
CS 709 Problem-set

Note: Work out all problems on your own. If you think your answer
is NOT satisfactory/correct, then ask for hints from friend/instructor. You
MUST use ONLY the definitions, results/theorems used during the lectures.
Do not google for proofs/solutions as they might work with different defini-
tions/axioms. Provide as rigorous proofs as you can. I can optionally correct
and evaluate your problem-set solutions. Please drop by during office hours
to get your solutions evaluated.

1 Theory: Convex Analysis

1.1 Domain: Hilbert Space

1. Verify whether the following are linear sets. For cases where the set is
linear, provide a basis, a dual basis and determine the dimensionality:

(a) Set of all bisymmetric matrices of size n

(b) Set of all n× n Toeplitz matrices.

(c) Set of all n× n diagonally dominant matrices.

(d) Set of all doubly stochastic matrices of size n.

2. Show that at the end of the procedure described in lectures for reduc-
ing a spanning set to smaller sets, one would be left with a linearly
independent set.

3. Show that the dimension of a subspace in a vector space is less than or
equal to that of the vector space.

4. Show that the set of all functions f : R 7→ R such that
∫
f(x)2 dx is

finite forms a vector space with the usual point-wise + and ·.
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5. Consider a vector v ∈ V in a inner-product space and a subspace
S ⊂ V . Let an orthogonal basis of S be {v1, . . . , vm}. Compute an
expression1 for PS(v). Show that v−PS(v) lies in the orthogonal com-
plement of S.

6. Provide a dual basis for the linear set: LIN(X) whereX = {[1 1 1 1]>, [1 1−
1 − 1]>}.

7. Prove the following results which illustrate how limits and lin. comb.;
limits and inner-products distribute. Assume {xn} → x, {yn} → y
and {αn} → α, {βn} → β. Here all xn, yn, x, y are vectors in some
(finite-dim) inner-product space and all αn, βn, α, β are in R.

(a) {αnxn + βnyn} → αx+ βy

(b) {〈xn, yn〉} → 〈x, y〉
(c) {‖xn − yn‖} → ‖x− y‖

1.2 Subsets of Hilbert spaces

8. If S1 and S2 are two linear sets in a vector space V , then show2 that
S1 + S2 = LIN(S1 ∪ S2).

9. Show that complement of an open set is closed and vice-versa3.

10. Let {Sλ | λ ∈ Λ} be a (possibly uncountable) collection of closed sets.
Show that ∩λ∈ΛSλ is a closed set4. Also, show that whenever the index
set Λ is finite, then ∪λ∈ΛSλ is a closed set.

11. Show that Ac is not affine whenever A is affine.

1Expression involving the basic operations, v and {v1, . . . , vm}. You should NOT use
any optimization theory results other than perhaps school day knowledge about minimizing
a quadratic function of a single variable.

2This is alternate proof of the fact that sum of two linear sets is linear.
3This could have been alternate definition of closed/open-ness.
4Through DeMorgan’s laws and the above complementarity result of closed and open-

ness, we get that (possibly uncountable) union of open sets is open.
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12. Consider the set S =
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CONIC(S). Now compute (simplify) and plot K∗. Also, provide a
non-trivial conicly spanning set of K∗.

13. Prove the following assuming K1, K2 are cones:

(a) (K1 ∩K2)∗ = K∗1 +K∗2 (Dubovitski-Milutin lemma)5.

(b) Suppose K1 ⊂ V1 is lying in a Hilbert space V1 and K2 ⊂ V2 is
lying in another Hilbert space V2. Show that K = K1 ×K2 lying
in V1 ⊕ V2 is a cone.

14. Given a convex set C of dimensionality n, show that it contains a
simplex of same dimension in it.

15. Prove that projection of a cone, polyhedral cone, convex set, polytope,
polyhedron onto a linear set is a cone, polyhedral cone, convex set,
polytope, polyhedron respectively.

16. Consider S ⊂ Rn that contains all vectors that have an entry 1 at
exactly one of the co-ordinates and zero at others. Note that |S| = n.
Provide the dual description of CONV (S ∪ {0}) (here 0 denotes the
zero vector/origin).

17. Let V = (V,+V , ·V , 〈〉V ) andW = (W,+W , ·W , 〈〉W ) be two (finite dim.)
Hilbert spaces. A mapping f : V 7→ W is called a linear transformation
iff f(λ1 ·V v1+V λ2 ·V v2) = λ1 ·W f(v1)+W λ2 ·W f(v2) ∀ v1, v2 ∈ V, λ1, λ2 ∈
R. f is said to be an affine transformation if the above equality holds for
any λ1 +λ2 = 1. These definitions are natural extensions of the notions
of linear, affine functions defined in lectures. Consider the following:

(a) Let C ⊂ V be a convex set and f : V 7→ W be an affine transfor-
mation. Show that the affinely transformed set defined as (abuse
of notation) f(C) ≡ {y = f(x) | x ∈ C} ⊂ W is itself convex.
Also, if C is a cone and f is a linear transformation, then show
that f(C) is a cone.

5Needless to say, you can use only those results proved/used in lectures.
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(b) Let C ⊂ W be a convex set and f : V 7→ W be an affine trans-
formation. Show that the affine pre-image set defined as (abuse
of notation) f−1(C) ≡ {x ∈ V | f(x) ∈ C} is itself convex. Also,
if C is a cone and f is a linear transformation, then show that
f−1(C) is a cone.

Using these results, show that the following set (if non-empty) is a
convex set6: {x ∈ Rn | ‖Px + q‖ ≤ r>x + s}. Here, P is a m × n
matrix and q ∈ Rm, r ∈ Rn, s ∈ R. A convex set of this form is
called “second-order cone”. Also, using the above results, show that
{x ∈ Rn |

∑n
i=1 xiAi−B � 0} (if non-empty) is a convex set7. Here, all

Ai and B are symmetric matrices of size m. A convex set of this form
is called “cone of a Linear matrix inequality” (or LMI cone in short).

18. Suppose ‖·‖ is some norm in a Hilbert space that need not be the inner-
product induced one. Let ‖ · ‖∗ be its dual norm. Then, show that the
dual cone of K = {(x, y) | ‖x‖ ≤ y} is K∗ = {(x, y) | ‖x‖∗ ≤ y}.

19. Show that the “hyperbolic set”: {x ∈ Rn | x ≥ 0,Πn
i=1xi ≥ 1} is a

convex set. In the special case n = 2, write down the dual description
of this convex set. Do this exercise using two methods that assume
f is the function whose epigraph is the hyperbolic set: i) guess the
supporting hyperplane of f , then show it is indeed supporting and
subsequently write the dual description of hyperbolic set. ii) write the
conjugate of f and thus arrive at a dual description.

20. Let S1, S2 ⊂ V be two disjoint sets. Let K = {(a, b) | 〈a, x〉 ≤ b ∀ x ∈
S1, 〈a, x〉 ≥ b ∀ x ∈ S2}. Show that K is a cone8.

21. Provide a primal description of the dual cone of K = {Ax | x ∈ Rn, x ≥
0}. Here, A is a m× n matrix.

22. Given a cone K that is pointed (cone is pointed iff it does not contain
lines), show that K∗ has volume (non-empty interior9). Using this,
show that if K is a pointed cone with volume, then K∗ is also pointed
cone with volume.

6Infact, the set is simply a shifted cone. Thanks to Sachin Pawar for pointing this.
7Also a shifted cone.
8i.e., the set of all non-strict separators of two disjoint sets forms a cone.
9Here, were are not talking about relative interior.
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1.3 Functions over Subsets of Hilbert spaces

23. Let f : A 7→ R be a function, where A is an affine set. Let LA be
the linear set associated with A i.e., LA = A − A. Prove the claim
made in lecture: f is affine if and only if ∃ l ∈ LA, b ∈ R 3 f(x) =
〈l, x〉+ b ∀ x ∈ A.

24. Consider the function f : Sn 7→ R given by f(M) = the absolute value
of the maximum eigen value of M . Show that the function is conic
using two approaches: i) recalling that g(M) = max. eigen value of
M is conic and h(x) = |x| is conic and then f = h ◦ g ii) consider the
epigraph and write it as an LMI cone.

25. Let K be the cone of psd matrices of size n. Let g : K 7→ R be defined
by g(M) = max. eigen value of M . Show that dom(g∗) = K and
g∗(M) = trace(M) ∀ M � 0.

26. Consider the function: f : R×R++ 7→ R given by f(x, y) = x2

y
∀ x, y ∈

R, y > 0. Show that this function is conic. Hint: Use epi-graph defini-
tion and write it as LMI cone. Irrespective of this result/proof, show
that f is convex using the double derivative criteria10 for convex func-
tions.

27. Let f : V 7→ R be a closed convex function. Let f ∗ be its conjugate
function (for convinience, assume f ∗ is well-defined for all x ∈ V )11.
Show that the sub-differential set of f ∗ at 0 is exactly the set of all
x ∈ V such that f(x) = miny∈V f(y) i.e., the set of all minimizers of f .

28. This problem tries to show that unlike the fact that polar is extension
of concept of dual, in the sense that polar of a cone is its dual cone,
the concept of conjugate is not an extension of the notion of dual func-
tion. In other words, there are examples of conic functions whose dual
function and conjugate function are different. Here is the example:
consider the function f(x) = ‖x‖ (the inner-product induced norm).

10i.e., consider 1-d restriction of this function and show it is convex.
11or you can use the trick of extending convex functions beyond the domain as explained

in the book.
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We know that dual function (dual norm) is f ∗(x) = ‖x‖. Show that
the conjugate f

′
(x) = 0 ∀ ‖x‖ ≤ 1 (and f

′
(x) =∞ if ‖x‖ > 1)12.

29. For a random variable X with mean µ, median m and std. deviation
σ, show that |µ−m| ≤ σ. Hint: Use Jensen’s inequality13.

30. Provide the dual description of the function f : Rn 7→ R given by
f(x) = 1

2
x>Qx, where Q � 0; i.e., write f as maximum over a set of

affine functions, using two methods: i) write the conjugate of f and
then write f in terms of its conjugate. ii) find sub-gradient of f and
then write f as maximum of all affine functions on the RHS of all
sub-gradient inequalities.

31. Show that the set C = {x ∈ Rn | x>Ax + b>x + c ≤ 0} (assuming it
is non-empty), is convex whenever A � 0. Hint: consider the function
f(x) = x>Ax+ b>x+ c. This is convex because g(x) = x>Ax is convex
and h(x) = b>x+ c is convex. The given set is a level set of this convex
function.

32. Show that the following functions are convex14:

• f : Rn
++ 7→ R, such that f(x) =

∑n
i=1 xi log(xi) ∀ xi > 0 (negative

entropy).

• f : Rn 7→ R, such that f(x) = log (expx1 + . . .+ expxn)

• f : Sn++ 7→ R, such that f(X) = log(det(X)) ∀ X � 0.

12Though the notions are different, they are related in the sense that the conjugate
tries to capture the y-intercepts correpsonding to the dual function! Infact you can also
show: if f(x) = ‖x‖ (may NOT be the inner-product induced norm), then the conjugate
f

′
(x) = 0 ∀ ‖x‖∗ ≤ 1 (and f

′
(x) =∞ if ‖x‖∗ > 1); where ‖ · ‖∗ is the dual norm.

13You will also need to recall the fact that median is the best approximation of the
random variable by a constant in terms of minimizing the expected absolute error in the
approximation

14In all these cases, the easiest proof is considering 1-d restriction and showing it is
convex using the double derivative criteria.
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2 Theory: Convex Programs

2.1 The Basics

33. Pose the following problems as ordinary convex programs:

(a) Let S1, S2 be two sets with finite cardinality in Rn. Consider
the problem of finding the M−norm i.e., ‖ · ‖M that minimizes
the average distance (with this M−norm) between points in the
same set while constraining that the distance (with this M−norm)
between points belonging to different sets is atleast unity.

(b) Let S = {v1, . . . , vm} ⊂ Rn be given. Consider the problem of
finding the smallest ellipsoid containing this set. Assume that
dim(S) = n.

(c) Let S1, S2 be two sets with finite cardinality in Rn. Consider the
problem of finding the most spherical ellipsoid that seperates the
sets, i.e., one of them lies inside and the other outside the ellipsoid.

2.2 Optimality Conditions

34. Consider the system Ax = b, where A, b are given matrices of sizes
m× n and m× 1 respectively.

(a) In the case rank(A) = n < m, one knows that the system may not
be consistent and one looks for a least square solution. Using KKT

conditions show that the least squares solution15 is
(
A>A

)−1
A>b.

(b) In the case rank(A) = m < n, one knows that the system is
consistent/feasible and multiple solutions exist. One may be in-
terested in finding the solution to this system that has minimum
length/norm. This is called the min. norm solution. Write this
problem as an OCP and then using KKT conditions show that

the min.norm solution16 is A>
(
AA>

)−1
b.

15Ā =
(
A>A

)−1
A> is sometimes called as the left inverse of A as ĀA = I.

16Ā = A>
(
AA>

)−1
is sometimes called as the right inverse of A as AĀ = I.
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35. Consider the above problem of finding the smallest ellipsoid contaning
some given points. Write down the KKT conditions and simplify. Then
comment why the conditions make sense geometrically.

36. Problem 5.30 in Boyd’s book.

2.3 Duality

37. Derive optimality conditions (analogous to KKT) and duals for the
following (you may assume appropriate regularity conditions like solv-
ability etc.):

(a) Minimization of a convex function under conic constraint:

min
x∈X⊂V

f(x),

s.t. b−A(x) ∈ K ⊂ W,

where f : X 7→ R is a convex function, A : V 7→ W is a linear
function and K is a cone.

(b) Minimization of a convex function under generalized conic con-
straint:

min
x∈X⊂V

f(x),

s.t. G(x) ∈ K ⊂ Rm,

where G(x) =

 g1(x)
...

gm(x)

, f, gi are all convex functions X 7→ R

and K is a cone. First of all, is this program convex?
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