
IPL-10. Assignment 1. Solutions

Q1. When a needle is dropped, it has three parameters, which which we can
assume to be independent: horizontal position (x), vertical position (y) and
orientation (θ). Since the grid is infinitely repeated, we can assume x and y
taking values within any single square. θ takes values from 0 to π (due to
symmetry, we can consider for the case till π/2 only). For a given θ, let’s
calculate the probability that the needle doesn’t cross the square, and average
this for all values of θ. So from the figure below, the needle doesn’t intersect

Figure 1: Region of centre of needle where it doesn’t intersect.

when its centre lies within the square LMOP . Hence the probability is given
by,

Area LMOP

Area ABCD

=
(l − l

2 cos θ)(l − l
2 sin θ)

l2

Averaging for θ taking values from 0 to π/2,

π

2

∫ π/2

0

(1− 1

2
sin θ − 1

2
cos θ +

1

4
sin θ cos θ)dθ,

which evaluates to 1− 7
4π . So the probability that the needle does intersect the

grid is 7
4π .

Q2. F is the set of intervals of the type (a, b] and their finite unions, i.e.
∪ni=1(ai, bi].

Now for an element of type (a, b], its complement is (−∞, a] ∪ (b,∞). But
(−∞, a] ∈ F and (b,∞) ∈ F , therefore, so is (−∞, a] ∪ (b,∞).

Now for an element of type ∪ni=1(ai, bi], its complement is

(∪ni=1(ai, bi])
c = ∩ni=1(ai, bi]

c [DeMorgan′s Law]

= { x | x ≤ ai or x > bi,∀i = 1, . . . , n}
= { x | x ≤ a or x > b, a = min

i
ai, b = min

i
bi}

= (a, b]c ∈ F
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Hence, F is closed under complementation. Although, F is not closed under
union. Consider the countable union: ∪∞i=1(a, b − 1

i ] = (a, b) 6∈ F . Hence, F is
not a σ-algebra.

Q3.i. To show

P (∪ni=1Ei) =

n∑
i=1

P (Ei)−
∑

1≤i<j≤n

P (Ei ∩ Ej) +
∑

1≤i<j<k≤n

P (Ei ∩ Ej ∩ Ek)+

. . .+ (−1)n
n∑
i=i

P (∩nj=1,j 6=iEi) + (−1)n+1P (∩ni=1Ei).

Base case: for n = 2, it holds. P (E1∪E2) = P (E1)+P (E2)−P (E1∩E2) =∑2
i=1Ei + (−1)3P (∩2i=1Ei).
Inductive step: assume it holds for n. We show that it also holds for n+ 1.

P (∪n+1
i=1 Ei) = P ((∪ni=1Ei) ∪ En+1) (1)

= P (∪ni=1Ei) + P (En+1)− P ((∪ni=1Ei) ∩ En+1) (2)

Now,

P ((∪ni=1Ei) ∩ En+1)

= P (∪ni=1(Ei ∩ En+1)) [distributive law]

=

n∑
i=1

P (Ei ∩ En+1)−
∑

1≤i<j≤n

P ((Ei ∩ En+1) ∩ (Ej ∩ En+1))

+
∑

1≤i<j<k≤n

P ((Ei ∩ En+1) ∩ (Ej ∩ En+1) ∩ (Ek ∩ En+1))+

. . .+ (−1)n
n∑
i=i

P (∩nj=1,j 6=i(Ei ∩ En+1)) + (−1)n+1P (∩ni=1(Ei ∩ En+1))

Observe now that, substituting in equation 2, these are exactly the terms re-
quired to get the En+1 set included and having the equation in required form.

Q3.ii. To prove Boole’s inequality:

P (∪ni=1Ei) ≤
n∑
i=1

P (Ei)

Base case: for n = 1, we have P (E1) ≤ P (E1).
Inductive step: Assume the equation holds for n. We show that it also holds

for n+ 1.

P (∪n+1
i=1 Ei) = P ((∪ni=1Ei) ∪ En+1)

= P (∪ni=1Ei) + P (En+1)− P ((∪ni=1Ei) ∩ En+1)

≤ P (∪ni=1Ei) + P (En+1)

≤
n∑
i=1

P (Ei) + P (En+1)

=

n+1∑
i=1

P (Ei).
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Now to prove (left side of the inequalities)

n∑
i=1

P (Ei)−
∑

1≤i<j≤n

P (Ei ∩ Ej) ≤ P (∪ni=1Ei)

Again, the base case is easy to check. To prove the inductive part (for n+ 1):

n+1∑
i=1

P (Ei)−
∑

1≤i<j≤n+1

P (Ei ∩ Ej)

=

n∑
i=1

P (Ei) + P (En+1)−
∑

1≤i<j≤n

P (Ei ∩ Ej)−
n∑
i=1

P (Ei ∩ En+1)

≤ P (∪ni=1Ei) + P (En+1)−
n∑
i=1

P (Ei ∩ En+1)

= P ((∪ni=1Ei) ∪ En+1)− P ((∪ni=1Ei) ∩ En+1)−
n∑
i=1

P (Ei ∩ En+1)

≤ P ((∪ni=1Ei) ∪ En+1) = P (∪n+1
i=1 Ei).

Q3.iii. To prove

P (∩ni=1Ei) ≥
n∑
i=1

P (Ei)− n+ 1

For base case it’s easy to check it holds. For the inductive step:

P (∩n+1
i=1 Ei) = P ((∩ni=1Ei) ∩ En+1)

= P (∩ni=1Ei) + P (En+1)− P ((∩ni=1Ei) ∪ En+1)

≥
n∑
i=1

P (Ei)− n+ 1 + P (En+1)− P ((∩ni=1Ei) ∪ En+1)

=

n+1∑
i=1

P (Ei)− n+ 1− P ((∩ni=1Ei) ∪ En+1)

≥
n+1∑
i=1

P (Ei)− n+ 1− 1

=

n+1∑
i=1

P (Ei)− (n+ 1) + 1.

(Note that in the proofs above, the inequalities are simplified by using the prop-
erties of probabilities: P (E) ≥ 0 and P (E) ≤ 1.)

Q4. X is a valid RV if intervals of the type (−∞, x],∀x ∈ R have corresponding
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valid events in F . This is, X−1((−∞, x]) ∈ F . So for the given RV,

X−1((−∞, x]) = { ω | X(ω) ∈ (−∞, x]}

=


Ω = [0, 1] x ≥ 1

[0, x] 0 ≤ x < 1

∅ x < 0

Hence events of the type [0, x],∀x ∈ [0, 1] must be in F for X to be a valid RV.
Now let us compute the distribution functions of X and Y.

FX(x) = P [X ≤ x] = P ({ω ∈ Ω | X(ω) ≤ x})
= P ({ω ∈ Ω | ω ≤ x})

=


0 x < 0

x 0 ≤ x < 1

1 x ≥ 1

Similarly,

FY (y) = P [Y ≤ y] = P ({ω ∈ Ω | Y (ω) ≤ y})
= P ({ω ∈ Ω | 1− ω ≤ y})

=


0 y < 0

1− (1− y) = y 0 ≤ y < 1

1 y ≥ 1

Q5. To show a discrete RV X is geometric iff P [X > m+n|X > n] = P [X > m].
(⇒): For a geometric RV, we know that P [X ≤ k] = 1 − (1 − p)k. So P [X >
k] = (1− p)k.

P [X > m+ n|X > n] =
P [X > m+ n,X > n]

P [X > n]

=
P [X > m+ n]

P [X > n]

=
(1− p)m+n

(1− p)n

= (1− p)m = P [X > m].

(⇐):

P [X > m+ n|X > n] = P [X > m]

P [X > m+ n,X > n]

P [X > n]
= P [X > m]

P [X > m+ n] = P [X > m].P [X > n]
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Put n = 1, we get

P [X > m+ 1] = P [X > m].P [X > 1]

⇒ P [X > m] = P [X > m− 1].P [X > 1]

. . .

P [X > 2] = P [X > 1].P [X > 1]

Substituting the value m times we get P [X > m+ 1] = (P [X > 1])m+1.
But P [X > 1] = 1− P [X = 1] = 1− p. So,

P [X = m] = P [X ≤ m]− P [X ≤ m− 1]

= 1− (1− p)m − (1− (1− p)m−1)

= (1− p)m−1p.

This is the pmf of geometric RV.

Q8. We can choose the set A in 2n ways. Similarly, B can be chosen in 2n

ways. So the size of sample space is 2n · 2n = 22n. Now there are nCi ways to
choose the set B of size i, and for each such selected B of size i, there are 2i

ways of selecting A such that A ⊆ B. Summing this for all values of i gives us
the number of ways in which A will be a subset of B. Hence,

P (A ⊆ B) =

∑n
i=0 2i · nCi

22n

Similarly, for a selected set B of size i, we can select A in 2n−i ways from its
complement. Hence,

P (A ∩B = ∅) =

∑n
i=0 2n−i · nCi

22n
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IPL-10. Assignment 2. Solutions

Q9. Given X is standard normal and Y = X2.

FY (y) = P [Y ≤ y]

= P [X2 ≤ y]

=

{
0 y ≤ 0

P [−√y ≤ X ≤ √y] y > 0

=

{
0 y ≤ 0

FX(
√
y)− FX(−√y) y > 0

Now,

fY (y) =
dFY (y)

dy

=

{
0 y ≤ 0
1

2
√
y (fX(

√
y) + fX(−√y)) y > 0

=

{
0 y ≤ 0

1√
2πy

e−
y
2 y > 0 [Since fX(x) = 1√

2π
e−

x2

2 ]

Now let us find the pdf of Z =
√
Y . Note that the range of Z is (0,∞).

Also, Z is monotonic, differentiable function of RV. Hence,

fZ(z) = fY (g−1(z))

∣∣∣∣ ddz g−1(z)

∣∣∣∣
=

e−
z2

2

√
2πz2

∣∣∣∣ ddz z2
∣∣∣∣ [Here g(y) =

√
y, g−1(z) = z2]

=
√

2
π e
− z2

2 ∀z > 0.

Q10. We know that r = v2

g sin 2θ, where r is the range of the projectile, v is
the initial velocity, g is acceleration due to gravity and θ is the projection angle.

Θ is uniform RV between [0, π/2]. Hence, range R = v2

g sin 2Θ.

FR(r) = P [R ≤ r]

= P [v
2

g sin2Θ ≤ r]

=


0 r < 0

P [0 ≤ Θ ≤ 1
2 sin−1

(
rg
v2

)
] + P [π2 −

1
2 sin−1

(
rg
v2

)
≤ Θ ≤ π

2 ] 0 ≤ r < v2

g

1 r ≥ v2

g

=


0 r < 0
2
π sin−1

(
rg
v2

)
0 ≤ r < v2

g

1 r ≥ v2

g

1



Hence we have,

fR(r) =
dFR(r)

dr

=

{
2
π

1√
(v2/g)2−r2

0 ≤ r < v2

g

0 otherwise

Q11. This is a solved example in Papoulis and Pillai, page 148.

Q12. We will have to prove this for X being a discrete as well as continuous
RV.
For the discrete case:

E[|X − c|] =
∑
x∈E
|x− c|fX(x)

=
∑

x∈E,x≤c

(c− x)fX(x) +
∑

x∈E,x>c
(x− c)fX(x)

= g(c) (say)

Now E[|X − c|] a function of c. A necessary condition for c∗ minimizing g is
g′(c∗) = 0.

g′(c) =
∑

x∈E,x≤c

fX(x)−
∑

x∈E,x>c
fX(x) (1)

= FX(c)− (1− FX(c))

= 2FX(c)− 1

Hence we have FX(c∗) = 1
2 , which means c∗ is the median (by definition). We

also need to verify that this is minima. This follows from equation 1, where for
c < c∗, g′(c) ≤ 0 while for c > c∗, g′(c) ≥ 0. Hence c∗ must give a minimum.

Now for the continuous case. Similar to the previous case, let

g(c) = E[|X − c|]

=

∫ ∞
−∞
|x− c|fX(x)dx

=

∫ c

−∞
(c− x)fX(x)dx+

∫ ∞
c

(x− c)fX(x)dx

= cFX(c)− c(1− FX(c)) +

∫ ∞
c

xfX(x)dx−
∫ c

−∞
xfX(x)dx

= 2cFX(c)− c+

∫ ∞
c

xfX(x)dx−
∫ c

−∞
xfX(x)dx

Now

g′(c) = 2FX(c) + 2cfX(c)− 1 +
d

dc

[∫ ∞
c

xfX(x)dx

]
− d

dc

[∫ c

−∞
xfX(x)dx

]
= 2FX(c) + 2cfX(c)− 1 + (−cfX(c))− (cfX(c))

= 2FX(c)− 1
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Again, necessary condition for c∗ to be minimizer is g′(c∗) = 0⇒ FX(c∗) = 1
2 .

Also, g′′(c) = 2fX(c) ≥ 0 ∀c. Hence c∗ is minimizer.

Q13. We use the inequality log a ≤ a − 1 to prove this. Here, let a =
fY (x)/fX(x). Hence we have

log fY (x)− log fX(x) = log
fY (x)

fX(x)
≤ fY (x)

fX(x)
− 1

Multiplying by fX(x) and integrating, we get∫ ∞
−∞

[log fY (x)− log fX(x)]fX(x)dx ≤
∫ ∞
−∞

[fY (x)− fX(x)]dx

⇒ E[log fY (X)]− E[log fX(X)] ≤ 0

RHS is 0 since fX and fY are density functions.

Q14. Probability that a blue ball is picked is m1

m (call it p). Probability of red
ball is picked is m2

m = (1− p). Let’s calculate the pmf of X. At least two balls
will be drawn.

P [X = 2] = p(1− p) + (1− p)p
P [X = 3] = p2(1− p) + (1− p)2p

...

P [X = n] = pn−1(1− p) + (1− p)n−1p

Hence

E[X] =
∑
n≥2

n(pn−1(1− p) + (1− p)n−1p)

= (1− p)
∑
n≥2

npn−1 + p
∑
n≥2

n(1− p)n−1

= (1− p)
∑
n≥1

(n+ 1)pn + p
∑
n≥1

(n+ 1)(1− p)n

= (1− p)
∑
n≥0

npn + (1− p)

∑
n≥0

pn − 1

+ p
∑
n≥0

n(1− p)n

+ p

∑
n≥0

(1− p)n − 1


= (1− p) p

(1− p)2
+ (1− p)

(
1

1− p
− 1

)
+ p

1− p
p2

+ p

(
1

p
− 1

)
=

p

1− p
+

1

p

Note, above we’ve used the identities
∑
n≥0 p

n = 1/(1 − p) and
∑
n≥0 np

n =

p/(1− p)2.
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Now for the case of without replacement. Wlog, assume that m1 ≤ m2.

P [X = 2] = m1

m
m2

m−1 + m2

m
m1

m−1

P [X = 3] = m1

m
m1−1
m−1

m2

m−2 + m2

m
m2−1
m−1

m1

m−2

. . . for n ≤ m1 + 1,

P [X = n] = m1

m
m1−1
m−1 · · ·

m1−n+2
m−n+2

m2

m−n+1 + m2

m
m2−1
m−1 · · ·

m2−n+2
m−n+2

m1

m−n+1

= m1!/(m1−n+1)! m2

m!/(m−n)! + m2!/(m2−n+1)! m1

m!/(m−n)!

for m1 + 1 < n ≤ m2 + 1,

P [X = n] = m2!/(m2−n+1)! m1

m!/(m−n)!

Hence

E[X] =
∑

n≤m1+1

n
(
m1!/(m1−n+1)! m2

m!/(m−n)! + m2!/(m2−n+1)! m1

m!/(m−n)!

)
+

∑
m1+1<n≤m2+1

n
(
m2!/(m2−n+1)! m1

m!/(m−n)!

)
(Can this be simplified?)
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IPL-10. Assignment 2. Solutions

Q16. Z = min(X,Y )
max(X,Y ) . This function can be written as

Z =

{
X/Y X ≤ Y
Y/X X > Y.

Hence

FZ(z) = P [X/Y ≤ z,X ≤ Y ] + P [Y/X ≤ z,X > Y ]

= P [X ≤ zY,X ≤ Y ] + P [Y ≤ zX,X > Y ].

Since X and Y take only positive values, 0 ≤ Z ≤ 1. From the figure, our

favourable region is the one below the line y = zx and to the left of the line
x = zy. Hence,

FZ(z) =

∫ ∞
0

∫ zy

x=0

fXY (x, y) dx dy +

∫ ∞
0

∫ zx

y=0

fXY (x, y) dx dy

Differentiating wrt z,

fZ(z) =

∫ ∞
0

yfXY (yz, y) dy +

∫ ∞
0

xfXY (x, xz) dx

=

∫ ∞
0

y(fXY (yz, y) + fXY (y, yz)) dy

When X and Y are iid exponential,

fZ(z) =

∫ ∞
0

yλ2(e−λ(yz+y) + e−λ(y+yz)) dy

= 2λ2

∫ ∞
0

ye−λy(1+z) dy

=

{
2

(1+z)2 0 ≤ z ≤ 1

0 otherwise.
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Q17.

RHS = E[var(X/Y )] + var(E[X/Y ])

= E
[
E[X2/Y ]− (E[X/Y ])2

]
+
(
E
[
(E[X/Y ])2

]
− (E[E[X/Y ]])2

)
= E

[
E[X2/Y ]

]
− E

[
(E[X/Y ])2

]
+ E

[
(E[X/Y ])2

]
− (E[X])2

= E[X2]− (E[X])2 = var(X).

Q18. It can be shown that

(E [|X|m])
1
m ≤ (E [|X|n])

1
n for 1 < m < n

by applying Jensen’s inequality by letting g to be the function g(x) = x
n
m

(convince yourself that g is convex) over the random variable |X|m.
Hence we have

(E [|Xn −X|s])
1
s ≤ (E [|Xn −X|r])

1
r

Here RHS goes to 0 as n → ∞. LHS is a non-negative sequence upper-
bounded by RHS. So by sandwitching, LHS also goes to 0 as n→∞. Therefore
{Xn}

s−→ X.

Q19. We will show that the sequence of mgf’s of Un converge (pointwise) to

mgf of U . Then this would say {Un}
D−→ U .

MUn(s) = E
[
esUn

]
= E

[
es

∑n
i=1

Xi
10i

]
=

n∏
i=1

E
[
es

Xi
10i

]
[since Xi’s are independent]

Now,

MXi
(s) =

9∑
j=0

esj
1

10

=
1

10

[
1 + es + e2s + · · ·+ e9s

]
=

e10s − 1

10(es − 1)

⇒MUn
(s) =

es − 1

10(es/10 − 1)
× es/10 − 1

10(es/100 − 1)
× · · · e

s/10n−1 − 1

10(es/10n − 1)

=
es − 1

10n(es/10n − 1)
[canceling consecutive numerator and denominator]

=
es − 1

10n
(
s

10n + s2

2! 102n + · · ·
)

=
es − 1(

s+ s2

2! 10n + s3

3! 102n + · · ·
)

⇒ limn→∞MUn
(s) = (es − 1)/s, which is indeed the mgf of U [0, 1].
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Q20. 40 coins are flipped. Probability of head p = 0.5. Let X1, X2, . . . X40 be
the Bernoulli RVs. We have,

Sn = X1 +X2 + · · ·X40.

Hence
E[Sn] = 40 · E[Xi] = 40× 0.5 = 20

and
var(Sn) = 40 · var(Xi) = 40× 0.5× 0.5 = 10.

According to CLT,
Sn − 20√

10
∼ N(0, 1).

We want to find P [Sn = 20]. Here Sn is discrete RV while N(0, 1) is continous.
Hence to approximate using CLT, we find the probability of Sn taking values
between 19.5 and 20.5.

P [Sn = 20] = P [19.5 < Sn ≤ 20.5]

= P

[
19.5− 20√

10
< S̃n ≤

20.5− 20√
10

]
(by CLT) ≈ Φ(0.16)− Φ(−0.16)

= 2Φ(0.16)− 1 = 0.1272.

The exact value is given by binomial distribution, i.e. P [Sn = 20] = 40C20(0.5)40 =
0.1268.
These values are very close, showing that even with 40 iid RVs, CLT gives good
approximation of S̃n.

Q21.

FS̃n
(y) ≈ Φ

(
(y − µ)

√
n

σ

)
Given µ = 167, σ = 27.
For n = 36,

P [163 < S̃n ≤ 170] = FS̃n
(170)− FS̃n

(163)

≈ Φ(0.66)− Φ(−0.88)

= 0.7475− 0.1870 = 0.5605

Similarly, for n = 144,

P [163 < S̃n ≤ 170] = FS̃n
(170)− FS̃n

(163)

≈ Φ(1.33)− Φ(−1.77)

= 0.9088− 0.0377 = 0.8711

Q22. We have Y = AX where Y =

[
Y1

Y2

]
, X =

X1

X2

X3

 and A =

[
3 5 1
2 0 5

]
.

X is (multivariate) standard normal, µX = 0 and ΣX = I. Since matrix A
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has linearly independent rows, Y will be multivariate normal RV with µY = 0,

ΣY = AΣXA
> =

[
3 5 1
2 0 5

]3 2
5 0
1 5

 =

[
35 11
11 29

]
.

⇒ fY (ȳ) =
1

2π (35× 29− 112)
1/2

eȳ
>Σ−1

Y ȳ.
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