Midsemester Exam

CS709

$$
23-\text { Feb-2017 (2pm-5pm) }
$$

Note: Please answer the questions using rigorous and succinct mathematical arguments. Simplify expressions as much as possible. Always clearly justify your Yes/No answers.
Total Marks 45. Total time 3hrs.

Problem 1. Is the function $f_{r}: \mathbb{R}^{n} \mapsto \mathbb{R}$, defined below, convex for any given natural number r between 1 and n ?

$$
f_{r}(x) \equiv \operatorname{sum} \text { of } r \text { largest components/entries of } x .
$$

[2 Marks]
(Appeared 15-Sep-2012 Midsem)
Problem 2. Consider the set of all symmetric matrices of size n (denoted by S_{n}) endowed with the usual $+, \cdot,\langle\cdot, \cdot\rangle_{F}$ to form an inner-product space. Let $C \subset S_{n}$ be the following:

$$
C \equiv\left\{M \in S_{n} \mid M \succeq 0, \operatorname{trace}(M)=1\right\}
$$

In the context of this space associated with S_{n}, what is the dimensionality of C and C° ? Provide a simplified expression for C^{o}.
[8 Marks]
(Appeared 19-Aug-2011 Quiz-1)
Problem 3. Is the Log-sum-exp function f, defined below, convex?

$$
f: \mathbb{R}^{n} \mapsto \mathbb{R}, f\left(x_{1}, \ldots, x_{n}\right) \equiv \log \left(\sum_{i=1}^{n} e^{x_{i}}\right)
$$

[5 Marks]
(Solved example in Boyd pg74)

Problem 4. Is the function $f: \mathbb{R}^{m \times n} \mapsto \mathbb{R}$, defined below, convex for any $p, q \in[1, \infty]$?

$$
\begin{align*}
& f(X) \equiv \quad \max _{u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n}} e^{u^{\top} X v} \\
& \text { s.t. } \quad\|u\|_{p} \leq 1,\|v\|_{q} \leq 1 \tag{5Marks}
\end{align*}
$$

Appeared 16-Sep-2011 Midsem
Problem 5. Prove the following statement: If a cone admits a finite primal description then it will also admit a finite dual description.
[5 Marks]

Discussed in Tutorial

Problem 6. Is the negative harmonic mean function $h: \mathbb{R}^{n} \mapsto \mathbb{R}$, defined below, convex?

$$
\begin{equation*}
h\left(x_{1}, \ldots, x_{n}\right) \equiv \frac{-n}{\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}}, \forall x_{i}>0 . \tag{5Marks}
\end{equation*}
$$

Appeared 15-Sep-2012 Midsem

Problem 7. Consider $K=\{(u, v) \in V \times \mathbb{R} \mid\|u\| \leq v\}$, where V is a given (but arbitrary) set of vectors forming an inner-product space \mathbb{V}. Note that $\|\cdot\|$ used in defining K may NOT be the norm induced by the inner-product in \mathbb{V}. Write down a simplified expression for the dual cone K^{*} (in the space that is direct-sum of spaces \mathbb{V} and \mathbb{R}).
[5 Marks]
Solved example in Boyd E.g. 2.25

Problem 8.

Let \mathcal{P} be an arbitrary (but given) polyhedron in \mathbb{R}^{n}. Pose the problem of finding the largest $\|\cdot\|_{p}$-norm ball ${ }^{1}$ (here, $p \geq 1$) lying inside the polyhedron as a convex problem. Further, do you think this problem can be posed as a convex program with finite number of linear inequality constraints ${ }^{2}$?
[10 Marks]
Appeared 16-Sep-2011 MidSem

[^0]
[^0]: ${ }^{1}$ Needless to say, the center of the p-norm ball need not be the origin.
 ${ }^{2}$ In this case the domain of the convex program you write needs to be a vector space. Else it is trivial to answer this question.

