
Practice Problems on Linear Classi�ers

February 21, 2015

Note: Please do not copy answers from your friends. Please do not submit
your solutions to us, as we do not plan to evaluate them. Please feel free to
discuss solutions with course instructor.

1. Show that the hard-margin SVM formulation i.e., equation (2.3) in Sum-
mary notes, is equivalent1 to the following:
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2. Motivated by above, which says \maximize the distance/margin between
the closest scores, w>�(x), in the positive and negative subsets", one
might want to alternatively say \maximize the distance between the av-
erage scores with the positive and negative points":
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wherem+;m� are the number of positive and negative points in the train-
ing set. Show that the above problem can be solved by simply calling
a sub-routine that returns the highest eigen-value and the correspond-
ing eigen-vector. Please write-down2 the matrix for which you need to
compute this largest eigen-value. Hint: Write down the objective in (2)
as a (homogeneous) quadratic function and then write the Eigen-Value-
Decomposition (EVD) of its hessian. Now try to argue things out with
the Hessian written in its EVD form (use the fact that the eigen vectors
are unit vectors orthogonal to each other).

1More speci�cally, show that (2.3) and (1) will induce the same hyperplane given the same
training set.

2Your proof will show that (2) is an example of a non-convex optimization problem that
has e�cient (polynomial time) algorithm.
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. While it is clear that (2)

relaxes (1) and allow points to lie on the incorrect sides, it will work well
only if we include a term that penalizes such mistakes. So, one might
want to say \do the above while restricting the sum of variances in the
scores of the two sets to be small":
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Show that this problem also can be solved by simply calling a sub-routine
that returns the highest eigen-value and the corresponding eigen-vector.
Please write-down the matrix for which you need to compute this largest
eigen-value. (3) is popularly known as Fisher Linear Classi�er3. Hint:
Write the constraint as a quadratic one and perform a change of variables
that makes this constraint same as the constraint in (2).

4. Compute the conjugates for the various binary class�cation (Y = f�1; 1g)
losses de�ned in lectures. More speci�cally, show that:

Square-hinge-loss: Let li(z) � max(0; 1�yiz)
2. Show that its conjugate

is given by: l�i (�) =
�2

4 + yi�; 8 yi� � 0.

Logistic-loss: Let li(z) � log(1 + e�yiz). Show that its conjugate is the
negative entropy: l�i (�) = (1+�yi) log(1+�yi)��yi log(��yi); 8 �yi 2
[0;�1].

Exponential-loss: Let li(z) � e�yiz. Show that its conjugate is given
by: l�i (�) = �yi� log(�yi�) + yi�; 8 yi� � 0.

5. Using the above conjugates, and the fact that equation (2.7), in lecture
notes, is the dual of equation (2.8), in lecture notes, derive the duals
of MMLC with all the above three loss functions. Also write-down all
the optimality conditions (using the same methodology as in lectures).
Simplify the dual as well as optimality conditions as much as possible4.

6. Exercise 4.3 in "Foundations of ML" book by Mohri et.al.

3Note that there is no elegant loss function that when substituted in MMLC will give
Fisher LC.

4After doing this exercise do a search on internet to verify if all your derivations are correct.
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