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Lecture 1

Abstract

This lecture de�nes the goals, scope, syllabus and evaluation scheme for the \Introduction to

Probability and Linear Algebra" (IPL-09) course. The classical de�nition of probability is briey

reviewed and the need for an axiomatic approach is motivated.

1.1 Goals, Scope and Syllabus

This course introduces the student to various fundamental concepts in probability
theory and linear algebra. The knowledge of such mathematical tools is essential
in various �elds of computer science like Machine Learning, Communication Net-
works, Computer Graphics and Vision etc. Though the treatment of the subject
is mathematical, focus is more on the problem solving techniques rather than on
the formalism. The syllabus is also tuned based on the needs of computer science:

1. Introduction to probability

� Classical and axiomatic probability, probability spaces, conditional prob-
ability and independence

2. Random variables

� de�nition, common examples, multivariate random variables, moments
and moment generating functions, functions of random variables, con-
ditional expectation

3. Sequences of random variables

� Convergence and central limit theorem
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4. Introduction to random processes

� Markov chains and characterization

5. Topics in statistics

� Hypothesis testing, concentration inequalities

6. Introduction to linear algebra

� Vectors, vector spaces, bases, dimensionality and orthogonality, matri-
ces, fundamental subspaces of matrix, rank-nullity theorem

7. Spectral decompositions

� Eigen value and singular value decompositions, applications

8. Properties of matrices

� Special matrices, norms and determinants

Reference text books for this course are: [3, 4, 5, 7, 8]. Also, the following video
lecture series (available online) provide good insights into the subject [6, 1].

1.2 Evaluation Scheme

The grades (relative grading) will be decided based on the overall marks obtained
in:

S.No. Exam Weightage Date
1. End-Semester 50% 16th-29th Nov'09
2. Mid-Semester 20% 6th-13th Sep'09
3. Two Quizes 10+10% � 22nd Aug'09,� 15th Oct'09
4. Assignments 10% Weekly

1.3 Contact

The course page is at http://www.cse.iitb.ac.in/saketh/teaching/cs723.html.
O�ce hours for the course are Wed and Fri, 3:30-5:00pm. During these hours the
instructor will be available in his o�ce (No. 306, Kanwal Rekhi Building) for clari-
fying speci�c queries that the students may have. The instructor can be contacted
via phone: x7903 or email: saketh at cse also.
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1.4 Introduction to Probability Theory

Probability theory is the branch of mathematics which aids in analyzing random
phenomenon. Many real-world phenomena are too complicated to be studied sys-
tematically in their entirety. Examples vary from seemingly simple phenomenon
like queues at ATMs/banks, vehicular tra�c to more complicated ones like states
of sub-atomic particles etc. A little thought must convince the reader that it is
impossible to correctly predict the exact behaviour of such systems at the rele-
vant time instances of interest. More importantly, in many cases this is not only
a statement about the limitations of one's ability to measure particular quantities
of a system but rather it is a statement about the nature of the system itself
(please recollect Heisenberg's uncertainty principle from school days). In this
course Probability is studied as a deductive theory which enables us to describe
such phenomenon in terms of probabilities of events.

In the following the classical de�nition for probability is briey reviewed
(this is secondary school stu�). Later, the motivation for an axiomatic approach
to probability is presented.

A random experiment is a repeatable experiment in which the outcome of
the experiment is not known (can't be determined); however the set of all possible
outcomes, called the sample space is known. Let the sample space be denoted
by 
. An event is a subset of the sample space. The set of all events is nothing
but the power set of sample space i.e., 2
. The classical de�nition of probability,
which was used for several centuries, is (here E is an event):

Definition 1.4.1.

(1.1) P (E) � jEj
j
j

where jEj is the size (cardinality) of the set E i.e. number of outcomes in
favour of event E and j
j is the total number of outcomes possible. Of course,
the inherent assumption is that all the outcomes are equally likely1. This classical
de�nition has multiple aws: a) the de�nition itself uses the notion of probability
(via the equally likely assumption) b) application is limited to cases where the
\equal likely" assumption holds e.g. not suitable for a biased coin or loaded die
etc.

Also, it can be shown that probability actually depends on the choice of
the set of possible outcomes and events: consider the problem described in the
Bertrand's paradox : Given a circle of radius R, determine the probability that

1Principle of insu�cient reason or Principle of maximum entropy
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the length of a randomly selected chord AB is greater than
p
3R. There are

multiple ways of solving this problem; a couple of them are discussed below:

1. Assume the random chord AB is perpendicular to a speci�c diametrical
chord of the circle, say FG. Note that though this reduces the number of
possibilities, the number favourable cases also are correspondingly reduced.
Hence this restriction has no e�ect on the probability which is to be cal-
culated. It is easy to see that if the mid-point (M) of the chord AB is at
a distance less than R

2
from the center of the circle, then the length of the

chord is indeed greater than
p
3R. Now, consider the set of outcomes as the

various positions of M on the line FG i.e., 
(1) = [�R;R]. Above observa-
tion shows that the event of interest is E(1) = [�R

2
; R
2
]. Hence the probability

of the event E(1) is jE(1)j

j
(1)j
= 1

2
. Here length is taken as the \measure" for size

of sets, which are intervals in this case.

2. Again consider the random chord AB. It is easy to see that if the mid-point
M of the chord AB lies inside a concentric circle of radius R

2
, then its length

is indeed greater than
p
3R. Now, consider the set of outcomes as the various

positions of M i.e., points in the original circle. With this, 
(2) = f(r; �)jr 2
[0; R]; � 2 [0; 2�]g and E(2) = f(r; �)jr 2 [0; R

2
]; � 2 [0; 2�]g. Considering

area as the \measure" for the size of the sets (which are 2-d intervals in this

case), the required probability is jE(2)j

j
(2)j
= 1

4
.

The above discussion shows that probability actually depends on the choice of the
outcomes. In other words, the set of possible outcomes 
 needs to be de�ned before
venturing into the calculation of probabilities. Also, note that (unknowingly) while
calculating probabilities using area and length as the \measures" for the sizes of
the events, we have assumed that events always take the form of (n-dimensional)
intervals. This is because the concept of length and area are usually associated
with intervals rather than for arbitrary sets. So do we need to assume that the
set of possible events must only be intervals (and not the power set of 
) ? or
do we need to generalize the notions of length and area ??. (Interested students
please look into the wikipedia article on this problem at http://en.wikipedia.
org/wiki/Bertrand’s_paradox_(probability)).

An axiomatic de�nition of probability was proposed by A. N. Kolmogorov in
the early 1930s which addresses the short comings of the classical de�nition. The
de�nition assumes that the sample space (
) and set of events (F) are given and
then de�nes probability as a set function satisfying few axioms. This will be the
topic of discussion for the next lecture.
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Lecture 2

Abstract

The objective of this lecture is to introduce the axiomatic de�nition of probability (Kolmogorov's

approach). Given the set of outcomes and events, probability is de�ned as a real-valued set function

satisfying three fundamental axioms. Examples of probability functions which satisfy the three

axioms for the cases with countable sample spaces are then discussed. The case of uncountable

sample spaces motivates the need for \shrinking the size" of the set of events using the notion of a

�-algebra. The lecture ends discussing examples of �-algebras and the re�ned axiomatic de�nition

of probability using the notion of �-algebra.

The discussion in the previous lecture, and in particular the problem de-
scribed in Bertrand's paradox, clearly motivates the need for an improved de�-
nition of probability. As noted in the last class, it was A. N Kolmogorov in his
pioneering work in the 1930s [2] gave such a de�nition of probability which is
in wide-acceptance today. In this lecture, we study the Kolmogorov's axiomatic
de�nition of probability.

An important learning from the problem in Bertrand's paradox was that
the choice of the set of outcomes 
 is crucial in determining probabilities of events.
Hence we de�ne probability assuming the set of outcomes is �xed a-priori. Also,
let us assume that the set of events, F , is the power set 2
 itself. Now, we are in
search of a rigorous de�nition of probability which generalizes the classical notion
of probability (1.1). Kolmogorov identi�ed three important properties that the
classical probability satis�ed:

Non-negativity If E 2 F , then P (E) � 0.

Unit measure P (
) = 1.
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�-additivity If Ei 2 F ; i = 1; 2; : : : and Ei \ Ej = �; i 6= j; i; j = 1; 2; : : :, then
P ([1i=1Ei) =

P
i P (Ei). In other words, probability of countable union of

disjoint (mutually exclusive) events is the sum of the probabilities of the
individual events.

The properties non-negativity and unit-measure are merely concerned with the
boundary (extremal) values of probability whereas �-additivity is the vital prop-
erty which actually captures the classical (intuitive) notion of probability that:
\bigger" events have higher probabilities and the \smaller" ones have lower prob-
abilities.

Now let us de�ne probability as the real-valued set function P : F 7! R
which satis�es the above mentioned (three) principles of non-negativity, unit-
measure and �-additivity. Note that since F = 2
, we are assured that 
 2 F and
[1i=1Ei 2 F whenever Ei 2 F ; i = 1; 2; : : :. Hence the de�nition is indeed a valid
one. Now let us verify if there is atleast one such function which satis�es these
three principles (axioms).

Let us start with the case of �nite sample space e.g., 
 = f1; 2; : : : ; ng; n 2 N
(no. sixers in a match by Yuvi :). Suppose we denote pi � P (i); i = 1; : : : ; n
and de�ne probability of any event as the sum of the probabilities of outcomes
favourable to that event, i.e, P (E) =

P
i:i2E;i2
 pi. It is easy to see that if pi

are chosen such that pi � 0;
Pn

i=1 pi = 1, then all the three axioms are satis�ed.
This shows that there are in�nitely many choices for the probability function (the
classical probability just picks one such choice with pi =

1
n
; i = 1; : : : ; n). The

situation does not change much if the sample space is countably in�nite e.g. 
 =
f1; 2; : : : ; n; n+ 1; : : :g: now we just need to pick pi such that pi � 0;

P1
i=1 pi = 1.

For e.g. choose pi = (1�q)qi�1; q 2 [0; 1] (geometric series family). Ofcourse there
are other families of functions too. This discussion clearly shows that the new
de�nition of probability is well-de�ned and indeed generalizes the classical notion
of probability.

Before extending this strategy of assigning probabilities to each element of
the sample space to the case of uncountable sample spaces, let us ask the following
question: what is the maximum number of mutually exclusive events (m.e.e) that
F can have each with probability atleast 1

k
(here, 0 < k � 1)? The answer to

this question is: there can be atmost k m.e.e in F (why?). In other words, there
can be atmost countable number of m.e.e in F . Hence assigning probabilities to
each element of an uncountable sample space is not feasible. In fact, Guisseppe
Vitali (in around 1900s) showed1 examples of \large" events to which probability
assignment cannot be done i.e., the set of events F cannot be taken to be the

1Students looking for insights into a formal proof can look at www.math.unl.edu/~gmeisters1/
papers/Measure/measure.pdf
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whole of 2
! (Again, recall the question posed towards the end of Lecture 1: while
applying notion of length/area probability are we inherently assuming F < 2
?)

The above discussion clearly shows that one must consider \smaller" sets of
events than 2
 and which are compatible with the axiomatic de�nition of prob-
ability. A �-algebra is a useful algebraic structure on the set of subsets of a set
which facilitates this \shrinkage":

Definition 2.0.2. �-algebra over a set 
 is a non-empty collection F of subsets

of 
 such that it is closed under:

� complementation i.e., E 2 F ) Ec 2 F
� countable union i.e., Ei 2 F ; i = 1; 2; : : :) [1i=1Ei 2 F

From this de�nition, it is easy to show that any �-algebra atleast contains two
events: f�g (impossible event) and f
g (certain event). Also, one can show that
a �-algebra is closed under countable intersection (use De Morgan's Laws). E.g.
of �-algebras are ff�g; f
gg, ff�g; E;Ec; f
gg, 2
 and so on. As we discussed
earlier, if the �-algebra is taken to be 2
, then probability assignment cannot be
done. On the other extreme, the case of F = ff�g; f
gg is trivial. What one needs
in practice is a �-algebra which includes \most" of the events of interest. For e.g.
if 
 = R we may want the �-algebra to atleast include all kinds of intervals (so
that length can then be employed as the measure for size of events). Usually, the
smallest �-algebra containing the \interesting" events (say intervals) is taken as F .
Note that it is easy to construct such a �-algebra: starting with the given events,
we just need to supply all the events which make it closed under complementation
and countable unions (we will see an example of such a �-algebra over 
 = R
in a later lecture). We call such a \smallest" �-algebra as the one generated by
the events under consideration. However the question of which is the \largest"
�-algebra for which probability assignment can be done is an important one (and
beyond the scope of this course). Now we are in a position to formally state the
axiomatic de�nition of probability:

Definition 2.0.3. Given a sample space 
 and a �-algebra F over 
, prob-
ability is a real-valued set function P : F 7! R satisfying the following three

axioms:

Non-negativity E 2 F ) P (E) � 0.

Unit measure P (
) = 1.

�-additivity Ei 2 F ; i = 1; 2; : : : ; Ei \ Ej = �; i 6= j; i; j = 1; 2; : : : )
P ([1i=1Ei) =

P
i P (Ei)
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The triplet (
;F ; P ) is known as the probability space.

In the subsequent lecture we will explore some properties of the de�ned
probability function.
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Lecture 3

Abstract

We begin by proving some interesting properties of the probability function de�ned in last lecture.

The issue of continuity of the probability function is dealt with to some extent. The lecture ends

with some discussion on the notion of conditional probability and independence of events.

3.1 Consequences of the Axioms

Let us look at some of the consequences of the three axioms of probability:

1. E 2 F ) P (Ec) = 1� P (E)

∵ E 2 F ) Ec 2 F| {z }
F is ��algebra

; 1 = P (
)| {z }
Unit Measure

= P (E [ Ec) = P (E) + P (Ec)| {z }
Additivity

In particular, P (f�g) = 0 (substitute 
 for E).

2. E1 � E2 2 F ) P (E1) � P (E2)

∵ E1; E2 2 F ) E2�E1 � E2 \ Ec
1 2 F| {z }

F is ��algebra

; P (E2) = P (E1) + P (E2 � E1)| {z }
Additivity

; P (E2 � E1) � 0| {z }
Non-negativity

In particular, E 2 F ) P (E) � 1.

3. E1; E2 2 F ) P (E1[E2) = P (E1)+P (E2)�P (E1\E2). This is because the
following three identities are true: P (E1[E2) = P (E1�E2)+P (E2�E1)+
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P (E1\E2); P (E1) = P (E1�E2)+P (E1\E2); P (E2) = P (E2�E1)+P (E1\
E2). Note that each of these in turn follow from the additivity property.
Also, refer the assignment for more generalizations and bounds derivable
from this.

3.1.1 Property of Sequential Continuity

We wish to know whether the probability function de�ned in defn. 2.0.3 is \con-
tinuous". To do this, let us �rst discuss the notion of convergence of sequence of
sets. In this lecture we will be concerned only with special sequences known as
the monotonic sequences and discuss general convergence issues at a later stage.

A sequence of events Ei 2 F ; i = 1; 2; : : :, is said to be monotonically non-

decreasing i� E1 � E2 � : : : En � En+1 � : : :. Similarly, we de�ne a monotoni-

cally non-increasing sequence as the one satisfying: E1 � E2 � : : : En � En+1 �
: : :. A sequence is called monotonic is it is either monotonically non-decreasing
or non-increasing. Now, we de�ne the limits of monotonic sequences as follows:

Definition 3.1.1. If fEng is a non-decreasing sequence, then limn!1En �
[1i=1Ei and if fEng is non-increasing, then limn!1En � \1i=1Ei.

Note that for any monotonic sequence in F , the limiting event, E � limn!1En,
indeed belongs to F because F is a �-algebra (and hence closed under countable
unions and intersections). Infact, one could alternatively de�ne �-algebra as that
collection of subsets of 
, in which all monotonic sequences converge. Now, we
can ask the following questionn for monotonic sequences: is P (limn!1En) =
limn!1 P (En) ? The answer turns out to be yes and this property is known as
the property of sequential continuity and is proved below considering the case of
monotonically non-decreasing sequences (proof in the other case is similar):

Proof. Let us de�ne E � limn!1En � [1i=1Ei. Then, for any n 2 N, we have
E = En [1i=n (Ei+1 � Ei). By the �-additivity axiom, 1 � P (E) = P (En) +P1

i=n P (Ei+1�Ei). In particular, if n = 1, then we obtain:
P1

i=1 P (Ei+1�Ei) � 1.
This says that the (in�nite) series sum

P1
i=1 P (Ei+1 � Ei) is bounded above and

thus the \tail sum" must go to zero. In other words, limn!1
P1

i=n P (Ei+1�Ei) = 0
and hence P (E) = limn!1 P (En).

In the lecture, we discussed a simple application of the property of sequential
continuity: \the probability of never seeing a head in a series of coin tosses is zero".
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3.2 Conditional Probability

Many times, probabilities of events change when it is known that a certain other
event has happened. A trivial example is: probability of seeing a head in coin
toss experiment is 1 if somebody already told you that the event H occured. The
reason why the probability value changed is because the set of possible outcomes
e�ectively got changed. Such situations are modeled using conditional probability,
which is de�ned as follows:

Definition 3.2.1. Given a probability space (
;F ; P ), and an event B with

non-zero probability of occurance i.e., P (B) > 0, we de�ne a new probability

function known as the conditional probability given B as follows:

PB(A) � P (A=B) � P (A \B)
P (B)

8 A 2 F

It is a trivial excercise to verify that the conditional probability function
de�ned above, satis�es non-negativity, unit-measure and �-additivity: let Ei; i =

1; 2; : : : 2 F be m.e.e. (mutually exclusive events), then PB([1i=1Ei) =
P(f[1i=1Eig\B)

P (B)
=

P([1i=1(Ei\B))
P (B)

(why?). Now each of Ei [ B is indeed m.e.e. because Ei themselves

are. Hence, PB([1i=1Ei) =
P1

i=1 PB(Ei). Note that, PB(B) = 1 and for any
C \B = �, PB(C) = 0. In other words, it is equivalent to shrinking the set of pos-
sible outcomes from 
 to B. Also, it is easy to verify that P (A\B) = P (A=B)P (B)
and P (\ni=1Ei) = P (E1)P (E2=E1)P (E3=E1 \ E2) : : : P (En=E1 \ : : : En�1). These
formulae are useful whenever conditional probabilities are easier to calculate than
probabilities of intersection of events.

Now, let Ei; i = 1; : : : ; n 2 F such that they are m.e.e. and [ni=1Ei = 
.
Such a collection of events is known as a partition of the sample space 
. Let A
be another event in F and hence A = [ni=1(A\Ei). Since each of A\Ei are again
m.e.e., we have that P (A) =

Pn
i=1 P (A \Ei) =

Pn
i P (A=Ei)P (Ei). This is known

as the total probability rule. Now, further, P (Ei=A) =
P (Ei\A)
P (A)

= P (A=Ei)P (Ei)
P (A)

=
P (A=Ei)P (Ei)Pn

j
P (A=Ej)P (Ej)

. This is known as the Baye's rule. The probabilities P (Ej) are

known as the prior probabilities, P (A=Ej) are known as class-conditional proba-
bilities or aposterior probabilities and P (Ej=A) are known as posterior probabili-
ties. Usually, the posterior probabilities are of interest and are di�cult to estimate
whereas the prior and class-conditional probabilities are easy to estimate (In later
lectures concrete examples will be given).

Example:In a certain population, the probability of a person having disease
is p. A new diagnostic test was deviced which has a rate of success q i.e., with
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probability q it identi�es a correctly the state of a person (disease or normal). In
order to deploy the diagnostic, it is required that the ratio of probability of person
having disease and probability of being normal given that the diagnostics report
presence of disease, is high. Compute this ratio.
Solution: Let D be the event a person has desease and T be the event that the
diagnostic test reports presence of disease. P (D=T ) = P (T=D)P (D)

P (T )
and P (Dc=T ) =

P (T=Dc)P (Dc)
P (T )

. Hence the required fraction is P (D=T )
P (Dc=T )

= P (T=D)P (D)
P (T=Dc)P (Dc)

= qp
(1�q)(1�p)

.

Note that the decision making criteria does not involve P (T ).

Two events are said to be independent if P (E1 \ E2) = P (E1)P (E2). In
case P (E1); P (E2) 6= 0, this implies that P (E1=E2) = P (E1); P (E2=E1) = P (E2).
In other words occurance of one event does not change anything to a�ect the
probability of the other. This notion can be extended to a set of n events Ei; i =
1; : : : ; n. However one needs to ensure possible pairs, triples, etc. of these events
are independent. This amounts to 2n � n� 1 conditions! Pair-wise independence
may not imply higher order independences and vice-versa.

14



Lecture 4

Abstract

In this lecture, we construct a �-algebra over R known as the Borel �-algebra, which we always

take as the set of the events while working with 
 = R. We introduce the concept of a random

variable and then formally de�ne it. Distribution function of a random variable is de�ned and its

properties are studied.

Many times we may want to quantify the outcomes of random expts. in terms
of (real) numbers. The reason may be that such a quanti�cation is very natural
to the problem at hand or it simply may be to aid study of probability functions
de�ned over standardized (numeric) sample spaces. For e.g. consider the expt. of
two coin tosses where the sample space is 
 = fHH;HT; TH; TTg. One way to
quantify this sample space is to consider the function X de�ned as \the number
of heads". It is easy to see that X(HH) = 2; X(HT ) = X(TH) = 1; X(TT ) = 0.
Such a function which quanti�es the sample space is known as a random vari-

able. Now given the original probability space (
;F ; P ), one can calculate the
probability PX of an event B in the new sample space (i.e. set of real numbers
R) using this simple notion: PX(B) = P (X�1(B)) = P (f! 2 
 : X(!) 2 Bg).
The idea is that probability of events in the new sample space are computed as
the probability of their pre-images in the original sample space. For e.g. in the
above example, PX([�3; 1]) = P (X�1([�3; 1])) = P (f! 2 
 : X(!) 2 [�3; 1]g) =
P (fTT;HT; THg). Note that this probability is known only if fTT;HT; THg 2
F . Pathological examples of F , which are �-algebras, can be constructed where
fTT;HT; THg =2 F e.g., F = ff�g;
g or F = ffHH;TTg; fHT; THg;
; f�gg
etc. Hence while de�ning random variable X we must ensure that such patho-
logical F would not e�ect the probability calculations. Also, we need to �x an
appropriate �-algebra for R (we know that taking the set of events as 2R wont
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work!). The �-algebra we choose is called the Borel �-algebra and is described in
the following section.

4.1 Borel �-algebra

Suppose we consider the following (basic/elementary) events in R: A = f(�1; x] :
x 2 Rg. We call the �-algebra generated by A as the Borel �-algebra and always
denote it by B. In other words, B is the \smallest" �-algebra which contains A. It
is easy to see that B contains the following kinds of events (this is no where near
the exhaustive list):

1. (�1; x] (∵ they are in A itself)

2. (x;1) (∵ complements of events in A)

3. R and f�g (∵ union and intersection of complementary intervals of kind 1,2)

4. (x1; x2] (∵ intersection of intervals of kind 1,2)

5. (x1; x2) (∵ (x1; x2) = [1n=1(x1; x2 � 1
n
])

6. [x1; x2) (∵ [x1; x2) = \1n=1(x1 � 1
n
; x2))

7. [x1; x2] (∵ intersection of intervals of kind 4,6)

8. fxg (solve the assignment problem)

9. All countable sets of reals (∵ countable union of singletons)

It can be shown that B 6= 2R and infact, there exist many probability functions
that can be de�ned on (R;B) (proof is beyond our scope). Hence B is a �-algebra
which is rich enough to model various events on R and is also of manageable size
in the sense that probability functions can be de�ned. Therefore we always take
it as the default set of events for 
 = R.

4.2 Random Variables

Now we are in position to de�ne a random variable:
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Definition 4.2.1. Given a probability space (
;F ; P ), we de�ne random vari-

able as a function X : 
 7! R, where X�1(B) 2 F 8 B 2 B. The in-

duced probability space of the random variable is (R;B; PX), where PX(B) �
P (X�1(B)) 8 B 2 B.

One can now easily verify that the probability function PX indeed satis�es the
non-negativity as well as the unit-measure axioms of probability. The �-additivity
of PX follows from that of P and the fact that the pre-image, X�1, preserves the
set operations:

Proof. We want to show that PX([1i=1Bi) =
P1

i=1 PX(Bi) 8 Bi 2 B 3 Bi \Bj =
� (i 6= j). We have,

PX([1i=1Bi) = P (X�1([1i=1Bi)) (∵ defn. of PX)

= P ([1i=1X�1(Bi)) (∵ X�1 preserves set operations)

=
1X
i=1

P (X�1(Bi)) (∵ Bi \Bj = �) X�1(Bi) \X�1(Bj); 8 i 6= j)

=
1X
i=1

PX(Bi) (∵ defn. of PX)

This discussion shows that the induced probability function is indeed a valid
probability function according to the axiomatic de�nition. Now, the condition
X�1(B) 2 F 8 B 2 B is a very mild one (i.e., it is an issue in very rare/pathalogical
cases). Infact, one need not verify the condition for forall B 2 B; it is enough to
verify X�1(A) 2 F 8 A 2 A. In other words, it is enough to check the condition
for the basic events which generated the Borel �-algebra. This is because for
any function, the pre-image preserves set operations and both F ;B are indeed
�-algebras. Also (again without formal proof) one can show that probabilities
of any event in B can be computed from the probabilities of the basic events:
PX((�1; x]). Here's an example: P ((x1; x2]) = P ((�1; x2])�P ((�1; x1]). Since
these probabilities are of such an importance, we give a name to these as a function
of x: the Distribution Function.

4.3 Distribution Function of Random Variable

The distribution function FX(x) of a random variable X is a real valued function
on reals de�ned as FX(x) = PX((�1; x]). Recall that PX((�1; x]) = P (f! 2
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 : X(!) � xg). The short hand notation for the last probability term is usually:
P [X � x] (abuse of notation!). In other words, FX(x) � P [X � x]. It is easy to
see that the distribution function for the \number of heads" random variable is:

FX(x) =

8>>><
>>>:

0 x < 0
1
4

0 � x < 1
3
4

1 � x < 2
1 x � 2

Also, the distribution function satis�es these properties:

1. 0 � FX(x) � 1 8x (∵ distribution function at each x is after all a probability).

2. FX(�1) = P (�) = 0 and FX(1) = P (
) = 1.

3. x1 � x2 ) (�1; x1) � (1; x2) ) FX(x1) = P ((�1; x1)) � P ((�1; x2)) =
FX(x2). In other words, FX is monotonically non-decreasing function.

4. FX(x) is right continuous and has left limit.

The property that FX is right continuous etc. can be proved using the results on
continuity of PX . However since we have studied continuity issues of probability
functions (like PX) only for the case of monotonic sequences, we will not be able to
provide a formal proof of this at this stage. What we provide below is a justi�cation
considering monotonic sequences alone:

Consider a sequence fxn = x+ang where fang is any non-negative sequence
that monotonically decreases to zero (for e.g., fang = 1

n
). So, xn ! x from the

right monotonically i.e., xn # x. Now consider the sequence of intervals fIn = (-
1; xn)g. Since this is a monotonically non-increasing sequence of events we have
limn!1 In = \1n=1In = (�1; x] and hence by sequential continuity property we
have FX(x) = P ((�1; x]) = P (limn!1 In) = limn!1 P (In) = limxn#x FX(xn).
Similarly, one can prove that limxn"x FX(x) = P [X < x]. However since P [X �
x] = P [X < x] + P [X = x], unless P [X = x] = 0 it will not happen that
P [X < x] = P [X � x]. In case P [X = x] = 0, then FX is continuous at x (both
from right and left).

Infact, any function which satis�es these four properties is called a distri-
bution function. One can also show (again not in this course) that for every
distribution function there exists a random variable. However there might be
multiple random variables with the same distribution function (an example is in
the assignments). In the next lecture we will study distribution functions which
are not left continuous i.e. P [X = x] 6= 0 and arise in the case of special kind of
random variables known as Discrete random variables.
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