
Lecture-4,5



• 2-d Euclidean example

• Dirichlet Tesselation or 

Voronoi Decomposition

• Bayes optimal in purple
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 Theorem: Let 𝑅𝑁𝑁,and 𝑅∗denote the limiting value of the expected 

misclassification error with NNC (i.e., 𝑅𝑁𝑁 = lim
𝑚→∞

𝐸 𝑃 𝑌 ≠ 𝑔𝑚
𝑁𝑁 𝑋 𝑋] ) and with 

Bayes optimal respectively, then, under mild conditions, we have

0 ≤ 𝑅∗ ≤ 𝑅𝑁𝑁 ≤ 2𝑅∗



 Theorem: Let 𝑅𝑁𝑁,and 𝑅∗denote the limiting value of the expected 

misclassification error with NNC (i.e., 𝑅𝑁𝑁 = lim
𝑚→∞

𝐸 𝑃 𝑌 ≠ 𝑔𝑚
𝑁𝑁 𝑋 𝑋] ) and with 

Bayes optimal respectively, then, under mild conditions, we have

0 ≤ 𝑅∗ ≤ 𝑅𝑁𝑁 ≤ 2𝑅∗

 Interesting extreme cases:

 𝑅∗ = 0, then 𝑅𝑁𝑁 = 0

 𝑅∗ = 0.5, then 𝑅𝑁𝑁 = 0.5



• Smoother boundary

• Closer to Bayes optimal
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 Theorem: Let 𝑅𝑘𝑁𝑁,and 𝑅∗denote the limiting value of expected 

misclassification rate with k-NNC (as 𝑚 → ∞) and that with Bayes optimal 

respectively, then, under mild conditions, we have

0 ≤ 𝑅∗ ≤ 𝑅
2𝑘+1 𝑁𝑁

≤ 𝑅
2𝑘−1 𝑁𝑁

≤ 2𝑅∗

 However, with finite 𝑚, it may happen that 𝑅𝑚
(2𝑘+1)𝑁𝑁

≥ 𝑅𝑚
(2𝑘−1)𝑁𝑁



 Theorem: For large enough 𝑚, 𝑘, such that 
𝑘

𝑚
is small enough, we have with 

probability atleast 1 − 𝛿:

0 ≤ 𝑅𝑚
𝑘𝑁𝑁 − 𝑅∗ ≤

72𝛾2 log 2/𝛿

𝑚
 In particular, in the limit m → ∞,𝑘 → ∞,

𝑘

𝑚
→ 0, we have that 𝑹𝑵𝑵 = 𝑹∗

(irrespective of the value of 𝑅∗)



 Theorem: For large enough 𝑚, 𝑘, such that 
𝑘

𝑚
is small enough, we have with 

probability atleast 1 − 𝛿:

0 ≤ 𝑅𝑚
𝑘𝑁𝑁 − 𝑅∗ ≤

72𝛾2 log 2/𝛿

𝑚

𝛾 ≤ 1 +
2

2 − 3

𝑛

− 1

Curse of 

dimensionalty

(here artefact of 

analysis)


