CS 725 Foundations of Machine Learning
Quiz-2; 6:30pm-9pm, 09-Apr-2015

Roll No.

Important Instructors

Please fill in your roll number in the blank above.

Please write your answers in the space provided. There is no sep-
arate answer sheet. Answers written beyond the space provided
may NOT be evaluated.

It is recommended that you first write the solutions and answers in
rough sheets. This will also help you to understand whether your
answer will fit the space provided or you will need to shorten it by
skipping less important details etc. Once you are convinced that the
answer cannot be further improved, then only make a fair version of
it in the space provided for the answer. You may take as many rough
sheets as you need.

Note that for most of the questions the markings will be binary based
on the exactness of your final answer written in the space provided.
So make sure your answers are legible, precise, and do not commit
silly mistakes/typos in writing your final answers.

Make sure you always simplify your answers to the extent possible.
Technically correct answers, which can be simplified further will get
you NO credit.

Needless to say, a good way of verifying your answer is to check if it
intuitively, geometrically, syntactically makes sense.

This is a closed book exam. Electronic gadgets, including a calculator,
are strictly NOT allowed.
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Section 1. Analytical Questions

1. Nagarjunsagar-Srisailam Tiger Reserve is the largest Tiger reserve
in India with a core area of 1,200 sq.km., located across two states:
Andhra Pradesh and Telangana. Consider the problem of estimating
the number of tigers in this reserve, denoted by m;. Systematic search
of every inch is impractical as the area is not only vast but also has
extremely dense jungles. Besides, one may not want to disturb the
tigers and the other fauna as much as possible. Hence a common
sampling strategy happens to be that of capture-release-recapture
survey:

Hidden traps are laid at random points in the reserve. The traps
are furnished with transmitters that signal a catch and each captured
tiger is retrieved immediately. When m, tigers have been caught, the
traps are removed. Each of these m, tigers are carefully sedated and
marked with an ear tag. Then, all are released together back to the
positions they were originally caught. Some time later!, hidden traps
are laid again, but at different random points on the island until m,
tigers have been caught and the number of tagged tigers is recorded,
say as ms,. Note that ALL the captured tigers are held in captivity
until the m®" tiger has been caught.

Given the numbers m,, m,, m,,, your job is to estimate the total
number of tigers m,. In particular, attempt the following. which will
help you in the estimation:

(a) Write down an expression for the likelihood function (pmf in this
case) for the Random variable, M,,, representing the number of
tagged tigers caught in the second round of traps in terms of the
unknown parameter m,; (which is to be estimated).  (2marks)

(b) Consider now MLE of m;. Write down this formal optimization
problem, assuming valid values of m; are numbers between m, +

!By when it is assumed that the tagged tigers “mix completely” in the population.
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(c) Let the number of values between m, + m, — m,, and mp.x be
m. Provide an O(log,(m)) algorithm for solving the above MLE
optimization problem. You will get no credit unless you justify
the correctness of your algorithm. (3marks)

(d) If we now want to obtain a Bayesian estimate, then what will be
a suitable conjugate prior? (0.5marks)

(e) Write down the posterior likelihood function for m;. (lmark)

Typically, after obtaining the posterior of m;, one repeats the whole
experiment, now by using this posterior as the new prior. And this
process is repeated until the final posterior is peaked enough?.

Now consider an alternate survey procedure, where after tagging the
tigers as above, a trap is placed at a random location and it is noted
whether the tiger caught is a tagged one or not. After sometime of
releasing this tiger, another trap is put at another random location
and the same is noted. This is repeated for say m, times. If the total

250 that one is confident that a MAP estimate with the final posterior is accurate enough.
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no. of tagged tigers caught in these m, independent traps is m.y,
then the MLE for m; is going to be (1mark)

Ofcourse for obvious pragmatic reasons®, nobody employs this alter-
nate survey procedure.

2. Consider a density estimation problem for the dataset

ot {[2] [} L[ 2] [22])

where ‘?’ represents a missing datum. Let the model be 2-d Gaussian.
Your job is to perform an MLE for the parameters of the Gaussian,
0 = (K2x1, Zax2), using the EM algorithm. Make use of the following
notation and answer the following questions. For the i* example z;,
let z;, and z;;, denote the observed and missing feature values. For
€.g., Too, = To1 and oy = Top; Whereas i, = l z” ] and zop, is null.
12
Let us denote the Gaussian pdf at z; and parameter 8 by fo(z;0, Zin)-
Also let X;;, denote R if one of the values for z; is missing, R? if both

are missing and null set {} if both values are observed.

(a) Write down the expression (using the above notation) for the
likelihood of the training data. Your expression MUST involve
the symbols z;, X;1, fo- (2marks)

(b) In the EM algorithm, at every iteration, we introduce an “auxil-
iary” distribution over the hidden variables at each example that
facilitates us to obtain a lower bound that is a concave function
of the parameters 6. At iteration ¢, let this auxiliary density
function evaluated at z € X, be given by Ai(z). Using this no-
tation, write down the expression for the (concave) lower bound

3Obviously the experiment in the second survey will take a very long time compared to
the first as now things are done ‘sequentially’ vs. ‘parallelly’ in the first.
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for the likelihood of the training data*. (2marks)

(c) Let the parameter estimated at the ¢** iteration of the EM algo-
rithm be denoted by 6. Also, lets break down the parameters
into the observed and hidden parts so that the likelihood at
0 = (ut, pt, ot , 3¢ 3t ) can be written as

ou)

o (oo mt) B oo mt ) (oin ) "Bl (oon ) 120 m2) "B ()

fgt (xio, xih) =
([ =)
2w, det o0 °
J (25" Tha
Write down an expression® for the “ideal” auxiliary distribution
in terms of (uf™t, ut ', Bt ni-t nit-1y:

00 ) ov )

A(z) = (4marks)

(d) In terms of (uf*, b *, ot 1, 0t 1 ¢ 1) and z;, write down the

oo ov

4Recall that log is a concave function and hence satisfies the so called Jensen's inequality:
log(E[Z]) > E[log(Z)], where Z is any random variable; provided the involved expecta-
tions exist.

>Your expression must NOT involve the symbol f (used for likelihood function).
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update equations for uf and wf. (4marks)

Realize that the EM algorithm does NOT simply replace a missing
value at a feature with the sample mean of the same feature at ob-
served positions.

. It is proposed to evaluate the popularity of Indian celebrities by mea-
suring the popularity of their YouTube channels. One way to measure
popularity of a channel is by simply modeling the distribution of: the
sum of number of “likes” and “dislikes” in its videos. Higher the
mean of these sums, higher is the popularity of the celebrity. A naive
way to do this is to model each celebrity /channel by a Gaussian dis-
tribution or by a Gaussian likelihood and a suitable conjugate prior.
However, since all the channels belong to a particular community,
Indians, there will be latent factors that connect/tie all of themb®.
Such factors should be taken into account especially if the number of
videos in each channel are less. One way to connect/tie these multiple
models is by using a common prior’.

In summary, here is the description of the model: for the 5 celebrity,
the model is Gaussian with mean ©; and variance o?. The mean ©;
is what finally has to be estimated to decide who is popular. Assume
that the variance o? is known. Now, the key modeling step is: we
assume each ©; to come from a common Gaussian prior with mean p
and variance 72. Along with ©;, the hyper-parameters x and 72 are to
be estimated. Assume that we employ maximum marginal likelihood
for hyper-parameter estimation and then using these estimates for the
hyper-parameters, we perform a MAP estimate for the ©;. Derive the
final simplified formula for the estimate of ©; in terms of training data

5For eg. perhaps all Indian channels get less viewership than say US channels etc.
"Multi-task learning via Hierarchical Bayes method.
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and o2 (10marks)
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