..00

We can just decide elements of one half of lower or upper triangular matrix along other
diagonal plus half of the two diagonals and rest elements will be automatically decided.

dim(B) =

n+(mn—2)...+3+1 ifnisodd
n+(n—2)...+4+2 ifniseven

%‘W if n is odd
= dim(B) = { n(r42)

-1 if n is even

Set of all n x n Toeplitz matrices.

Let T be set of Topelitz matrices of size n

T = {{wijhij=1. nlwi; = u@rgen}

a e f g
b a e f
A 4 x 4 Topelitz matrix looks like b oa e
d ¢ b a

Let u,veT,

au+v = {a.u; + vi}ij=1.n

But we have

WUij = U(i+1)(j+1)» Vij = V(@+1)(+1)

= Q.Ujj + Vij = QU>i+1)(j+1) T V@i+1)(j+1)
=au+vel.

= T is linear set

Basis for T = {{w;;|u11 = uge = ... upy = 1},
{Uz’j|U12 =U23 = ... = U(n-1)n = 1},

{uijlury = uga = ... = U9y, = 1},

oo {wigug, = 13,

{uijlug = use = ... = Upm-1) = 1},

{wijlusi = wao = ... = Up(n-9) = 1},

ceey {uij]unl = ].}}
(Note: Rest of the entries in above matrices will be zero)

Dimension :- We can just decide elements of first row and first column and rest of the elements
are automatically decided.

= dim(T)=2n—1

Set of all n x n diagonally dominant matrices.



A matrix is said to be diagonally dominant if for every row of the matrix, the magnitude of
the diagonal entry in a row is larger than or equal to the sum of the magnitudes of all the
other (non-diagonal) entries in that row.

It is not a linear set, as in following example it can not satisfy closure property.

11 10
LetA:OO,B:OO
0 1

A=B=1,

It can be easily seen that though A and B are digonally dominant matrices, A - B is not a
digonally dominant matrix.

(d) Set of all doubly stochastic matrices of size n.

Doubly stachastic matrix is a square matrix of nonnegative real numbers, each of whose rows
and columns sum to 1.

It can not form linear set as addition of two doubly stochastic matrices will yield non-doubly
stochastic matrix (as sum of rows and columns of resultant matrix will be 2 instead of 1).

2. Show that at the end of the procedure described in lectures for reducing a spanning set to smaller
sets, one would be left with a linearly independent set.

Proof:- Let S = {uy, us, ... u,} be initial set of vectors.

After one by one removing vectors from S which can be represented as linear combination of earlier
vectors, let we remain with set
S = {Umy s Uy - - U, }, kK < m,my = index of first non-zero vector in S
Assume S’ is linearly dependant.
= Cpy Umy + Cimy Umy + ..+ Cy U, = 0 such that Je,,, # 0
_ 1
= U, = %(le.uml + Cong Uy + -+ o+ Copey Uy, ,)

But, it means u,,, could have been removed. = contradiction.

So, S’ is linearly independant.

3. Show that the dimension of a subspace in a vector space is less than or equal to that of the vector
space.

Proof:- Let S C V' be a subspace of vector space V. dim(V) = n.
Assume dim(S) = m > n.
Let Basis(S) = B = {v1,vs,...Un}
We can represent B as element of R™*" say A.
According to rank-nullity theorem, rank(A) < ncols(A) =n < m.
= there must be m — n linearly dependant rows in A = contradiction.
= dim(S) < dim(V)
4. Show that the set of all functions f : R — R such that [ f(z)? dx is finite forms a vector space
with the usual point-wise + and -.
Proof:- Let f,g € §, set of all L, functions.
It can be proved that [(a.f(z) 4+ g(x))?dx can be evaluated in just one way.

= [(o.f(x) + g(x))?dx = & [ f(x)*dx + [ g(z)*dx + 2« [ f(x)g(z)dx
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First two terms are finite, so we have to just prove that last term is finite.
We can define inner product,

(f(x),9(x)) = [ f(2)g(x)dx

But (f(z), g(x)) < [[f()l[lg(x)]]

= [ f(z)g(x)dx < [ f(z)?dx [ g(x)*dx

= [ f(z)g(x zsfzmte

= a.f(2) + glz) €

5. Consider a vector v € V in a inner-product space and a subspace S C V. Let an orthogonal
basis of S be {v1,...,v,,}. Compute an expression| for Ps(v). Show that v — Ps(v) lies in the
orthogonal complement of S.

Solution:- Let S be orthogonal complement of S.

Let Basis(S') = {uy, uy, ... un_pm }( as dim(S) + dim(S") = dim(V) = n)

v € V can be represented as linear combination of vectors from basis of S and S’
V=M.V + AU+ ...+ Ny Uy, + All.ul + )\2/.11,2 + ...+ )\n_m/.un_m

Let x € S be orthogonal projection of v on S, Pg(v)

T = 1.01 + fo. V2 + ...+ Uy U,

v—x= (A — )1+ (Ae — po)vg + ...+ DR TP VA VA R W TR,
To minimize ||v — z||, we need \; — p; =0 = p; = \;

To find out A; we find (v, v;)

(v,01) = M v,v1) +04+ ...+ 0=\, <wvy,0; >

(as vy is orthogonal to v;,7 # 1 as well as to u; j=1...n—m)

Similarly,

(v,v;) = N (v, v;)

(Uavi>
flvill

:>$:PS('U): < >U1+<||U H> U2+ +<’U’UW|L|) Um

Tonl [[o

Proof (v — Pg(v) lies in the orthogonal complement of S):-
Let x = Pg(V)

(v —xz,v;) = (v,v;) — (z,0;)

= (v, v:) — {2 (v, v3)
=0
= v — Pg(V) is orthogonal to each v;,i =1,...,m

= v — Pg(V) lies in orthogonal complelment of S.

6. Write down the dual/outer description for LIN(X) where X = {1 1 117,11 —1 —1]T}.
LIN(X) C R*

Let S" is orthogonal complement of LIN (X)

Expression involving the basic operations, v and {vy,...,v,,}. You should NOT use any optimization theory results
other than perhaps school day knowledge about minimizing a quadratic function of a single variable.
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Let Basis(S') = {u,v} where
<Ui,CL’Z‘> = O,Z = ]_,2 T; € X

Uy 0 U1 0
11 1 1 Us 0 1 1 1 1 Vg 0
jL 1 -1 —1] us| |0 andL 1 -1 —1] vl |0
Uy 0 Uy 0
= U + U +usz +us = 0 and
U+ Uy — Uz —ug =0
Let u; =1 and uy = -1
Suy=lug=—lie u=[1 —11 —1]T
Similarly(by intechanging values of u; and u3) , we can find v =[—-11 —11]T

Dual description of LIN(X):-
LIN(X) ={w € V[{w,w') =0,V € X'} where X' ={[1 —11 —1]",[-11 —11]"}
. Prove the following results which illustrate how limits and lin. comb.; limits and inner-products
distribute. Assume {z,} — =, {y.} — y and {a,} — «, {B,} — 5. Here all z,,y,,z,y are
vectors in some (finite-dim) inner-product space and all a,, 8,, @, 8 are in R.
(a) {anan + Buyn} = az + By
First we will prove, {z, + yn} > +vy
[0 +yn — (@ + Yl = [[(2n — 2) + (4 — Y)
< ||lwn — || + |lyn — y| - .. (Triangle inequality)
<€ +e ... (as {x,} =z, {yn} — v)
= ||xn + yn — (x +y)|| < € where € = €; + €
={r,ty}t >ty
Now, we will prove {a,x,} — ax
oz, — azx| = [|anz, — anr + ayz — oz
< |nzn — anz| + [|anz — az||
< |anlllzn — 2l + |an — of[|z]

< €169 + e3)|x|
< €

= {a,z,} = ax

Similarly we can prove,{S,y,} — By

Combining these results we can prove the desired.
(b) {{zn, yn)} = (2, y)

First, we will prove {(z,,y)} — (z,y)

[{zn, y) = (2,9

= [[{(zn — ), 9}l

= [((zn — ), 9)]

< |[(xy, = 2)||-lly]| - .. Cauchy Schwartz Inequality

< eyl



= |{zn,y) — (x,y)|| < € where € = €1.]|y||

= {{zn, 9)} = (2,9)
Similarly, we can prove {(z,y,)} — (z,v)

Now, [[{zn,yn) — (. 9| = (@, yn) = (@0, y) + (20, y) — (2, 9)]]
= [[{&n, (Yn =) + (20 — ), Y)|

< s (g — D + [[{(20 — ), )|

< ll@nllllyn = yll + lzn — 2|yl

< €162 + €e3|y|

<€

= {(Tn, Yn)} — (2,9)

(©) {llzn = wall} = llz =yl

Ulzn = ynlly = {{(zn = ), (20 = yn)) }

1.2 Domain: Hilbert Space

8. If S; and Sy are two linear sets in a vector space V), then showﬂ that S; + Sy = LIN(S; U Sy).
Proof:-
Part I ( Sl + S2 Q L[N(Sl U SQ))
Let u € 5] + 5,
U = Uy + U2, UL € 51,u2 €5,
= u € LIN(S;US,)
= S1 4+ Sy C LIN(S; USs)

Part 11 ( L[N(Sl U SQ) Q S1 + 52)
Let w € LIN(S; U Ss)

= U = Q1.U] + Q.U

But ay.u; € S; and ay.uy € Ss
=ueS +95;

= LIN(Sl USQ) - Sl +SQ)

9. Show that complement of an open set is closed and vice-versa E|
Part I
Let A be open set. A°is complement of A.
Let Vx,, € A°, let {x,} =«
Assume x ¢ A=z € A
= N(z) C A
= N.(z) N A° = ¢ = contradiction
= A¢ is closed.

Part 11

Let A be closed set. A¢is complement of A.
Letz€e A°=a ¢ A

= x is not limit point of A

= N(z) C A°

= A° is open.

2This is alternate proof of the fact that sum of two linear sets is linear.
3This could have been alternate definition of closed/open-ness.
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10. Let {Sx | A € A} be a (possibly uncountable) collection of closed sets. Show that NycaSy is a

closed setﬂ Also, show that whenever the index set A is countable, then Uycp Sy is a closed set.
Proof :-

Part I:- To prove (7),., S is closed, we prove ((,c, Si)¢ is open.
Using DeMorgan’s law.

(ﬂ)\eA S\ = U)\GA SN

Let x € 5¢, for some A

= Nc(x) C S ...(Sy is closed = S€, is open)

= Ne(@) C Ujen S\°

Part II:-

4Through DeMorgan’s laws and the above complementarity result of closed and open-ness, we get that (possibly
uncountable) union of open sets is open.
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