
CS 725 Foundations of Machine Learning
Quiz-2; 6:30pm-9pm, 09-Apr-2015

Roll No.

Important Instructors

� Please �ll in your roll number in the blank above.

� Please write your answers in the space provided. There is no sep-
arate answer sheet. Answers written beyond the space provided
may NOT be evaluated.

� It is recommended that you �rst write the solutions and answers in
rough sheets. This will also help you to understand whether your
answer will �t the space provided or you will need to shorten it by
skipping less important details etc. Once you are convinced that the
answer cannot be further improved, then only make a fair version of
it in the space provided for the answer. You may take as many rough
sheets as you need.

� Note that for most of the questions the markings will be binary based
on the exactness of your �nal answer written in the space provided.
So make sure your answers are legible, precise, and do not commit
silly mistakes/typos in writing your �nal answers.

� Make sure you always simplify your answers to the extent possible.
Technically correct answers, which can be simpli�ed further will get
you NO credit.

� Needless to say, a good way of verifying your answer is to check if it
intuitively, geometrically, syntactically makes sense.

� This is a closed book exam. Electronic gadgets, including a calculator,
are strictly NOT allowed.
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Section 1. Analytical Questions

1. Nagarjunsagar-Srisailam Tiger Reserve is the largest Tiger reserve
in India with a core area of 1,200 sq.km., located across two states:
Andhra Pradesh and Telangana. Consider the problem of estimating
the number of tigers in this reserve, denoted bymt. Systematic search
of every inch is impractical as the area is not only vast but also has
extremely dense jungles. Besides, one may not want to disturb the
tigers and the other fauna as much as possible. Hence a common
sampling strategy happens to be that of capture-release-recapture
survey:

Hidden traps are laid at random points in the reserve. The traps
are furnished with transmitters that signal a catch and each captured
tiger is retrieved immediately. When mp tigers have been caught, the
traps are removed. Each of these mp tigers are carefully sedated and
marked with an ear tag. Then, all are released together back to the
positions they were originally caught. Some time later1, hidden traps
are laid again, but at di�erent random points on the island until ms

tigers have been caught and the number of tagged tigers is recorded,
say as msp. Note that ALL the captured tigers are held in captivity
until the mth

s tiger has been caught.

Given the numbers mp;ms;msp, your job is to estimate the total
number of tigers mt. In particular, attempt the following. which will
help you in the estimation:

(a) Write down an expression for the likelihood function (pmf in this
case) for the Random variable, Msp, representing the number of
tagged tigers caught in the second round of traps in terms of the
unknown parameter mt (which is to be estimated). (2marks)

(b) Consider now MLE of mt. Write down this formal optimization
problem, assuming valid values of mt are numbers between mp+

1By when it is assumed that the tagged tigers \mix completely" in the population.
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ms �msp and mmax. (0.5marks)

(c) Let the number of values between mp +ms �msp and mmax be
m. Provide an O(log2(m)) algorithm for solving the above MLE
optimization problem. You will get no credit unless you justify
the correctness of your algorithm. (3marks)

(d) If we now want to obtain a Bayesian estimate, then what will be
a suitable conjugate prior? (0.5marks)

(e) Write down the posterior likelihood function for mt. (1mark)

Typically, after obtaining the posterior of mt, one repeats the whole
experiment, now by using this posterior as the new prior. And this
process is repeated until the �nal posterior is peaked enough2.

Now consider an alternate survey procedure, where after tagging the
tigers as above, a trap is placed at a random location and it is noted
whether the tiger caught is a tagged one or not. After sometime of
releasing this tiger, another trap is put at another random location
and the same is noted. This is repeated for say ms times. If the total

2so that one is con�dent that a MAP estimate with the �nal posterior is accurate enough.
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no. of tagged tigers caught in these ms independent traps is msp,
then the MLE for mt is going to be (1mark)

Ofcourse for obvious pragmatic reasons3, nobody employs this alter-
nate survey procedure.

2. Consider a density estimation problem for the dataset

D = fx1; : : : ; xmg =
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where `?' represents a missing datum. Let the model be 2-d Gaussian.
Your job is to perform an MLE for the parameters of the Gaussian,
� = (�2�1;�2�2), using the EM algorithm. Make use of the following
notation and answer the following questions. For the ith example xi,
let xio and xih denote the observed and missing feature values. For

e.g., x2o = x21 and x2h = x22; whereas x1o =

"
x11
x12

#
and x2h is null.

Let us denote the Gaussian pdf at xi and parameter � by f�(xio; xih).
Also let Xih denote R if one of the values for xi is missing, R2 if both
are missing and null set fg if both values are observed.

(a) Write down the expression (using the above notation) for the
likelihood of the training data. Your expression MUST involve
the symbols xih;Xih; f�. (2marks)

(b) In the EM algorithm, at every iteration, we introduce an \auxil-
iary" distribution over the hidden variables at each example that
facilitates us to obtain a lower bound that is a concave function
of the parameters �. At iteration t, let this auxiliary density
function evaluated at z 2 Xih be given by �ti(z). Using this no-
tation, write down the expression for the (concave) lower bound

3Obviously the experiment in the second survey will take a very long time compared to
the �rst as now things are done `sequentially' vs. `parallelly' in the �rst.
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for the likelihood of the training data4. (2marks)

(c) Let the parameter estimated at the tth iteration of the EM algo-
rithm be denoted by �t. Also, lets break down the parameters
into the observed and hidden parts so that the likelihood at
�t = (�t

o; �
t
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vv) can be written as
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Write down an expression5 for the \ideal" auxiliary distribution
in terms of (�t�1

o ; �t�1
h ;�t�1

oo ;�t�1
ov ;�t�1

vv ):

�ti(z) = (4marks)

(d) In terms of (�t�1
o ; �t�1

h ;�t�1
oo ;�t�1

ov ;�t�1
vv ) and xio write down the

4Recall that log is a concave function and hence satis�es the so called Jensen's inequality:
log(E[Z]) � E[log(Z)], where Z is any random variable; provided the involved expecta-
tions exist.

5Your expression must NOT involve the symbol f (used for likelihood function).
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update equations for �t
h and �t

o. (4marks)

Realize that the EM algorithm does NOT simply replace a missing
value at a feature with the sample mean of the same feature at ob-
served positions.

3. It is proposed to evaluate the popularity of Indian celebrities by mea-
suring the popularity of their YouTube channels. One way to measure
popularity of a channel is by simply modeling the distribution of: the
sum of number of \likes" and \dislikes" in its videos. Higher the
mean of these sums, higher is the popularity of the celebrity. A naive
way to do this is to model each celebrity/channel by a Gaussian dis-
tribution or by a Gaussian likelihood and a suitable conjugate prior.
However, since all the channels belong to a particular community,
Indians, there will be latent factors that connect/tie all of them6.
Such factors should be taken into account especially if the number of
videos in each channel are less. One way to connect/tie these multiple
models is by using a common prior7.

In summary, here is the description of the model: for the jth celebrity,
the model is Gaussian with mean �j and variance �2. The mean �j

is what �nally has to be estimated to decide who is popular. Assume
that the variance �2 is known. Now, the key modeling step is: we
assume each �j to come from a common Gaussian prior with mean �

and variance � 2. Along with �j, the hyper-parameters � and � 2 are to
be estimated. Assume that we employ maximum marginal likelihood
for hyper-parameter estimation and then using these estimates for the
hyper-parameters, we perform a MAP estimate for the �j. Derive the
�nal simpli�ed formula for the estimate of �j in terms of training data

6For eg. perhaps all Indian channels get less viewership than say US channels etc.
7Multi-task learning via Hierarchical Bayes method.
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and �2. (10marks)
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