IPL-10. Assignment 1. Solutions

Q1. When a needle is dropped, it has three parameters, which which we can assume to be independent: horizontal position (x), vertical position (y) and orientation (θ) . Since the grid is infinitely repeated, we can assume x and y taking values within any single square. θ takes values from 0 to π (due to symmetry, we can consider for the case till $\pi/2$ only). For a given θ , let's calculate the probability that the needle doesn't cross the square, and average this for all values of θ . So from the figure below, the needle doesn't intersect

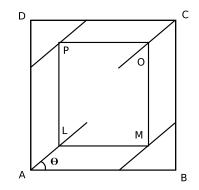


Figure 1: Region of centre of needle where it doesn't intersect.

when its centre lies within the square LMOP. Hence the probability is given by,

$$\frac{\text{Area LMOP}}{\text{Area ABCD}} = \frac{(l - \frac{l}{2}\cos\theta)(l - \frac{l}{2}\sin\theta)}{l^2}$$

Averaging for θ taking values from 0 to $\pi/2$,

$$\frac{\pi}{2} \int_0^{\pi/2} (1 - \frac{1}{2}\sin\theta - \frac{1}{2}\cos\theta + \frac{1}{4}\sin\theta\cos\theta) \mathrm{d}\theta,$$

which evaluates to $1 - \frac{7}{4\pi}$. So the probability that the needle does intersect the grid is $\frac{7}{4\pi}$.

Q2. \mathcal{F} is the set of intervals of the type (a, b] and their finite unions, i.e. $\bigcup_{i=1}^{n} (a_i, b_i]$.

Now for an element of type (a, b], its complement is $(-\infty, a] \cup (b, \infty)$. But $(-\infty, a] \in \mathcal{F}$ and $(b, \infty) \in \mathcal{F}$, therefore, so is $(-\infty, a] \cup (b, \infty)$.

Now for an element of type $\bigcup_{i=1}^{n} (a_i, b_i]$, its complement is $(\bigcup_{i=1}^{n} (a_i, b_i]^c = \bigcap_{i=1}^{n} (a_i, b_i]^c$ [DeMorgen's Level

$$(\bigcup_{i=1}^{n} (a_i, b_i])^c = \bigcap_{i=1}^{n} (a_i, b_i]^c \qquad [\text{DeMorgan's Law}]$$
$$= \{ x \mid x \le a_i \text{ or } x > b_i, \forall i = 1, \dots, n \}$$
$$= \{ x \mid x \le a \text{ or } x > b, a = \min_i a_i, b = \min_i b_i \}$$
$$= (a, b]^c \in \mathcal{F}$$

Hence, \mathcal{F} is closed under complementation. Although, \mathcal{F} is not closed under union. Consider the countable union: $\bigcup_{i=1}^{\infty} (a, b - \frac{1}{i}] = (a, b) \notin \mathcal{F}$. Hence, \mathcal{F} is not a σ -algebra.

Q3.i. To show

$$P(\bigcup_{i=1}^{n} E_{i}) = \sum_{i=1}^{n} P(E_{i}) - \sum_{1 \le i < j \le n} P(E_{i} \cap E_{j}) + \sum_{1 \le i < j < k \le n} P(E_{i} \cap E_{j} \cap E_{k}) + \dots + (-1)^{n} \sum_{i=i}^{n} P(\bigcap_{j=1, j \ne i}^{n} E_{i}) + (-1)^{n+1} P(\bigcap_{i=1}^{n} E_{i}).$$

Base case: for n = 2, it holds. $P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2) = \sum_{i=1}^{2} E_i + (-1)^3 P(\cap_{i=1}^2 E_i)$. Inductive step: assume it holds for n. We show that it also holds for n + 1.

$$P(\bigcup_{i=1}^{n+1} E_i) = P((\bigcup_{i=1}^n E_i) \cup E_{n+1})$$
(1)

$$= P(\bigcup_{i=1}^{n} E_i) + P(E_{n+1}) - P((\bigcup_{i=1}^{n} E_i) \cap E_{n+1})$$
(2)

Now,

$$\begin{split} & P((\cup_{i=1}^{n} E_{i}) \cap E_{n+1}) \\ &= P(\cup_{i=1}^{n} (E_{i} \cap E_{n+1})) \quad [\text{distributive law}] \\ &= \sum_{i=1}^{n} P(E_{i} \cap E_{n+1}) - \sum_{1 \leq i < j \leq n} P((E_{i} \cap E_{n+1}) \cap (E_{j} \cap E_{n+1})) \\ &+ \sum_{1 \leq i < j < k \leq n} P((E_{i} \cap E_{n+1}) \cap (E_{j} \cap E_{n+1}) \cap (E_{k} \cap E_{n+1})) + \\ &\dots + (-1)^{n} \sum_{i=i}^{n} P(\cap_{j=1, j \neq i}^{n} (E_{i} \cap E_{n+1})) + (-1)^{n+1} P(\cap_{i=1}^{n} (E_{i} \cap E_{n+1})) \end{split}$$

Observe now that, substituting in equation 2, these are exactly the terms required to get the E_{n+1} set included and having the equation in required form.

Q3.ii. To prove Boole's inequality:

$$P(\bigcup_{i=1}^{n} E_i) \le \sum_{i=1}^{n} P(E_i)$$

Base case: for n = 1, we have $P(E_1) \leq P(E_1)$.

Inductive step: Assume the equation holds for n. We show that it also holds for n+1.

$$P(\cup_{i=1}^{n+1} E_i) = P((\cup_{i=1}^n E_i) \cup E_{n+1})$$

= $P(\cup_{i=1}^n E_i) + P(E_{n+1}) - P((\cup_{i=1}^n E_i) \cap E_{n+1})$
 $\leq P(\cup_{i=1}^n E_i) + P(E_{n+1})$
 $\leq \sum_{i=1}^n P(E_i) + P(E_{n+1})$
= $\sum_{i=1}^{n+1} P(E_i).$

Now to prove (left side of the inequalities)

$$\sum_{i=1}^{n} P(E_i) - \sum_{1 \le i < j \le n} P(E_i \cap E_j) \le P(\bigcup_{i=1}^{n} E_i)$$

Again, the base case is easy to check. To prove the inductive part (for n + 1):

$$\begin{split} &\sum_{i=1}^{n+1} P(E_i) - \sum_{1 \le i < j \le n+1} P(E_i \cap E_j) \\ &= \sum_{i=1}^n P(E_i) + P(E_{n+1}) - \sum_{1 \le i < j \le n} P(E_i \cap E_j) - \sum_{i=1}^n P(E_i \cap E_{n+1}) \\ &\le P(\cup_{i=1}^n E_i) + P(E_{n+1}) - \sum_{i=1}^n P(E_i \cap E_{n+1}) \\ &= P((\cup_{i=1}^n E_i) \cup E_{n+1}) - P((\cup_{i=1}^n E_i) \cap E_{n+1}) - \sum_{i=1}^n P(E_i \cap E_{n+1}) \\ &\le P((\cup_{i=1}^n E_i) \cup E_{n+1}) = P(\cup_{i=1}^{n+1} E_i). \end{split}$$

Q3.iii. To prove

$$P(\cap_{i=1}^{n} E_i) \ge \sum_{i=1}^{n} P(E_i) - n + 1$$

For base case it's easy to check it holds. For the inductive step:

$$P(\bigcap_{i=1}^{n+1} E_i) = P((\bigcap_{i=1}^n E_i) \cap E_{n+1})$$

= $P(\bigcap_{i=1}^n E_i) + P(E_{n+1}) - P((\bigcap_{i=1}^n E_i) \cup E_{n+1})$
 $\ge \sum_{i=1}^n P(E_i) - n + 1 + P(E_{n+1}) - P((\bigcap_{i=1}^n E_i) \cup E_{n+1})$
= $\sum_{i=1}^{n+1} P(E_i) - n + 1 - P((\bigcap_{i=1}^n E_i) \cup E_{n+1})$
 $\ge \sum_{i=1}^{n+1} P(E_i) - n + 1 - 1$
 $= \sum_{i=1}^{n+1} P(E_i) - (n+1) + 1.$

(Note that in the proofs above, the inequalities are simplified by using the properties of probabilities: $P(E) \ge 0$ and $P(E) \le 1$.)

Q4. X is a valid RV if intervals of the type $(-\infty, x], \forall x \in \mathbb{R}$ have corresponding

valid events in \mathcal{F} . This is, $X^{-1}((-\infty, x]) \in \mathcal{F}$. So for the given RV,

$$X^{-1}((-\infty, x]) = \{ \omega \mid X(\omega) \in (-\infty, x] \}$$
$$= \begin{cases} \Omega = [0, 1] & x \ge 1 \\ [0, x] & 0 \le x < 1 \\ \emptyset & x < 0 \end{cases}$$

Hence events of the type $[0, x], \forall x \in [0, 1]$ must be in \mathcal{F} for X to be a valid RV. Now let us compute the distribution functions of X and Y.

$$F_X(x) = P[X \le x] = P(\{\omega \in \Omega \mid X(\omega) \le x\})$$
$$= P(\{\omega \in \Omega \mid \omega \le x\})$$
$$= \begin{cases} 0 & x < 0\\ x & 0 \le x < 1\\ 1 & x \ge 1 \end{cases}$$

Similarly,

$$F_{Y}(y) = P[Y \le y] = P(\{\omega \in \Omega \mid Y(\omega) \le y\})$$

= $P(\{\omega \in \Omega \mid 1 - \omega \le y\})$
=
$$\begin{cases} 0 & y < 0\\ 1 - (1 - y) = y & 0 \le y < 1\\ 1 & y \ge 1 \end{cases}$$

Q5. To show a discrete RV X is geometric iff P[X > m+n|X > n] = P[X > m]. (\Rightarrow): For a geometric RV, we know that $P[X \le k] = 1 - (1-p)^k$. So $P[X > k] = (1-p)^k$.

$$P[X > m + n | X > n] = \frac{P[X > m + n, X > n]}{P[X > n]}$$
$$= \frac{P[X > m + n]}{P[X > n]}$$
$$= \frac{(1 - p)^{m + n}}{(1 - p)^n}$$
$$= (1 - p)^m = P[X > m].$$

 (\Leftarrow) :

$$\begin{split} P[X > m + n | X > n] &= P[X > m] \\ \frac{P[X > m + n, X > n]}{P[X > n]} &= P[X > m] \\ P[X > m + n] &= P[X > m].P[X > n] \end{split}$$

Put n = 1, we get

$$\begin{split} P[X > m+1] &= P[X > m].P[X > 1] \\ \Rightarrow P[X > m] &= P[X > m-1].P[X > 1] \\ & \dots \\ P[X > 2] &= P[X > 1].P[X > 1] \end{split}$$

Substituting the value *m* times we get $P[X > m + 1] = (P[X > 1])^{m+1}$. But P[X > 1] = 1 - P[X = 1] = 1 - p. So,

$$P[X = m] = P[X \le m] - P[X \le m - 1]$$

= 1 - (1 - p)^m - (1 - (1 - p)^{m-1})
= (1 - p)^{m-1}p.

This is the pmf of geometric RV.

Q8. We can choose the set A in 2^n ways. Similarly, B can be chosen in 2^n ways. So the size of sample space is $2^n \cdot 2^n = 2^{2n}$. Now there are nC_i ways to choose the set B of size i, and for each such selected B of size i, there are 2^i ways of selecting A such that $A \subseteq B$. Summing this for all values of i gives us the number of ways in which A will be a subset of B. Hence,

$$P(A \subseteq B) = \frac{\sum_{i=0}^{n} 2^{i} \cdot {}^{n}C_{i}}{2^{2n}}$$

Similarly, for a selected set B of size i, we can select A in 2^{n-i} ways from its complement. Hence,

$$P(A \cap B = \emptyset) = \frac{\sum_{i=0}^{n} 2^{n-i} \cdot {}^{n}C_{i}}{2^{2n}}$$

IPL-10. Assignment 2. Solutions

Q9. Given X is standard normal and $Y = X^2$.

$$F_Y(y) = P[Y \le y]$$

= $P[X^2 \le y]$
=
$$\begin{cases} 0 & y \le 0\\ P[-\sqrt{y} \le X \le \sqrt{y}] & y > 0 \end{cases}$$

=
$$\begin{cases} 0 & y \le 0\\ F_X(\sqrt{y}) - F_X(-\sqrt{y}) & y > 0 \end{cases}$$

Now,

$$f_Y(y) = \frac{\mathrm{d}F_Y(y)}{\mathrm{d}y}$$

=
$$\begin{cases} 0 & y \le 0\\ \frac{1}{2\sqrt{y}}(f_X(\sqrt{y}) + f_X(-\sqrt{y})) & y > 0 \end{cases}$$

=
$$\begin{cases} 0 & y \le 0\\ \frac{1}{\sqrt{2\pi y}}e^{-\frac{y}{2}} & y > 0 \quad [\text{Since } f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}] \end{cases}$$

Now let us find the pdf of $Z = \sqrt{Y}$. Note that the range of Z is $(0, \infty)$. Also, Z is monotonic, differentiable function of RV. Hence,

$$f_Z(z) = f_Y(g^{-1}(z)) \left| \frac{d}{dz} g^{-1}(z) \right|$$

= $\frac{e^{-\frac{z^2}{2}}}{\sqrt{2\pi z^2}} \left| \frac{d}{dz} z^2 \right|$ [Here $g(y) = \sqrt{y}, \ g^{-1}(z) = z^2$]
= $\sqrt{\frac{2}{\pi}} e^{-\frac{z^2}{2}} \quad \forall z > 0.$

Q10. We know that $r = \frac{v^2}{g} \sin 2\theta$, where r is the range of the projectile, v is the initial velocity, g is acceleration due to gravity and θ is the projection angle. Θ is uniform RV between $[0, \pi/2]$. Hence, range $R = \frac{v^2}{g} \sin 2\Theta$.

$$\begin{aligned} F_R(r) &= P[R \le r] \\ &= P[\frac{v^2}{g} \sin 2\Theta \le r] \\ &= \begin{cases} 0 & r < 0 \\ P[0 \le \Theta \le \frac{1}{2} \sin^{-1} \left(\frac{rg}{v^2}\right)] + P[\frac{\pi}{2} - \frac{1}{2} \sin^{-1} \left(\frac{rg}{v^2}\right) \le \Theta \le \frac{\pi}{2}] & 0 \le r < \frac{v^2}{g} \\ 1 & r \ge \frac{v^2}{g} \end{cases} \\ &= \begin{cases} 0 & r < 0 \\ \frac{2}{\pi} \sin^{-1} \left(\frac{rg}{v^2}\right) & 0 \le r < \frac{v^2}{g} \\ 1 & r \ge \frac{v^2}{g} \end{cases} \end{aligned}$$

Hence we have,

$$f_R(r) = \frac{\mathrm{d}F_R(r)}{\mathrm{d}r}$$
$$= \begin{cases} \frac{2}{\pi} \frac{1}{\sqrt{(v^2/g)^2 - r^2}} & 0 \le r < \frac{v^2}{g} \\ 0 & \text{otherwise} \end{cases}$$

Q11. This is a solved example in Papoulis and Pillai, page 148.

Q12. We will have to prove this for X being a discrete as well as continuous RV.

For the discrete case:

$$\mathbb{E}[|X-c|] = \sum_{x \in E} |x-c|f_X(x)$$
$$= \sum_{x \in E, x \le c} (c-x)f_X(x) + \sum_{x \in E, x > c} (x-c)f_X(x)$$
$$= g(c) \text{ (say)}$$

Now $\mathbb{E}[|X - c|]$ a function of c. A necessary condition for c^* minimizing g is $g'(c^*) = 0$.

$$g'(c) = \sum_{x \in E, x \le c} f_X(x) - \sum_{x \in E, x > c} f_X(x)$$
(1)
= $F_X(c) - (1 - F_X(c))$
= $2F_X(c) - 1$

Hence we have $F_X(c^*) = \frac{1}{2}$, which means c^* is the median (by definition). We also need to verify that this is minima. This follows from equation 1, where for $c < c^*, g'(c) \le 0$ while for $c > c^*, g'(c) \ge 0$. Hence c^* must give a minimum.

Now for the continuous case. Similar to the previous case, let

$$g(c) = \mathbb{E}[|X - c|]$$

$$= \int_{-\infty}^{\infty} |x - c| f_X(x) dx$$

$$= \int_{-\infty}^{c} (c - x) f_X(x) dx + \int_{c}^{\infty} (x - c) f_X(x) dx$$

$$= cF_X(c) - c(1 - F_X(c)) + \int_{c}^{\infty} x f_X(x) dx - \int_{-\infty}^{c} x f_X(x) dx$$

$$= 2cF_X(c) - c + \int_{c}^{\infty} x f_X(x) dx - \int_{-\infty}^{c} x f_X(x) dx$$

Now

$$g'(c) = 2F_X(c) + 2cf_X(c) - 1 + \frac{d}{dc} \left[\int_c^\infty x f_X(x) dx \right] - \frac{d}{dc} \left[\int_{-\infty}^c x f_X(x) dx \right]$$

= 2F_X(c) + 2cf_X(c) - 1 + (-cf_X(c)) - (cf_X(c))
= 2F_X(c) - 1

Again, necessary condition for c^* to be minimizer is $g'(c^*) = 0 \Rightarrow F_X(c^*) = \frac{1}{2}$. Also, $g''(c) = 2f_X(c) \ge 0 \ \forall c$. Hence c^* is minimizer.

Q13. We use the inequality $\log a \leq a - 1$ to prove this. Here, let $a = f_Y(x)/f_X(x)$. Hence we have

$$\log f_Y(x) - \log f_X(x) = \log \frac{f_Y(x)}{f_X(x)} \le \frac{f_Y(x)}{f_X(x)} - 1$$

Multiplying by $f_X(x)$ and integrating, we get

$$\int_{-\infty}^{\infty} [\log f_Y(x) - \log f_X(x)] f_X(x) dx \le \int_{-\infty}^{\infty} [f_Y(x) - f_X(x)] dx$$

$$\Rightarrow \quad \mathbb{E}[\log f_Y(X)] - \mathbb{E}[\log f_X(X)] \le 0$$

RHS is 0 since f_X and f_Y are density functions.

Q14. Probability that a blue ball is picked is $\frac{m_1}{m}$ (call it p). Probability of red ball is picked is $\frac{m_2}{m} = (1 - p)$. Let's calculate the pmf of X. At least two balls will be drawn.

$$P[X = 2] = p(1 - p) + (1 - p)p$$

$$P[X = 3] = p^{2}(1 - p) + (1 - p)^{2}p$$

$$\vdots$$

$$P[X = n] = p^{n-1}(1 - p) + (1 - p)^{n-1}p$$

Hence

$$\begin{split} \mathbb{E}[X] &= \sum_{n \ge 2} n(p^{n-1}(1-p) + (1-p)^{n-1}p) \\ &= (1-p) \sum_{n \ge 2} np^{n-1} + p \sum_{n \ge 2} n(1-p)^{n-1} \\ &= (1-p) \sum_{n \ge 1} (n+1)p^n + p \sum_{n \ge 1} (n+1)(1-p)^n \\ &= (1-p) \sum_{n \ge 0} np^n + (1-p) \left(\sum_{n \ge 0} p^n - 1\right) + p \sum_{n \ge 0} n(1-p)^n \\ &+ p \left(\sum_{n \ge 0} (1-p)^n - 1\right) \\ &= (1-p) \frac{p}{(1-p)^2} + (1-p) \left(\frac{1}{1-p} - 1\right) + p \frac{1-p}{p^2} + p \left(\frac{1}{p} - 1\right) \\ &= \frac{p}{1-p} + \frac{1}{p} \end{split}$$

Note, above we've used the identities $\sum_{n\geq 0} p^n = 1/(1-p)$ and $\sum_{n\geq 0} np^n = p/(1-p)^2$.

Now for the case of without replacement. Wlog, assume that $m_1 \leq m_2$.

$$\begin{split} P[X=2] &= \frac{m_1}{m} \frac{m_2}{m-1} + \frac{m_2}{m} \frac{m_1}{m-1} \\ P[X=3] &= \frac{m_1}{m} \frac{m_1-1}{m-1} \frac{m_2}{m-2} + \frac{m_2}{m} \frac{m_2-1}{m-1} \frac{m_1}{m-2} \\ \dots \text{ for } n &\leq m_1 + 1, \\ P[X=n] &= \frac{m_1}{m} \frac{m_1-1}{m-1} \cdots \frac{m_1-n+2}{m-n+2} \frac{m_2}{m-n+1} + \frac{m_2}{m} \frac{m_2-1}{m-1} \cdots \frac{m_2-n+2}{m-n+2} \frac{m_1}{m-n+1} \\ &= \frac{m_1!/(m_1-n+1)! m_2}{m!/(m-n)!} + \frac{m_2!/(m_2-n+1)! m_1}{m!/(m-n)!} \\ \text{ for } m_1 + 1 < n \leq m_2 + 1, \\ P[X=n] &= \frac{m_2!/(m_2-n+1)! m_1}{m!/(m-n)!} \end{split}$$

Hence

$$\mathbb{E}[X] = \sum_{\substack{n \le m_1 + 1}} n\left(\frac{\frac{m_1!}{(m_1 - n + 1)!} \frac{m_2}{m_1!} + \frac{m_2!}{(m_2 - n + 1)!} \frac{m_1}{m_1!}\right) \\ + \sum_{\substack{m_1 + 1 < n \le m_2 + 1}} n\left(\frac{\frac{m_2!}{(m_2 - n + 1)!} \frac{m_1}{m_1!}\right)$$

(Can this be simplified?)

(+320) (15) $P[X \ge \varepsilon] \leq P[e^{SX} \ge e^{\varepsilon}]$ < E(erx) + 570 $= e^{\sum_{j=1}^{N} e^{j}}$ $= e^{\sum_{j=1}^{N} e^{j}}$ $= e^{\sum_{j=1}^{N} e^{j}}$ $= e^{\sum_{j=1}^{N} e^{j}}$ $= e^{\sum_{j=1}^{N} e^{j}}$ 4070 (anumiz E > 0) Now if ECO then let -E= 570 $P[X \not z \varepsilon] = 1 - P[X \le \varepsilon] = 1 - P[-X \ge s]$ Now distribution of X 8 - X ale the name (why??) $S_{0}, p[-x = s] \leq e^{-s/2}$ =) p[x7,E] > 1-e^{-E/2}

If romebody wrongly placed the inequality the illespective

IPL-10. Assignment 2. Solutions

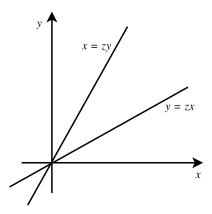
Q16. $Z = \frac{\min(X,Y)}{\max(X,Y)}$. This function can be written as

$$Z = \begin{cases} X/Y & X \le Y \\ Y/X & X > Y. \end{cases}$$

Hence

$$F_Z(z) = P[X/Y \le z, X \le Y] + P[Y/X \le z, X > Y]$$
$$= P[X \le zY, X \le Y] + P[Y \le zX, X > Y].$$

Since X and Y take only positive values, $0 \le Z \le 1$. From the figure, our



favourable region is the one below the line y = zx and to the left of the line x = zy. Hence,

$$F_Z(z) = \int_0^\infty \int_{x=0}^{zy} f_{XY}(x,y) \, dx \, dy + \int_0^\infty \int_{y=0}^{zx} f_{XY}(x,y) \, dx \, dy$$

Differentiating wrt z,

$$f_{Z}(z) = \int_{0}^{\infty} y f_{XY}(yz, y) \, dy + \int_{0}^{\infty} x f_{XY}(x, xz) \, dx$$
$$= \int_{0}^{\infty} y (f_{XY}(yz, y) + f_{XY}(y, yz)) \, dy$$

When X and Y are iid exponential,

$$f_Z(z) = \int_0^\infty y \lambda^2 (e^{-\lambda(yz+y)} + e^{-\lambda(y+yz)}) \, dy$$
$$= 2\lambda^2 \int_0^\infty y e^{-\lambda y(1+z)} \, dy$$
$$= \begin{cases} \frac{2}{(1+z)^2} & 0 \le z \le 1\\ 0 & \text{otherwise.} \end{cases}$$

Q17.

$$RHS = \mathbb{E}[var(X/Y)] + var(\mathbb{E}[X/Y])$$

= $\mathbb{E}\left[\mathbb{E}[X^2/Y] - (\mathbb{E}[X/Y])^2\right] + \left(\mathbb{E}\left[(\mathbb{E}[X/Y])^2\right] - (\mathbb{E}[\mathbb{E}[X/Y]])^2\right)$
= $\mathbb{E}\left[\mathbb{E}[X^2/Y]\right] - \mathbb{E}\left[(\mathbb{E}[X/Y])^2\right] + \mathbb{E}\left[(\mathbb{E}[X/Y])^2\right] - (\mathbb{E}[X])^2$
= $\mathbb{E}[X^2] - (\mathbb{E}[X])^2 = var(X).$

Q18. It can be shown that

$$(\mathbb{E}[|X|^m])^{\frac{1}{m}} \le (\mathbb{E}[|X|^n])^{\frac{1}{n}} \text{ for } 1 < m < n$$

by applying Jensen's inequality by letting g to be the function $g(x) = x^{\frac{n}{m}}$ (convince yourself that g is convex) over the random variable $|X|^m$. Hence we have

$$(\mathbb{E}[|X_n - X|^s])^{\frac{1}{s}} \le (\mathbb{E}[|X_n - X|^r])^{\frac{1}{r}}$$

Here RHS goes to 0 as $n \to \infty$. LHS is a non-negative sequence upperbounded by RHS. So by sandwitching, LHS also goes to 0 as $n \to \infty$. Therefore $\{X_n\} \xrightarrow{s} X$.

Q19. We will show that the sequence of mgf's of U_n converge (pointwise) to mgf of U. Then this would say $\{U_n\} \xrightarrow{\mathcal{D}} U$.

$$M_{U_n}(s) = \mathbb{E}\left[e^{sU_n}\right]$$

= $\mathbb{E}\left[e^{s\sum_{i=1}^n \frac{X_i}{10^i}}\right]$
= $\prod_{i=1}^n \mathbb{E}\left[e^{s\frac{X_i}{10^i}}\right]$ [since X_i 's are independent]

Now,

$$\begin{split} M_{X_i}(s) &= \sum_{j=0}^9 e^{sj} \frac{1}{10} \\ &= \frac{1}{10} \left[1 + e^s + e^{2s} + \dots + e^{9s} \right] \\ &= \frac{e^{10s} - 1}{10(e^s - 1)} \\ &\Rightarrow M_{U_n}(s) &= \frac{e^s - 1}{10(e^{s/10} - 1)} \times \frac{e^{s/10} - 1}{10(e^{s/100} - 1)} \times \dots \frac{e^{s/10^{n-1}} - 1}{10(e^{s/10^n} - 1)} \\ &= \frac{e^s - 1}{10^n (e^{s/10^n} - 1)} \quad \text{[canceling consecutive numerator and denominator]} \\ &= \frac{e^s - 1}{10^n \left(\frac{s}{10^n} + \frac{s^2}{2!10^{2n}} + \dots \right)} \\ &= \frac{e^s - 1}{(s + \frac{s^2}{2!10^n} + \frac{s^3}{3!10^{2n}} + \dots)} \end{split}$$

 $\Rightarrow \lim_{n \to \infty} M_{U_n}(s) = (e^s - 1)/s$, which is indeed the mgf of U[0, 1].

Q20. 40 coins are flipped. Probability of head p = 0.5. Let $X_1, X_2, \ldots X_{40}$ be the Bernoulli RVs. We have,

$$S_n = X_1 + X_2 + \cdots + X_{40}$$

Hence

$$\mathbb{E}[S_n] = 40 \cdot \mathbb{E}[X_i] = 40 \times 0.5 = 20$$

and

$$\operatorname{var}(S_n) = 40 \cdot \operatorname{var}(X_i) = 40 \times 0.5 \times 0.5 = 10.$$

According to CLT,

$$\frac{S_n - 20}{\sqrt{10}} \sim N(0, 1)$$

We want to find $P[S_n = 20]$. Here S_n is discrete RV while N(0, 1) is continuous. Hence to approximate using CLT, we find the probability of S_n taking values between 19.5 and 20.5.

$$P[S_n = 20] = P[19.5 < S_n \le 20.5]$$

= $P\left[\frac{19.5 - 20}{\sqrt{10}} < \tilde{S}_n \le \frac{20.5 - 20}{\sqrt{10}}\right]$
(by CLT) $\approx \Phi(0.16) - \Phi(-0.16)$
= $2\Phi(0.16) - 1 = 0.1272.$

The exact value is given by binomial distribution, i.e. $P[S_n = 20] = {}^{40}C_{20}(0.5){}^{40} = 0.1268.$

These values are very close, showing that even with 40 iid RVs, CLT gives good approximation of \tilde{S}_n .

Q21.

$$F_{\tilde{S_n}}(y) \approx \Phi\left(\frac{(y-\mu)\sqrt{n}}{\sigma}\right)$$

Given $\mu = 167$, $\sigma = 27$. For n = 36,

$$P[163 < S_n \le 170] = F_{\tilde{S}_n}(170) - F_{\tilde{S}_n}(163)$$

$$\approx \Phi(0.66) - \Phi(-0.88)$$

$$= 0.7475 - 0.1870 = 0.5605$$

Similarly, for n = 144,

$$P[163 < \tilde{S}_n \le 170] = F_{\tilde{S}_n}(170) - F_{\tilde{S}_n}(163)$$

$$\approx \Phi(1.33) - \Phi(-1.77)$$

$$= 0.9088 - 0.0377 = 0.8711$$

Q22. We have Y = AX where $Y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}$, $X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 5 & 1 \\ 2 & 0 & 5 \end{bmatrix}$. X is (multivariate) standard normal, $\mu_X = 0$ and $\Sigma_X = I$. Since matrix A

has linearly independent rows, Y will be multivariate normal RV with $\mu_Y = 0$, $\Sigma_Y = A \Sigma_X A^\top = \begin{bmatrix} 3 & 5 & 1 \\ 2 & 0 & 5 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 5 & 0 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 35 & 11 \\ 11 & 29 \end{bmatrix}$. $\Rightarrow \quad f_Y(\bar{y}) = \frac{1}{2\pi \left(35 \times 29 - 11^2\right)^{1/2}} e^{\bar{y}^\top \Sigma_Y^{-1} \bar{y}}.$

 $S_{n} = \sum_{i=1}^{n} \left(X_{i} - \frac{\sum_{j \ge i} X_{j}}{n} \right)^{2}$ 23) $= \sum_{i=1}^{m} \left(X_{i}^{2} - 2X_{i} \left(\frac{S}{1 - 1} \times \frac{S}{n} \right) + \left(\frac{S}{1 - 1} \times \frac{S}{n} \right)^{2} / \frac{2}{n} \right)$ =) $\{S_n\}$ => $E[x_i^*]$ - $(E[x_i])^2 = Vag(x_i)$. So is an estimated of vag(x_i) AbobsO, $E[S_n] = E[X_i^2] - E[E_i^x_i]$ $= E[x_i^2] - \underbrace{\sum_{j=1}^{n} E[x_j^2]}_{j=1} - \underbrace{\sum_{j=1}^{n} E[x_j]}_{j=1} = \underbrace{\sum_{j=1}^{n} E[x_j$ $= E[X_i^2] - nE[X_i^3] - n(n-1)(E[X_i])^2$. It is not an unbiared externator. = n-1 val (Xi)

EEXEL , trace of number is number 24) E[XTS'X] = E[tlace(xTS'X)] permitation = the (E[S'XX]) lireality of expectation - ture (5'E[xx7]) = that (2'2) = there (I) = m