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Chapter 1

Basic Concepts and Definitions

Machine learning aims at developing algorithms that mimic the ability in humans to
learn i.e., improve their “performance” with experience. By performance, we mean
their various cognitive abilities. A short note about this is presented below. It is
easy to observe that machine learning algorithms will have far reaching consequences
in all aspects of living and hence are worth developing.

1.1 Human Learning

Humans seem to have various cognitive abilities. Some of which1 are: i) finding
similarities or patterns or groupings in data, ii) categorizing objects not seen before
as novel iii) sequence completion iv) recognition abilities including speech and object
recognition v) Summarizing or abstracting text/images/multi-media vi) Decision
making vii) Problem solving etc. A little thought will convince that all these abilities
improve2 with increasing experience.

Above discussion convinces that associated with learning there is always a
target/unknown concept/ability. Hence-forth, we will call this as the unknown-
concept. For e.g., in the phenomenon of learning to group data, the unknown
concept is the relationship between data/objects and group-ids. In the phenomenon
of speech recognition, it is the relationship between speech utterances and English
transcriptions etc.

Needless to say, learning happens through experience. Hence experience is
an important aspect of learning. It is easy to see that experience is simply a finite-
sized realization (sampling) of the truth in the unknown-concept. Depending on

1Examples are picked based on the settings that machine researchers have formally studied.
2Not necessarily strictly monotonically improving.
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the need/application humans express3 the unknown-concept through some input-
output pairs. For e.g., in the grouping/clustering of data example, the input is the
datum and the output is the group-id etc. This clarifies what we mean by input
and output.

Also, how well or fast will a person learn will definitely depend on his current
state/capacity/bias/background. We will refer to this as background hence-forth.
Given this terminology, one could say that the objective in human learning is to
determine the unknown-concept, but it seems enough to say that the goal is to be
able to provide the “right” output for any input (because this is how usually humans
express their ability/unknown-concept that has been learnt). Summarizing, here are
the five important aspects in human learning:

1. Input and Output

2. Unknown-concept

3. Experience

4. Background

5. Objective of learning

1.2 Machine Learning

Though humans possess very many abilities, they are currently far from understand-
ing how they learn/acquire/improve these abilities. So the idea in machine learning
is to develop mathematical models and algorithms that mimic human learning rather
than understanding the phenomenon of human learning and replicating it.

The formal study of machine learning begins by restricting oneself to certain
limited aspects in human learning and postponing the mimicing of human learning
in entirety to a later stage. Accordingly we study the follow basic types of learning,
which are categorized based on the type of supervisor:

Supervised Learning: This concerns the cases of human learning where the su-
pervisor/supervision is specific/specialized to the goal at hand.

Passive version: mimics learning that happens in babies when taught by
maata-pita. i.e., learning through specific examples (and non-examples):

3If humans could express the unknown-concept directly, rather than in terms of input-output
pairs, then perhaps, humans would also understand how they learn!
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Classification: E.g., the parents show the baby pictures of various ob-
jects while clarifying the name of each object. After being shown a
few, the baby starts identifying those objects.

Regression: E.g., everyday (based on few environmental clues) the par-
ents make a prediction about the chance that it will rain (based on
which they may advice their kids not to go out to play :). After few
days, the kids themselves start making these predictions.

Active version: This concerns the learning that happens in a shishya when
taught by an aachaarya. E.g., After some passive supervised learning, the
shishya asks questions about the most confusing examples to be clarified
by the aachaarya. Note that here the choice of example is with the
learner rather than the supervisor. This is more popularly known as
“Active Learning”.

Un-supervised Learning: This concerns the cases of human learning where the
supervisor/supervision is not specific/specialized to the goal at hand.

Passive version: E.g., Based on various sentences (spoken in mother tongue)
that various people speak to a kid, the kid forms a idea of his language.
Then he can predict whether a word, which was never heard by him ear-
lier, to belong to his language or not. Note that here the supervisor is not
specific and more importantly, the supervision (the sentences spoken) is
not explicitly intended to teach the kid what is his language’s formal defi-
nition/grammar. Other examples are problems of support/mean/density
estimation.

Active version: E.g., Based on actually touching hot and cold water multiple
times (and perhaps getting hsi fingers burnt sometimes), the baby figures
out the right temperature range of water that is “safe” for him. This
kind of learning is popularly known as “Reinforcement Learning”. This
will not be covered in this course4.

Now we shall write down the mathematical concepts by which we represent
each of the five aspects in human learning mentioned earlier.

1. Input by x ∈ X (⊂ Rn, usually) and Output by y ∈ Y (⊂ R, usually). X ,Y
are called as input space and output space respectively.

2. Unknown-concept by a Probability distribution [Ross, 2002] over the in-
puts (hence-forth denoted by FU

X ) or over the input-output pairs (hence-forth

4There are many other learning settings that are formally studied by ML researchers and will
not be studied in this course.
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denoted by FU
XY ). For e.g., in case of support/mean/density estimation or

sequence filling problems the probability distribution is over the inputs alone
and in case of object recognition, language identification applications described
above, the probability distribution is over the input-output pairs.

3. Experience by:

(a) set of input-output pairs. This is the case for e.g., in supervised learn-
ing.

(b) set of inputs. This is the case for e.g., in unsupervised learning.

In either case, we call this set as the training set. Most importantly, the
training set and the unknown distribution have a relation: we assume that
the training set is an instantiation of a set of iid random samples from the
unknown distribution. We denote the set of iid random variables gener-
ating the training set as D = {X1, . . . , Xm} in un-supervised case and as
D = {(X1, Y1), . . . , (Xm, Ym)} in the supervised case. The training set is an
instantiation of D (hence-forth denoted by D).

4. Background by (mathematical) Model. We will give examples later.

5. Objective of learning by some mathematical statement. For e.g. contruct
f : X 7→ Y such that f satisfies certain mathematical condition(s). Examples
later.
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Chapter 2

Examples of Machine Learning
Models/Algorithms

We then began by giving examples of some machine learning models/algorithms. We
began with the simplest, and yet perhaps the most powerful and generic, nearest
neighbour classifier, which perhaps models the way in which humans identify objects.

2.1 Nearest Neighbour Classifier

Please refer section 13.3 in Hastie et al. [2009], which gives a nice overview of this
method.

Here the model is extremely simple: the idea is to remember/store the entire
training data and when a (new) input is given, search for the nearest input in the
training data and assign the label of the (new) input as that of this nearest input.

We began by analyzing this model/classifier formally. The formal analysis
is due to Cover and Hart [1967]1. The key result from this work is, under mild
conditions and as m→∞ (m is number of training examples), we have

0 ≤ R∗ ≤ RNN ≤ 2R∗,

where RNN denotes the expected misclassification error of the NN classifier, in the
limit. We also gave an intuitive reason for this: because of the uncertainty of label
in the neighbour, the training set may realize a label that has lower probability
of occurring and this gives an additional R∗ error over the Bayes error. We also

1Available at http://web.stanford.edu/~montanar/TEACHING/Stat319/papers/cover_nn.

pdf
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commented on two extreme cases: i) if R∗ = 0 , then the bounds are tight and
RNN = 0. Algorithms that achieve Bayes error are said to be Bayes consistent.
Moreover, if R∗ = 0.5 (supervisor is clueless), then RNN = 0.5 (so will be the
learner).

We then thought about an improvement for reducing the chance of picking a
low probability label from the neighbour. The obvious idea was to look for some
k nearest neighbours instead of one and take the majority vote. And because for
large k, we expect majority vote to be the same as the more probable class, the
error might reduce to R∗. Hence we started analysing so called k nearest neighbour
classifier.

The first result is the following asymptotic bound2:

0 ≤ R∗ ≤ . . . R(2k+1)NN ≤ R(2k−1)NN ≤ . . . ≤ R3NN ≤ RNN ≤ 2R∗,

where RkNN denotes the limiting value of the expected misclassification error with
the k-NN classifier, as m→∞. After this we cited the following non-trivial theorem
(proof skipped) due to Devroye and Gyorfi [1985]3:

Theorem 2.1.1. If X ⊂ Rn,Y = {−1, 1} and under the conditions k →∞, k
m
→ 0,

we have with atleast 1− δ probability,

RkNN
m −R∗ ≤

√
72γ2 log 2

δ

m
,

where RkNN
m denotes the expected probability of misclassification with k-NN classifier

trained with m examples and γ ≤
(

1 + 2√
2−
√

3

)n
− 1.

Firstly, the above bound talks about finite (but large enough) m and in the
limit (m → ∞, k → ∞, k

m
→ 0) we obtain RNN = R∗. Secondly, this bound seems

to be cursed for high dimensions (n is the dimensionality). We commented that
there are improved bounds. Please refer Chaudhuri and Dasgupta [2014] for details.

Motivated with the ideology of kNN (of estimating FY/X ), we study other
(parametric) methods for estimating distributions in section 2.5.

2.2 Decision Trees

After modelling the simplest case of human learning via the nearest neighbour al-
gorithm, we then wanted to model human learning where humans try to estimate a

2Please refer chapter 5, theorem 5.4, in Devroye et al. [1996] for an insightful proof
3Please refer chapter 11, theorem 11.1, in Devroye et al. [1996] for a detailed proof.
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single threshold beyond which inputs belong to one category and below which they
belong to the other category. For example, estimating the critical threshold for the
amount of water-vapour rising out (in unit time) from a bucket of water, beyond
which the water is too hot to touch. We then began by modelling this situation as
follows:

Let φ(x) ∈ R denote the representation of input datum x. In the above
example, x is the bucket of water and φ(x) is the amount of water-vapour rising
out. We represented the human by the set of positive reals (the candidates for the
threshold). This is what is the “model” in this case. Then the learning algorithm
should essentially figure out what is the ‘b ∈ R+’ such that {x | φ(x) ≥ b} gives the
cases where bucket of water is hot (and vice-versa).

We then tried to imagine how a human would estimate such a threshold b and
the obvious answer was b will be the optimal solution of the following optimization
problem4:

min
b∈R+

1

m

m∑
i=1

1{yi(φ(xi)−b)≥0}.

We also discussed a simple algorithm to solve the above optimization problem that
has a computational complexity O(m).

Now came the question why does this algorithm work? In the sense, why (or
in which cases) will the b picked by this algo be the “best” b in the sense that it
achieves the least (true but unknown) probability of misclassification. The obvious
justification was that the objective in the above optimization will approach the true
probability of misclassification as m → ∞. And hence, as argued in section 3, the
optimal solution of the above problem will approach the “best” threshold.

We then naturally motivated that there could be multiple features φ1, . . . , φn
available. One way to utilize all of them while staying close to the above algorithm
is as follows; more commonly known by the name “decision trees”:

1. The “best” b1 corresponding to φ1, as per the training set is obtained by solving
the optimization problem.

2. The dataset is then partitioned into two, one where φ1 exceeds b1 and one
otherwise. If φ1 is not “good enough”, then none of these partitions may be
“pure” (i.e., it may have inputs of more than a single class).

3. Then the same procedure of finding threshold and partition is repeated.

It is easy to see that this can be nicely represented as a tree (refer fig.9.5 in Hastie
et al. [2009]). While this constitutes the training phase, the inference phase is

4Assuming Y = {−1, 1} (binary classification).
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pretty simple: just run the example through the decision tree and assign label as
the majority label in the leaf node reached. It is easy to see that decision tree simply
combines the various features in the form of conjunctions over propositions involving
the features. Each path from root to leaf node gives a conjunction that implies a
particular label.

While this seems intuitive, again the question is why will this work? It is easy
to see that this would work as long as there are enough examples at every stage to
estimate the corresponding bi. Since the training set size for the threshold decreases
with increasing depth of the tree, we desire shallow trees giving good purity in
the leaf nodes. In practice, (if one does not derive careful learning bounds), the
number of levels should be pre-fixed before seeing the dataset (for reasons discussed
in section 3).

2.3 Support Vector Methods

2.3.1 Binary Classification

The main reference for this section is chapter 4 in Mohri et al. [2012].

A mathematically convenient way to combine the information in the various
features φ1, . . . , φn is by looking at linear models: appropriately thresholded linear
combinations of features. More specifically, consider the model

FL =
{
f | ∃w = [w1 . . . wn]> 3 f(x) = sign

(
w>φ(x)− b

)
∀ x ∈ X

}
,

where φ(x) = [φ1(x) . . . φn(x)]>, and while w determines the linear combination, b
determines the threshold. In this case, the problem of learning (training phase) is
simply the problem of finding the right w ∈ Rn, b ∈ R. Though it appears that
there are n + 1 unknowns, a closer look will reveal that only n of them need to be
optimized for. One of them can always be fixed arbitrarily. This is because, for a
given w, b pair, any αw, αb will also give the same classification.

Given this, training can simply be posed as this optimization problem:

min
w∈Rn,b∈R

1
m

∑m
i=1 1{yi(w>φ(xi)−b)≥0},(2.1)

s.t. ‖w‖ = 1

Note that the constraint ‖w‖ = 1 simply fixes one of the n+1 variables as discussed
above. It so happens that unless the above optimization problem has an optimal
value of zero (i.e., there exists a hyperplane that clearly separates the two kinds of
inputs), it is computationally hard to solve it. Please see Feldman et al. [2009] for
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further details. In the case, there is clear separation, the above problem can infact
be written as the following linear program and hence can be efficiently solved:

min
w∈Rn,b∈R

0,(2.2)

s.t. yi
(
w>φ(xi)− b

)
≥ 1 ∀ i = 1, . . . ,m.

We then noted that the separation/margin in the above set up is the distance be-
tween the hyperplanes w>φ(x) = b− 1 and w>φ(x) = b + 1, which is equal to 2

‖w‖ .

The above optimization problem will invariably have many solutions (once there is
some separation, there is another solution with lesser separation). Of these, the one
that achieves the maximum margin is given by5:

min
w∈Rn,b∈R

1
2
‖w‖2,(2.3)

s.t. yi
(
w>φ(xi)− b

)
≥ 1 ∀ i = 1, . . . ,m.

Once this is in place, it is easy to (re)write the original problem (where no.
errors need not be zero; the generic case) as follows:

min
w∈Rn,b∈R,ξ∈Rm

1
m

∑m
i=1 1ξi>0,(2.4)

s.t. yi
(
w>φ(xi)− b

)
≥ 1− ξi, ξi ≥ 0 ∀ i = 1, . . . ,m.

We already know that the above problem is computationally hard and hence one
way out is to “relax” it to the following:

min
w∈Rn,b∈R,ξ∈Rm

1
m

∑m
i=1 ξi,(2.5)

s.t. yi
(
w>φ(xi)− b

)
≥ 1− ξi, ξi ≥ 0 ∀ i = 1, . . . ,m,

which can be re-written as the following by eliminating ξ variables:

(2.6) min
w∈Rn,b∈R

1

m

m∑
i=1

l
(
yi
(
w>φ(xi)− b

))
,

where l(z) ≡ max(0, 1−z), and is known as the hinge loss function6. We then noted
that this function is convex and is infact an upper bound on 1y 6=g(x), that simply
records a misclassification. The later is also called as the 0-1 loss. We then noted
the following convex surrogate losses for the 0-1 loss:

Hinge-loss: l(z) ≡ max(0, 1− z).

5This is popularly known as hard-margin Support Vector Machine
6Measures the “loss” incurred on replacing true label with estimated one
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Square-Hinge-loss: l(z) ≡ (max(0, 1− z))2.

Logistic-loss: l(z) ≡ log (1 + e−z).

Exponential-loss: l(z) ≡ e−z.

While all of them are convex and upper bounds for 0-1, the first two do not penalize
“correct” classifications, whereas the later two are more “pessimistic” and demand
very high value of yg(x). Except the first, all are differentiable. In plain English
words, the problem (2.6) is simply minimizing the average loss over the training
set7. Average loss over the training set is sometimes referred to as the empirical (or
sample) risk. Hence (2.6) is minimizing the empirical risk.

Finally, in case we wish to write down something like maximum margin clas-
sifier that minimizes loss over the training set, then we noted that these two ob-
jectives oppose each other (for sensible loss functions) and hence the model should
pre-specify what the trade-off parameter is:

(2.7) min
w∈Rn,b∈R

1

2
‖w‖2 +

C

m

m∑
i=1

l
(
yi
(
w>φ(xi)− b

))
,

where C is the trade-off parameter. More popularly, C is called as the “hyper-
parameter” or “regularization parameter”. We will hence-forth denote (2.6) by LC
and (2.7) by MMLC.

MMLC with hinge-loss is popularly known as Support Vector Machine (SVM).
MMLC with squared-hinge-loss is known as l2-SVM. MMLC with Logistic-loss is
known as Logistic regression (also refer probabilistic models).

We then began studying the characteristics of these two optimization problems
i) minimize empirical risk (average loss over training set) ii) minimize empirical risk
(average loss over training set) while maximizing margin. We began with an easy
to prove, but insightful, theorem called the representer theorem:

Theorem 2.3.1. All optimal solutions, w∗, of MMLC i.e., (2.7) satisfy the following
property: there exists α = [α1 . . . αm]> ∈ Rm such that w∗ =

∑m
i=1 αiyiφ(xi). Also,

there exists an optimal solution of LC i.e., (2.6) satisfying the same property.

While this was easy to prove, it gives the following insights already:

• LC and MMLC provide modified nearest neighbour classifiers.

7This is “fine” because as m → ∞, the average loss will approach the true (but unknown)
expected loss. Hence (2.6) will approximately solve the problem of minimizing expected loss.
Expected loss is sometimes referred to as “risk”.
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• When used with “sparse” losses like hinge and square hinge loss, they become
“smart” nearest neighbour classifiers in the sense that the prediction depends
on few training examples alone8.

• During training as well as inference, we do NOT explicitly need φ. It is enough
if an oracle for computing φ(x)>φ(z) exists for all x, z ∈ X .

We analyzed the optimality conditions and the dual9 of MMLC in more detail.
With the notation li(z) = l(yiz) and l∗i denoting the conjugate (or Fenchel dual or
Legendre transform10) of li, we have the dual problem as:

max
α∈Rm

−1
2
α>Gα− C

m

∑m
i=1 l

∗
i

(−mαiyi
C

)
,

s.t.
∑m

i=1 αiyi = 0,(2.8)

where G, called the gram matrix, whose (i, j)th entry is yiyjk(xi, xj), and k(xi, xj) ≡
φ(xi)

>φ(xj). Moreover, the optimality conditions, with hinge-loss11, turn out to be
(w∗, b∗ is optimal solution of MMLC and α∗ is that of its dual):

• w∗ =
∑m

i=1 α
∗
i yiφ(xi)

• α∗i = 0⇒ yi

(
(w∗)> φ(x)− b∗

)
≥ 1, yi

(
(w∗)> φ(x)− b∗

)
> 1⇒ α∗i = 0

• 0 < α∗i < C
m
⇔ yi

(
(w∗)> φ(x)− b∗

)
= 1 (such are called as non-bound

support vectors)

• α∗i = C
m
⇒ yi

(
(w∗)> φ(x)− b∗

)
≤ 1, yi

(
(w∗)> φ(x)− b∗

)
< 1 ⇒ α∗i = C

m

(such are called as bounded support vectors)

Hence we expect that with hinge loss, most of the training examples will have α∗i = 0
at optimality. Infact, one can show theorem 4.1 in Mohri et al. [2012].

Exploiting this sparsity in the optimal solution is the key idea behind state-
of-the-art methods for solving MMLC (when hinge-loss kind of “sparse losses” are
employed). Broadly there are two (related) methods:

8So there is no need to store the entire dataset
9Please refer sections 5.1.6 and 5.2 in Boyd and Vandenberghe [2004] for the generic methodology

for writing the dual in terms of Conjugate. The same sections give many examples too. More
specifically, example 5.4 in the same book gives back the exact derivation we did in the lectures.

10See section C 6.3 in Nemirovski [2005] for details about the Conjugate of a function.
11The very same conditions can also be derived by employing KKT conditions. Refer section

4.3.2 in Mohri et al. [2012] for such a derivation. Note that in lectures we came up with an alternate
argument (based on conjugate), but ofcourse giving exactly the same optimality conditions. Also,
the dual for the hinge-loss can also be derived as shown in section 4.3.3 in Mohri et al. [2012].
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• Co-ordinate descent: minimization at every iteration is done only wrt. one (or
few) variable(s). Rest are fixed at previously updated values. Since solution
is known to be sparse, we expect to converge in few iterations.

• Active-set method: minimization at every iteration is done wrt. variables in
active set. Rest are fixed at zero (non-active). Active set is updated to better
guesses for the non-zero variables at optimality. Again, because of sparsity we
expect to converge even before seeing all the variables once!

For the case hinge-loss with b = 0, the dual becomes an unconstrained problem12 and
the state-of-the-art for solving it is indeed co-ordinate descent. Please refer Hsieh
et al. [2008] for details. For the case b is not fixed at zero (and is a variable), a
slight modification of co-ordinate descent is employed, which is called as sequential
minimal optimization (SMO). This is because the problem has a constraint and
hence the iterates will become infeasible if vanilla co-ordinate descent is employed.
Please refer to Keerthi et al. [2001] for details.

2.3.2 Ordinal Regression

The main reference for this section is Chu and Keerthi [2005]. Ordinal regression
or ordinal classification is the setting where the output space is a set of multiple
classes that form a total order. Hence the idea is to look for k thresholds in the
linear combination score w>φ(x), if k+1 ordinal classes exist; everything else remains
the same as in the binary classification case. Refer my quiz-1 solutions13 for details
on modifying nearest neighbours, decision trees and SVMs to handle this.

2.3.3 Regression

We then went on to look at the extreme case of ordinal regression, where the output
space in the special total order called the real numbers. This setting is known as
Regression and the main reference for the following is section 10.3 in Mohri et al.
[2012]. More specifically:

Least-square Regression: Section 10.3.1 in Mohri et al. [2012]. Eqn (10.9), (10.11)
respectively provide the formulation and optimality condition. This is LC with
square-loss.

12Infact, if one uses the feature vector as [φ(x)> 1]> instead of φ(x), then one can safely assume
b = 0. Since then b is a part of w itself.

13Available at http://www.cse.iitb.ac.in/saketh/teaching/cs725Quiz1Sols.pdf.
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Ridge-Regression: Section 10.3.2 in Mohri et al. [2012]. Eqn (10.15), (10.17)
respectively provide the formulation and optimality condition. This is MMLC
with square-loss.

Support Vector Regression: Section 10.3.3 in Mohri et al. [2012]. Eqn (10.23),
(10.26) respectively provide the formulation and its dual. This is MMLC with
ε-insensitive loss (defined in the book).

Alternative loss functions are summarized in Fig 10.5.

Performance measures for regression appear here 3.4.3.

2.3.4 Structured Prediction

We then took the more generic setting where the classes need not have a total order
relation defined over them. For example, there could be a partial order defined over
the classes inducing a tree or lattice structure on the output space. An example for
this is the case where the classes form a Taxonomy (e.g., taxonomy of CS subjects).
Another example is the problem of sequence labeling, where the goal is to label every
term in the input sequence (e.g., speech recognition). The machine learning setting
where the output space has a well-defined (but perhaps complex) structure (as in
above examples) is popularly refered to as the problem of Structured Prediction.
The main reference14 for this section is Tsochantaridis et al. [2005] (struct-SVM)15.
The formulation we studied in lecture is given by eqn. (7) in the paper. Its dual
is given in proposition 5. Note that this dual is very similar to that of regular
SVM and shares similar “sparsity” properties. Hence one can again use co-ordinate
descent algorithm16. However, later on when we cover sequence labeling problem in
section 2.3.4.1, we will realize that co-ordinate descent is not good enough and one
may need something more smarter, which does not even need to loop through all
the dual variables. Such an algorithm is described in Algorithm 1 in the paper.

We covered a few simple examples where we applied struct-SVM to multi-class
classification. Refer sections 4.1 and 4.2 for those examples.

14You may also refer to section 19.7.2 in Murphy [2012].
15Section 8.5 in Mohri et al. [2012] gives a broad overview of alternative structured prediction

methodogies (rather than struct-SVM) for the multi-class classification problem.
16Nevertheless one may need to update atleast two dual variables in each iteration
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2.3.4.1 Sequence Labeling

We now focus on the problem of sequence labeling, where the input space as well as
output space is a set of sequences 17. Again, for simplicity sake we assume elements
of the sequence are Euclidean vectors.

For e.g., consider the problem of character recognition or speech recognition.
The input in the earlier case is an image, which can be thought about as a sequence
of images segmented at character level. In turn these character level sub-images can
be represented in some vectorial form using image processing transforms. The input
in the later case is a speech signal, which can be further segmented and processed
into sequences of MFCC vectors18. In either case, it seems convinient to represent
the input as an arbitrary lengthed sequence of Euclidean vectors. The output in
both cases is sequence of characters that are represented in the corresponding input
sequence. Let us denote an input sequence x of length T by

(
x(1), . . . , x(T )

)
, where

each x(i) ∈ Rn and the corresponding output sequence by y =
(
y(1), . . . , y(T )

)
, where

each y(i) ∈ A. Here A is the set of alphabets of the language in question. Let us
denote the set of all input sequences of all possible lengths by X and that of output
sequences by Y .

In the above applications, the machine learning problem is to induce a function
f : X 7→ Y , given a training set containing m input-output pairs19, which when eval-
uated on an input sequence of length T will evaluate to the “best” output sequence
of the same length. At this point we refer the reader to section 2.5.2.4 and present a
specific choice for φ(x, y) in struct-SVM, which will mimic the discriminative model
for sequence labeling given in (2.13).

This specific choice for φ(x, y) is discussed in detail in section 4.3 in Tsochan-
taridis et al. [2005]. While this seems fine, it is clear that the number of dual
variables with struct-SVM for sequence labeling will be O(

∑m
i=1 c

Ti), where c is
the number of values each label in the sequence can take and Ti is the length of
the ith sequence. Hence employing the usual co-ordinate descent method will pose
computational challenges.

The alternative is to employ an active set algorithm. The idea in an active
set algorithm is to restrict the non-zero dual variables to those in the active set,
which itself is updated at every iteration. The hope is that the final active set size is
not very large compared to the actual number of non-zeros at optimality. Hence we

17of finite but arbitrary length, as opposed to fixed length in case of Euclidean vectors
18Please see http://en.wikipedia.org/wiki/Mel-frequency_cepstrum for a primer on

MFCC.
19sampled from the unknown distribution
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never need to solve an optimization problem larger than the active set20. The details
of such a clever active set algorithm are presented in algorithm 1 of Tsochantaridis
et al. [2005]. Theorem 18 in the same paper, proves that the algorithm’s complexity
is polynomial. Notice that this algorithm would require one to solve an argmax
problem. This could be done using a modified Viterbi algorithm21. The details are
provided in section 4.3.2 of the paper.

2.3.5 Unsupervised Learning

There are various unsupervised learning problems that can be handled using SVM-
kind of ideas: density estimation, high density region estimation (and hence clus-
tering and novelty detection).

2.3.5.1 Density Estimation

One way of parameterizing density functions (f) is by using f(x) =
∑m

i=1 αifi(x),
where αi ≥ 0,

∑m
i=1 αi = 1 and fi(x) are “basic density functions” centered at the ith

training example. For instance, fi(x) ∝ exp {−‖xi − x‖2} (see also section 2.5.1.2).
Please read Vapnik and Mukherjee [2000] for details of how the problem of optimiz-
ing/learning the parameters α can be posed as an SVM-like formulation (given by
equations (17)-(19) in the paper).

2.3.5.2 High Density Region Estimation: Clustering & Novelty Detec-
tion

Sometimes, one is not interested in estimating the full density function, but only
interested in estimating regions in the domain that have high density. Such an
estimation problem is useful for various applications:

Clustering: If clusters are defined as regions of high density, the classical problem
of clustering is the same as that of high density region estimation.

Novelty Detection: If rare/novel datapoints are annotated as those being sampled
from low density regions, then again novelty detection problem can be solved
by estimating the high density regions (complement of whom will give low
density regions).

20And the sice of active set is potentially far less than O(
∑m
i=1 c

Ti).
21Viterbi algorithm is introduced in section 2.5.2.4 below.
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The key idea is to let w>φ(x) represent a score proportional to the unknown
density and then estimate w. Since training set is nothing but a sample from this
unkown density function, the information we have for estimating w is that: w>φ(x)
is high, say ≥ 1,22 for most of the training datapoints23. To this end, we have the
following:

min
w∈Rn,ξ∈Rm

1
2
‖w‖2 + C

m

∑m
i=1 ξi,

s.t. w>φ(xi) ≥ 1− ξi, ξi ≥ 0, ∀ i.(2.9)

The above formulation is popularly known as the one-class SVM (for obvious rea-
sons).

Alternatively, one can also come up with a ν-SVM variant of the above, which
is detailed in equation (4)-(5) in Scholkopf et al. [2001]. Interstingly this is also
equivalent to the tightest enclosing hypersphere problem, detailed in equation (13)
of the same paper.

Once training is done, inference is very simple, a datapoint x is from high
density region if w>φ(x) ≥ 1 and else otherwise.

Finally, Ben-Hur et al. [2001] provides details of algorithm for using the infer-
ence from a one-class SVM to identify datapoints belonging to different clusters (see
section 2.2 in the paper).

2.4 Kernel Methods

Chapter 5 in Mohri et al. [2012] is a good reference for this section.

In the previous section, we assumed features φ were given. But thanks to
representer theorem, we know that both for training, as well as prediction, we only
require dot products between the feature vectors k(x, z) ≡ φ(x)>φ(z).

We then studied what properties should k : X 7→ X satisfy if it indeed
represents the dot product between feature vectors24. Given a set of m points
Zm = {z1, . . . , zm}, let K denote the matrix whose (i, j)th entry is φ(zi)

>φ(zj). If
k represents a dot product between feature vectors, then it is clear that Km �
0 ∀Zm, ∀m ∈ N (i.e., Km is symmetric and positive semi-definite). Conversely,
given some m points, the gram matrix K can be decomposed as K = X>X. Hence

22Ofcourse, w>φ(x) ≥ 1 makes sense only if the scale of w is fixed, which can be done by
restricting ‖w‖.

23we do not insist on density score being high for all because we know that there is a small
chance that the samples are actually points of low density.

24Here the question is NOT what are the properties of dot-product, which we know.
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the vectors in X indeed give a representation for the points25. Encouraged by these
observations we define: a function k : X 7→ X satisfying the condition that all the
gram-matrices (of all sizes) are symmetric and positive-semi definite, is called as a
kernel over X .

We discussed many properties of kernels:

• Conic combinations of (finite number of) kernels is a kernel.

• Product of kernels is a kernel.

• If a sequence of kernels k1, k2, . . . , kr, . . . converges to a function k, then k is a
kernel.

• If k is a kernel, then so is k̂(x, z) ≡ k(x,z)√
k(x,x)k(z,z)

.

Using the above we gave many examples of kernels over X ⊂ Rn:

Linear Kernel: k(x, z) = x>Σz,Σ � 0

Polynomial Kernel: k(x, z) = (1 + x>Σz)d, d ∈ N,Σ � 0

Gaussian Kernel: k(x, z) = e−
1
2

(x−z)>Σ(x−z),Σ � 0

The key advantages of employing a kernel are as follows:

• Domain experts from various application fields of machine learning feel that
specifying similarity between objects is easier than giving a vectorial descrip-
tion/representation for the objects. Since kernels measure similarity, it means
that many feel it is easier to specify kernel rather than φ.

• Needless to say, because of the above advantage, MMLC can be used with
arbitrary input spaces as long as a kernel is available.

• Since the prediction function g(x) can be written interms of the kernel values,
g(x) =

∑m
i=1 αiyik(xi, x), the kernel determines the characteristic of the pre-

diction function. For example, prediction function is a linear function of x, if
one employs a linear kernel and so on.

25Ofcourse this representation will depend on Zm. However, there is a more general result
that there will exist some φ (independent of choice of m and the m points) that represents an
inner-product (generalization of the notion of dot-product). Interested students may refer sec-
tion 5.2 in Mohri et al. [2012]
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• Infact, any algorithm/methodology that employs dot-products of points rather
than the point themselves may have the same benefits by employing kernels.
For e.g., kernelized nearest neighbour, where the distance is specified by a
kernel: d(x, z) =

√
k(x, x) + k(z, z)− 2k(x, z).

2.5 Probabilistic Models

Probabilistic modelling26 is necessary if the prediction function is desired to be a
pmf/pdf. For e.g., predict the chance of rainfall today etc. Probabilistic modelling
can also be used for standard ML problems like classification etc. For e.g., estimate
fY/X (conditional likelihood at each X = x) using probabilistic modelling, then de-
fine prediction function as g(x) ≡ sign(fY/X(1/x)− fY/X(−1/x))). In the following,
we define likelihood function as the pmf for discrete rvs and likelihood function as
the pdf for continuous rvs.

Broadly there are two methodologies for building probabilistic models: non-
parametric (refer section 2.5.1) and parametric (refer section 2.5.2.1). Further, for
supervised learning problems, there is a complementary categorization for the meth-
ods:

Discriminative Modelling: This is a direct method where the idea is to model
the (conditional) likelihood functions fY/X at every x ∈ X .

Generative Modelling: This is an indirect method where the idea is to model the
entire joint distribution FXY and then derive the prediction function from it.

Yet another complementary cateogrization of methods is27:

Bayesian Modelling: Unlike the classical objective of picking the “best” model
parameters, here the idea is to view each parameter as a plausible candidate,
seek opinion from each and compute the final output as a weighted average of
individual opinions. In summary, the key characteristic in Bayesian modelling
is that, associated with each parameter value, there is a likelihood and the
estimate of the original likelihood is simply a marginalization over these. Eg.
Bayesian Average Model.

non-Bayesian Modelling: Unlike Bayesian modelling, here we believe there is
only one plausible candidate for model parameter value and seek for it (the
“best” model parameter value). E.g., Maximum Likelihood Estimate.

26Model is set of pmfs or set of pdfs rather than set of linear functions etc.
27All terms in this list are defined in section 2.5.2.1.1
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Hybrids: A combination of the above. More specifically, estimate the (posterior)
distribution for the model parameters (i.e., like in Bayesian methods assume
that every model parameter value is plausible) and then pick the “best” pa-
rameter value (like in non-Bayesian methods) based on this distribution. Eg.
Maximum Aposteriori (MAP) estimation.

2.5.1 Non-parametric Methods

2.5.1.1 Supervised Learning

It is easy to modify the k-NN model to output the probability of x ∈ X belonging
to class y ∈ Y : simply estimate this probability as the fraction of neighbours in
training set belonging to this class y.

It is easy to modify the decision tree model to output the probability of x ∈ X
belonging to class y ∈ Y : simply estimate this probability as the fraction of examples
in training set belonging to this class y in the leaf node that x landed-up in.

The above two methods, as described, are discriminative methods.

2.5.1.2 Unsupervised Learning

If one needs to estimate the likelihood function (either density estimation or prob-
ability estimation) of the input data itself28, then one non-parametric way is to
perform what is called as parzen-window estimation. Please refer section 14.7.2
in Murphy [2012] for details.

Also, in section 14.7.3, it is shown how to use this parzen-window estimator
in generative modelling for supervised learning. It is interesting to note that this
generative method recovers the k-NN algorithm described above for probabilistic
outputs, which is an example of a discriminative method (and is described in sec-
tion 2.5.1.1). Hence this is an example where both discriminative and generative
modeling give exactly the same prediction function.

28Recall that this is problem is an example of an unsupervised learning problem.
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2.5.2 Parametric Methods

2.5.2.1 Modelling with Exponential Family

Typically we deal with models belonging to the exponential family29 like, Bernoulli
model30, Gaussian model31.

The main reference for this section is chapter 9 in Murphy [2012]32. Definition
of exponential family is given in section 9.2.1. Examples are illustrated in sections
9.2.2.1-9.2.2.3.

2.5.2.1.1 Unsupervised Learning Here we consider the problem of estimating
the likelihood function given samples from it. We start with a model belonging to
the exponential family33. Then, the only unkown is(are) the canonical parameter(s),
which we denote as θ ∈ Rn. Hence the learning problem can simply be posed as an
optimization problem with θ as the variable and the objective implying closeness
of the distribution picked from this model to the true (but unknown) distribution.
Also, it will be convinient if the measure of closeness will involve expected values
rather than anything else (so that it will be easy to apply something like law of large
numbers). Hence we came up with the method of moments:

(2.10) min
θ∈Rn

∞∑
i=1

(
Eθ [ψi(X)]− 1

m

m∑
j=1

ψi(xj)

)2

,

where ψi(X) = X i and Eθ represents the expectation computed with fθ as the
likelihood.

This is expected to do well because as m → ∞, 1
m

∑m
j=1 ψi(xj) will converge

to the true (but unknown) E [ψi(X)]. Please refer Hansen [1982] for more details
about consistency of method of moments.

While consistency-wise this algorithm seems good, in terms of computation
it seems discouraging because there are (possibly) infinite terms in the objective.
However atleast for Bernoulli and Gaussian models it is clear that only a finite

29As will be clear later, this is the right analogue for linear models in deterministic modelling.
30Bernoulli model is the set of all Bernoulli distributions. Each distribution in this model can

be identified with the “probability of heads”.
31Gaussian model is the set of all Gaussian distributions. Each distribution in this model can

be identified with the “mean” and “covariance/variance”.
32Only relevant content upto section 9.3.
33i.e., given a set of distributions with a fixed h, Z, φ
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number of them will determine the rest. Fortunately, this is a result that is applicable
to any model belonging to the Exponential family:

Theorem 2.5.1. Given a model belonging to exponential model34, the distributions
in it can be either parameterized by θ, the canonical parameters, or by using35

E [φ(X)], the expected sufficient statistics.

In other words, for the exponential family, the method of moments reduces to
the following:

(2.11) min
θ∈Rn

n∑
i=1

(
Eθ [φi(X)]− 1

m

m∑
j=1

φi(xj)

)2

,

where φi(X) is the ith sufficient statistic. More importantly, the proof for the the-
orem shows that there will exist a θ such that the objective in (2.11) will be zero.
i.e, θ∗ will be optimal iff Eθ [φi(X)] = 1

m

∑m
j=1 φi(xj) ∀ j = 1, . . . , n.

For Bernoulli model, this simply means that the estimate of true probability of
heads is the fraction of heads in m tosses and for the Guassian model, the estimate
of true mean and true covariance are the sample mean and sample covariance.

In statistics, there is an alternate intuitive method for estimating parameters
of a model, which is called as Maximum Likelihood Estimation (MLE):

(2.12) max
θ∈Rn

m∑
i=1

log (fθ(xi)) ,

where the objective is log of the likelihood of the training data computed using the
distribution in the model corresponding to θ. Though this intuitive, it is not appar-
ent why it may be consistent36. Interestingly, MLE gives the exact same solution
as method of moments for exponential models. Please refer section 9.2.4 in Murphy
[2012] for details. MLE for Gaussian distribution is detailed37 in section 4.1.3.

Bayesian Methodology As usual, we assume a model belonging to the
exponential family is given and let the model parameters be represented by θ.

34Without loss of generality we assume h(x) = 1.
35Please refer section 9.2.6 for a proof sketch of the above.
36Under some mild conditions, consistency can indeed be shown though.
37Note that the method of moments is definetely “easier” in this case as it directly says true mean,

covariance estimates are sample mean, covariance. Whereas section 4.1.3 detials a complicated
procedure for realizing the same. In summary, I encourage students to always keep in mind both
these methods so that one can use whichever is “easier”.
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In Bayesian techniques, we assume that every θ is plausible38. In particular, let
the likelihood function generating the model parameters be fΘ. Then in Bayesian
methods, the idea is to estimate the final likeliood function as an average over
all the parameters: i.e., fX(x) =

∑
i fX/Θ(x/θi)fΘ(θi) if Θ is a discrete rv and

fX(x) =
∫
fX/Θ(x/θ)fΘ(θ) dθ if Θ is a conts. rv. Needless to say, here fX/Θ(x/θ) is

nothing but the distribution indexed by θ in the given model39.

Now while this clear, the key/only unknown in the above description is the
likelihood function for model parameters fΘ. The key step in Bayesian learning is
hence estimating fΘ from samples40 of fX ie., D = {x1, . . . , xm}. Needless to say,
MLE/MM cannot be directly applied to estimate fΘ (as samples from this distri-
bution are not given). Hence we need to write down some equation that captures
the relation between this and the fX , whose samples are given. To this end, let us
first realize that the correct notation for the estimate of fΘ(θ) after the samples D
are shown is given by fΘ/D(θ/D), where D is the random variable representing the
training set. Note that in the non-Bayesian case, the MLE estimate of θ was a fixed
function of D; however, in the Bayesian set-up, even given D = D, every θ is plausi-
ble and the relation between Θ, D is stored in fΘ/D(θ/D). This likelihood is usually
refered to as the “Aposteriori likelihood of model parameters”41. In summary, the
key/only unknown is fΘ/D(θ/D) and needs to be estimated from the samples D.

The obvious way to procede now is to call the Bayes rule: fΘ/D(θ/D) =
fD/Θ(D/θ)fΘ(θ)

fD(D)
. Note that in this expression, fD/Θ(D/θ) can be computed easily in

terms of θ because we assume iid samples: fD/Θ(D/θ) = Πm
i=1fX/Θ(xi/θ). And, the

denominator is simply the integration/summation of the numerator over all values of
θ. Hence the aposterior distribution of θ and hence the estimate of the orginal likeli-
hood as given by the averaging formula: fX/D(x/D) =

∫
fX/Θ,D(x/θ,D)fΘ/D(θ/D) dθ =∫

fX/Θ(x/θ)fΘ/D(θ/D) dθ, can be computed if an “apriori” likelihood fΘ is given.
The above averaged likelihood is usually refered to as the “Bayesian Averaged Model
(BAM)”, as we employed Bayes rule to build the aposterior and then used it in the
averaging.

Though at first look, it may appear that again some “apriori” likelihood fΘ

needs to be supplied, and hence the problem remains unsolved; on a closer look
we can infact say that the ability to utilize the “apriori” likelihood is one of the

38Think about each distribution in the model, i.e., each model parameter, being an expert.
39Since θ was not a random variable in non-Bayesian methods, the notation we used earlier for

fX/Θ(x/θ) was fθ(x).
40Note that till now we discussed the problem of estimating a likelihood function for which some

samples (the training set) are given. Here the problem is slightly different. We need to estimate
likelihood of a rv that is related to another likelihood and the samples given are for the other
related likelihood and NOT the original likelihood.

41because it represents the distribution of parameters after seeing the training set.
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strengths of employing Bayesian methods. This is because, fΘ simply represents
the common knowledge one might have about the true/unknown parameter (even
before showing a training set). So it is OK if we assume that the “apriori” likelihood
must be specified by the model and which apriori distribution to employ is then a
model selection issue.

It is usually customary to refer to such Bayesian models by using a name that
contains two parts, the first one specifying the name of the aprior distribution for the
model parameters and the second part specifying the name of the original likelihood
function being modeled. For e.g., if the values x takes are binary, then a Bayesian
model named “Beta-Bernoulli model” would specify that the fX is being modeled
by Bernoulli distributions and the apriori likelihood fΘ for its parameter θ (i.e., the
prob. of “heads”) is given by a specific Beta distribution. The “parameters” for
the specific apriori distribution are usually called as the hyper-parameters (since
they determine the model; hyper-parameter selection then is the same as model
selection). Please refer chapter 2 in Murphy [2012] for definitions/details of common
distributions like beta.

Hybrids A popular hybrid method is to obtain the posterior of model pa-
rameters like in Bayesian methods and then use this likelihood to pick the “best”
parameter value. And then ofcourse, use this best value alone to index for the best
estimate of the original likelihood from the model. One of the criteria for pick-
ing the best is: by looking at where the aposterior likelihood is maximized (mode
of aposterior). This method is called as Maximum Aposterior (MAP) estimation.
Alternatively, one might go for mean/median of the aposterior likelihood etc.

Refer section 3.3, section 3.4, section 4.6.3 in Murphy [2012] 42 for details of
the Beta-Bernoulli, Dirichlet-Multinoulli, GIW-Gaussian models (GIW stands for
Gaussian-inverse-Wishart distribution; and is the aprior distribution in this case;
and further, Gaussian models the original likelihood).

In all the above examples, you would have noticed that the form of the dis-
tribution of the aprior and the aposterior are exactly the same. For e.g., if original
likelihood is given by Bernoulli and the aprior is a Beta distribution, then the poste-
rior will be another Beta distribution. Such a special aprior distribution for a given
likelihood function is called as “the conjugate prior”. For e.g., GIW is the conjugate
prior for Gaussian, Dirichlet is the conjugate prior for Multinoulli etc.

Please refer section 9.2.5.2 in Murphy [2012] for the conjugate prior for a
given exponential distribution. Also, please read entire section 9.2.5 for details of
conjugateExponential-Exponential model.

42you may skip sections 4.6.3.8, 4.6.3.9
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2.5.2.1.2 Supervised Learning

Non-Bayesian Generative modeling: We begin with generative mod-
elling for binary classification with input space X ⊂ Rn. Firstly, note that the
unknown distribution, FXY , in this case cannot be described by a likelihood func-
tion (as XY jointly is neither conts. nor discrete). So an alternative is to model the
likelihoods fX/Y for all y ∈ {−1, 1} and also model fY . For e.g., one may employ
(multivariate) Gaussian models for fX/Y and employ Bernoulli model for fY . The
algorithms for estimating these likelihoods are described in section 2.5.2.1.1. Once
these three likelihoods are modelled, one can write down the formula for FXY and

more importantly for fY/X(y/x) =
fX/Y (x/y)fY (y)∑

y
′∈{−1,1} fX/Y (x/y′ )fY (y′ )

, using Bayes rule.

Further, if one obtains a classifier using fY/X (by labeling an x by the class
of highest probability), such a classifer is called as a “Bayes classifier”. If a Bayes
classifier is obtained by modeling class-conditionals with Gaussians, then this is
usually refered to as “Gaussian Discriminant Analysis (GDA)”. Please refer section
4.2 in Murphy [2012] for details of GDA. Also, refer formula (4.38) for an expression
of fY/X using GDA.

Complementary to this, if one assumes that the input features are indepen-
dent given the class, i.e. the class conditionals fX/Y factorize as fX/Y (x/y) =
fX1/Y (x1/y) . . . fXn/Y (xn/y) then, the corresponding “Bayes classifier” is called as
the Naive-Bayes classifier. Please refer sections 3.5.1.1 for examples of a Naive-Bayes
classifier. Note that typically the naive assumption of class-conditional feature in-
dependence is done for the sake of computational convinience.

Bayesian Generative modeling: Given the above, one can easily think
about Bayesian version of Bayes classifier: instead of MLE/MM for estimating the
class-conditionals and class-prior, now employ BAM for all. All other steps remain
the same. Refer sections 3.5.1.2&3.5.2 for Bayesian version of Naive-Bayes classifier.

Generative modelling for regression with input space X ⊂ Rn is straightfor-
ward. For e.g., directly estimate the density fXY by using a n + 1 dimensional
multivariate Gaussian. And then from this fXY , one can always compute fY/X us-

ing fY/X(y/x) = fXY (x,y)∫
fXY (x,y) dy

. For this case of Gaussian, the details of the formula

are given in theorem 4.3.1 in Murphy [2012].

Non-Bayesian Discriminative Modeling: Recall that in discriminative
modeling, the goal is to model fY/X at every X = x. The novelty in this situation
however is that we are not given (many) samples from this distribution at even
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perhaps a single X = x. Thus we need to seek for an alternate re-parametrization
of these models for fY/X . We then said, lets look at how fY/X looks like for a Bayes
classifier, then that would suggest a suitable re-parametrization.

Infact, as refered earlier, formula (4.38) in Murphy [2012] gives this for GDA.
This formula directly motivates the Logistic Regression model detailed in sections
8.1-8.3.1, 8.3.7. The corresponding MLE problem turns out to be convex and hence
can be solved efficiently. Infact, the MLE problem is exactly same as a linear model
with logistic loss (variant without maximizing margin).

Now one can think about a discriminative model for regression too based on
the result in theorem 4.3.1 in Murphy [2012]. This leads to the linear regression
model detailed in sections 7.1-7.3.2. Infact this is same as the linear model with
square-loss (variant without maximizing margin).

Bayesian Discriminative Modeling: Given the non-Bayesian discussion,
atleast methodology-wise, this should be straight-forward. Instead of MLE estimate
of logistic regression or linear regression parameters, perform a BAM/MAP estimate.
For details of Bayesian linear regression43 refer sections 7.6-7.6.3.1.

Hybrid variants for Discriminative Modeling: The details of MAP es-
timate for Linear regression is presented in sections 7.5 in Murphy [2012]. Infact
this is same as the linear model with square-loss (variant with maximizing margin).
The same with logistic regression is given in equation (8.45). Infact this is same as
the linear model with logistic-loss (variant with maximizing margin).

2.5.2.2 Generative vs. Discriminative

Given the above discussions, it is clear that the discriminative models are direct
methods and more importantly, involve lesser number of parameters to obtain the
very same model as the corresponding generative models. Ofcourse generative mod-
els seem to play a key role in choosing the right re-parametrizations suitable for the
discriminative ones. However, at the first look, it may seem that beyond this role in
re-parametrization, generative models have no practical use. However this is incor-
rect. For example, suppose you have a situation where some input feature values are
missing at prediction stage. Then since generative models model the entire joint,
one can still come up with the estimate of likelihood of output given the non-missing
(observed) values. Infact, one can even obtain likehoods of the missing ones given

43Interested students may refer section 8.4 for Bayesian Logistic regression.
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the observed ones. So in this sense generative models are more “powerful” than
discriminative ones.

While the above is true, one should keep in mind that “powerful” need not
mean more accurate. The intuitive reason being the fact that finite information
being stored in the training dataset. In plain words, generative models can handle
many questions but each answer has less confidence; while discriminative models
can answer only one question (what is output given input), and hence may answer
with more confidence. In summary, if the goal is purely predicting output given all
inputs, then ofcourse discriminative is the way; else generative is perhaps the way.
Please refer section 8.6 in Murphy [2012] for a detailed discussion on Generative vs.
Discriminative.

More importantly, sometimes a complete feature may be missing during all
stages of training and prediction, then in such situations one can still employ gener-
ative modelling. Such completely missing features are usually called as latent/hidden
variables. The case of a single hidden/latent discrete variable is discussed in sec-
tion 2.5.2.3.

2.5.2.3 Mixture Models

Refer sections 11.1 to 11.2.4.1 in Murphy [2012] for motivations/definition/examples
of mixture model. Refer 11.3-11.4.2.5 for details of the Expectation Maximization
(EM) algorithm44 that reaches a stationary point (that has better likelihood than
the intial iterate) of the likelihood function (this is itself impressive as the likelihood
function is non-convex). Refer section 11.4.7.1-11.4.7.2 for details of convergence of
EM.

Please refer section 11.6.1 for details of EM algorithm for missing values under
Gaussian model.

2.5.2.4 Models for Sequence Labeling

We refer readers to section 2.3.4.1 for notation and set-up for the sequence labeling
problem.

As usual, we begin with generative models first. The obvious step is to work out
details of a Bayes classifier for this problem. The key question hence is to ask which
distribution can model sequences (of arbitrary length)? Surely, all multivariate
distributions we know will not work as they can generate fixed length vectors. Here,
the requirement is to generate sequences of vectors of arbitrary length. Since each

44Interested students may refer section 11.4.2.8 for a MAP variant of EM.
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element in the sequence is still a vector, which can be generated using multivariate
distributions, we are motivated to present distributions that “employ” multivariate
distributions.

The most “simplistic” distribution then is as follows: fX(x) = fX(1),...,X(T )

(
x(1), . . . , x(T )

)
=

fX(1)

(
x(1)
)
. . . fX(T )

(
x(T )

)
. Each fX(i) can simply be modeled by any multivariate

distribution45. Note that T is arbitrary. This kind of a model essentially says that
each position in the sequence is independent of the other. Infact, there exists an even
“simpler” model: fX(x) = fX(1),...,X(T )

(
x(1), . . . , x(T )

)
= g

(
x(1)
)
. . . g

(
x(T )

)
. Here g

is some particular distribution. This model, in addition to independence, imposes a
“homogenity” assumption that distributions centered at every location is the same
(homogeneous).

Ofcourse, we rarely use the above models because in practice the indepen-
dence (and homogenity) assumptions are too strong. The next higher level of com-
plex models are known as Markov chains: fX(x) = fX(1),...,X(T )

(
x(1), . . . , x(T )

)
=

fX(1)

(
x(1)
)
fX(2)/X(1)

(
x(2)/x(1)

)
fX(3)/X(2)

(
x(3)/x(2)

)
. . . fX(T )/X(T−1)

(
x(T )/x(T−1)

)
. Surely,

this model is NOT saying positions are independent, but it is indeed saying that they
are conditionally independent. In particular, the conditional independence assump-
tion encoded46 in the above is: fX(t)/X(t−1),X(t−2),...,X(1)

(
x(t)/x(t−1), x(t−2), . . . , x(1)

)
=

fX(t)/X(t−1)

(
x(t)/x(t−1)

)
. i.e., given the parental position, the ancestors are irrelevant.

This is the case because fX(x) = fX(1),...,X(T )

(
x(1), . . . , x(T )

)
=

fX(1)

(
x(1)
)
fX(2)/X(1)

(
x(2)/x(1)

)
. . . fX(t)/X(t−1),X(t−2),...,X(1)

(
x(t)/x(t−1), x(t−2), . . . , x(1)

)
. . . fX(T )/X(T−1),X(T−2),...,X(1)

(
x(T )/x(T−1), x(T−2), . . . , x(1)

)
.

The particular conditional independence assumption made above is known as Markov
assumption and hence the name Markov chain or Markov Model.

Now, we can also talk about a homogeneous Markov chain: fX(x) = fX(1),...,X(T )

(
x(1), . . . , x(T )

)
=

fX(1)

(
x(1)
)
g
(
x(2)/x(1)

)
g
(
x(3)/x(2)

)
. . . g

(
x(T )/x(T−1)

)
. Again, the conditional dis-

tribution centered at every position is the same and hence the additional qualifier
of homogeneous.

Estimating the parameters of a homogeneous Markov chain is already known
to us, provided we model every g, as well as fX(1) by distributions in exponential
family. Note that we say ‘every g’ because g is a distribution over values at a position
given the value in the previous (parent) position. In particular, if the Markov chain
is over output sequences, then g given an alphabet can be modeled by multinoulli
and fX(1) can also be modelled using Multinoulli. Details of terminology used in
case of Markov chains (like states, state transition matrix etc.) are given in sections

45univariate if we are talking about output sequence.
46Ofcourse, there are other conditional independencies that are in-turn implied by this.
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17.1-17.2.1 in Murphy [2012]. Details of MLE estimation of parameters are given
in section 17.2.2.1. Ofcourse, instead of MLE, one may employ MAP or BAM for
parameter estimation.

Note that in the case Markov chain is over the output sequences of alphabets
(like in the eg. of speech and character recognition), then the Markov chain essen-
tially models the language. Needless to say, such a homogeneous markov chain will
be a terrible generative model for human languages like English. But they will prove
useful when employed in a Bayes classifier for sequence labeling problem (as will be
clear later). Other applications of language models are listed in section 17.2.2.

The above discussion provides models for fY (e.g. homogeneous Markov chain).
Now the remiaining element in Bayes classifier is fX/Y . We model this by a simple in-
dependence assumption: fX/Y (x/y) = fX(1),...,X(T )/Y (1),...,Y (T )

(
x(1), . . . , x(T )/y(1), . . . , y(T )

)
=

fX(1)/Y (1)

(
x(1)/y(1)

)
. . . fX(T )/Y (T )

(
x(T )/y(T )

)
and further a homogenity assumption:

fX/Y (x/y) = g
(
x(1)/y(1)

)
. . . g

(
x(T )/y(T )

)
. Every g at given y(i) can be modeled47

by a suitable exponential distribution (say multivariate Gaussian48). Ofcourse we
know how to perform a MLE/MAP/BAM estimate for these distributions. This
completes our discription of the training the Bayes classifier. Section 17.5.1 in Mur-
phy [2012] provided details of this training algorithm. Lets call this the Markov
Bayes classifier.

Now lets focus on the issue of infering/predicting the “best” output sequence
given an input sequence x =

(
x(1), . . . , x(T )

)
and using this (trained) Markov Bayes

classifier. One obvious way is to perform a MAP estimate: arg maxy∈YT f(y/x),
where f is the posterior model with the trained parameter (f(y/x) ∝ f(x/y)f(y)).
Note that, unlike in any previously encountered situation like multi-class classifica-
tion or regression, this optimization problem is non-trivial and a naive algorithm for
finding this max might require O(cT ) effort. Here, c is the total number of alpha-
bets/states. Fortunately, because of the convinient conditional independences made
in the Markov Bayes model, this max problems admits a poynomial time algorithm.
Please refer to the Viterbi algorithm described in section 17.4.4 (17.4.4.1-17.4.4.5)
in Murphy [2012] for an algorithm that requires only O(c2T ) for solving this MAP
problem.

The above discussion makes it clear that the decision about the output se-
quence is made at a “sequence level” rather than at individual position level and
hence even the simplistic Markov chain language model49, when employed in this
Bayes classifier, seems to give a “rich” classifier.

Now lets think about a discriminative version of the Markov Bayes classifier.

47g at a given value of alphabet is called as the “emission distribution” from that alphabet.
48hence a Gaussian at every alphabet needs to be estimated.
49Which seems to be a terrible generative model for language
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For this, we will need to look at the expression for fY/X(y/x):
(2.13)

fY/X(y/X) =
g
(
x(1)/y(1)

)
. . . g

(
x(T )/y(T )

)
fY (1)

(
y(1)
)
h
(
y(2)/y(1)

)
h
(
y(3)/y(2)

)
. . . h

(
y(T )/y(T−1)

)∑
∀ȳ g (x(1)/ȳ(1)) . . . g (x(T )/ȳ(T )) fY (1) (ȳ(1))h (ȳ(2)/ȳ(1))h (ȳ(3)/ȳ(2)) . . . h (ȳ(T )/ȳ(T−1))

.

Instead of writing the posterior in the above form, we can re-write using the param-
eters (e.g. one for each Gaussian (g) at y(i), i = 1, . . . , T and one for each multinoulli
(h) at y(i), i = 1, . . . , T − 1 and one multinoulli modelling Y (1).)

In discriminative modelling, the goal is to maximize the this conditional (pos-
terior) likelihood wrt. to these parameters. Though the parameters are exactly the
same as in Markov Bayes classifier, this maxmization is not as easy as the Markov
Bayes just because of the summation in the denominator that has cT terms! But
fortunately this can be done efficiently50. However the details are beyond the scope
of this course. Motivated by this discriminative model, one can design a struct-SVM
based method for the sequence labeling problem51 (refer section 2.3.4.1).

Finally, all of the above methods perform supervised training and hence a
labeled dataset is required. In the example of speech recognition (introduced in
section 2.3.4.1), this means that one needs to carefully specify from what time
instant to what time instant, which phoneme/alphabet was uttered. This level of
supervision may not be available. In such cases, one may think about a completely
un-supervised version of the above, which is popularly known as the Hidden Markov
Model (HMM). The details52 are provided section 17.3-17.5 in Murphy [2012].

50Interested students can look at CRFs, which are a generalization of this “discriminative Markov
model” presented in section 19.6 in Murphy [2012]. In particular, the training algorithm is described
in section 19.6.3.

51Infact the relationship between CRF and struct-SVM is more close and is detailed in section
8.5 in Mohri et al. [2012] and section 19.7 in Murphy [2012].

52I expect students to be very familiar with the terminology in HMM (section 17.3), and the
outline of the EM algorithm i,e., entire section 17.5.2, and viterbi i.e., section 17.4.4. The other
sections/sub-sections like section 17.4.2-17.4.3 are for interested students and may be skipped.

31



32



Chapter 3

Model Selection

Many a time, we are confronted with the question of choosing the “best” among the
multiple models/algorithms for a particular learning problem. If the question is a
broad one inquiring which model is the best in general, then perhaps the only way
is to look at asymptotic or large-sample bounds (like the ones we studied for kNN)
and rank the models. However, since most of these bounds apply for any unknown
distribution, they may be pessimestic for the specific data at hand. So in order to
choose the best model for a dataset, one usually opts for what is known as k-fold
cross validation procedure (which, when k = 2, mimics how a human supervisor
selects his best student).

3.1 Cross-Validation

In k-fold cross validation, the idea is to partition the given dataset into k parts
(randomly). Here k may be any value from 2 to m, the size of the dataset. Then
given this partition, one loops over each part. In the ith iteration, the ith part of the
dataset is called as Validation set and the remaining k − 1 parts are considered as
training set and each model is trained. Then using the trained models, prediction of
labels (inference) is performed on the validation set. Using a performance measure
(like accuracy, precision, recall etc.; see section 3.4), the performance of each model
on the Validation set is measured. After all the iterations end, the score for each
model is simply taken as average performance score over all iterations (with the
different k validation sets). The highest of these is declared the winner. Please refer
section 7.10 in Hastie et al. [2009] for more details.

We then asked the following important question: while cross-validation indeed
mimics how humans tend to select “best” humans, is there any theoretical justifica-
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tion for this algorithm? The answer is yes, but the complete answer is beyond the
scope of this course. What we gave was simply an intuitive insight into the answer.
We noted that the (cross-)validation error is simply an empirical estimate or sample
mean version of the true expected error. Hence, as the number of validation exam-
ples increases, we expect that the sample mean goes to the true mean because of law
of large numbers. Extending this result, we expect that the minimizer of validation
error also approches that of the true error1. Hence cross-validation “works” if there
are enough number of validation examples.

An interesting observation is that the number of points used for training and
the overall number of points used for validation will be maximized when k = m.
This extreme case is called as leave-one-out-validation and the corresponding error
is called Leave-One-Out (LOO) error. An interesting result, due to Luntz and
Brailovsky [1969], is that the expected LOO err performed on m examples is equal
to the expected error of a classifier trained with m−1 examples. This is a neat result
because in case of LOO, the model is trained with different m− 1 sized datasets.

While this seems fine, a related meta question is “how many models to try?”.
Note that the above discussion simply gives a procedure for selecting the best among
a given number of models. It does NOT say whether to try 10 models (say 1-NN
to 10-NN) or to try 100 models (say 1-NN to 100-NN). While it seems obvious that
the latter is better, because it would definitely give a lower cross-validaton error;
it is important to note that in the latter case the claim finally is about “the best
in 100 models is so and so” vs. a relatively weaker claim in the former case “the
best in 10 models is so and so”. Naturally we expect that the in the latter case, the
confidence with which we can make the stonger claim will be lower (as compared to
that in the former case; because there is only limited amount of information stored
in the training set regarding the unknown distribution).

Interestingly, the guarantee (upper bound) one can provide on the true (but
unknown) probability of misclassification turns out to be a sum of these two terms
i.e., sum of the validation error (empirical error or error on the sample) and the
confidence term. More specifically, if the set of models to be tried is M, then one
can make the following statement: with probability atleast 1− δ,

P
[
Y 6= gbest(X)

]
≤ 1

m

m∑
i=1

1{yi 6=gbest(xi)} +O

NM
√

log(1
δ
)

m

 ,

1It so happens that this convergence may not happen if there are “too many” models to select
from. Please see the N complexity defined later. The key result is that as long as N < ∞ this
convergence is gauranteed to happen. In this course we will ofcourse restrict ourselves to such
cases only.
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where NM is a measure2 for “complexity” of the set of models that satisfies the
following relation: M1 ⊂ M2 ⇒ NM1 ≤ NM2 ; and gbest ∈ M is the best predic-
tion function chosen by cross-validation procedure. Unfortunately, providing more
insight into the nature of N is beyond the scope of this course.

So, in practice3 one usually pre-decides (before the training data arrives), the
set M i.e., pre-decides the models to be considered and then sticks to them.

3.2 Bayesian take on Model Selection

The main reference for the basic idea is detailed in section 5.3 in Murphy [2012],
which is briefed below.

CV procedure ranks models based on the performance of the “best” candi-
date in it. After understanding Bayesian methods, one would perhaps think about
a way of ranking models based on the “average” performance of candidates in it.
Such a method is called as the Maximum Marginal Likelihood (MML) method.
The definition and details of computing marginal likelihood for a given model are
presented in section 5.3.2 in Murphy [2012]. In MML, the idea is to compute the
so-called marginal likelihood for each model. And then, rank the models by de-
creasing marginal likelihood. In particular, the “best” model will be that whose
performance on average (across all candidates in it) is highest. Needless to say, once
a model a selected, the “best” in each model can be computed using MLE or MAP
or BAM. There is a nice interpretation for the MML method detailed in section
5.3.1 in Murphy [2012].

Infact, a MAP or BAM version of the MML can be derived provided one is
given some prior over the models themselves. The MAP is detailed in near equation
(5.12) in Murphy [2012]. It is easy to write down the BAM version of MML now.
This discussion now leads to another question: how do you choose the prior over
the models? In other words, how would you choose the hyper-hyper-parameter
determing the prior over the models? For anwsering this, we may repeat the above
discussion now at hyper-hyper level rather than at hyper level. This idea of layered
BAM/MAP models are called as Hierarchical Bayes models. And typically one
is happy with two stages. The variants possible are listed in table on page 173
in Murphy [2012]. It is easy to see that the generic name for MML is Empirical
Bayes described in the table. The discussion in sections 5.5 and 5.6 shows how
Hierarchical Bayes can be employed for problems other than model selection like

2In the lectures, the second term in the above bound was what refered to as h(δ,m).
3the other alternative (which is a non-option for you) is to actually derive the bounds as above

carefully.
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multi-task learning motivated in sections 5.4.4.2 and 5.5.1 of the book.

3.3 Feature Learning

A particular model selection problem is that of selecting the “best” features. Typi-
cally the setting is that some basic features describing the input are known and the
goal is to pick few features that are generated by combining the given input features.
We focus here on probabilistic generative models and leave the other paradigms for
future courses.

The core idea in generative models paradigm for performing feature selection
is to use the notion of latent variables and run some EM-like training algorithm.
Then the value(s) of the latent variable(s) are used as the final features. For e.g.
consider the mixture model, which is indeed an example of a model having a single
discrete4 latent variable, say y. A new feature representation for x can simply be
the pmf of y/x under the estimated model. In lectures some text categorization
based examples were given to show this representation is not bad and may be highly
compact compared to the original features.

A generalization of mixture models where there are multiple latent variables,
which my take continuous values, is factor model specified by: fX/Z(x/z) = N (Wz+
µ,Ψ), fZ(z) = N (µ0,Σ0). The parameters W,µ,Ψ need to be estimated and typ-
ically Ψ is restricted to be diagonal and µ0 = 0,Σ0 = I. Once the parame-
ters are estimated, the new features for x are given as the mode of posterior i.e.,
arg maxz fZ/X(z/x).

The main reference for this method is section 12.1 in Murphy [2012]. In par-
ticular, the details of the training/EM algorithm are detailed in section 12.1.5 in
the book (you need to use c = 1 and ric = 1 in the derivations). Equation (12.20)
in the book gives the formula for obtaining the new features given the old.

In section 12.2 the connection between the above and PCA is described5. This
throws light on why the above methods is called as Probabilistic PCA (PPCA).

Supervised version of PPCA is easy: in addition to fX/Z(x/z) = N (Wz +
µ,Ψ), fZ(z) = N (µ0,Σ0), we will have fY/Z(y/z) = N (w>z,Σ). Here, the last part
is simply the linear regression part. The only difference between this and vanilla
linear regression is that the relation between y and x is now reflected as relation
between y and z. In other words, this is like encoding the input features into latent
features and using the latent features to solve the supervised problem. Ofcourse, if

4infact takes on finite number of values
5I expect the students to be familiar with PCA, which was also described in midsem exam. An

explanation of it is given in this section too.
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we have a classification problem, then we will have fY/Z(y/z) = Ber( e−yw>z

1+e−w>z
). This

is like logistic regression on latent variables.

Note that in the supervised cases, one may finally be only interested in predict-
ing y given x and hence one may not even bother to recover the latent representation
z used. Nevertheless, we are indeed performing a feature learning/selection step im-
plicitly.

Another point to note is that, either in factor model based linear regression or
factor model based logistic regression, the final relation between y and x is linear.
One may now think about multiple layers of latent variables (with perhaps different
no. variables in each layer). In this case, the relationship between y and x may be
non-linear. Such layered factor models are known as Neural networks, a discussion
of which is beyond the scope of this course.

3.4 Performance Measures

A simple and “universal” performance measure is likelihood of data. However, there
are alternatives as briefed below.

3.4.1 Binary Classification

Most of the performance measures can be derived given the so-called confusion ma-
trix. Refer page-1 in http://www.damienfrancois.be/blog/files/modelperfcheatsheet.

pdf for details.

3.4.2 Ordinal Regression

The following is one reference http://www.inescporto.pt/~jsc/publications/

journals/2011JaimeIJPRAI.pdf.

3.4.3 Regression

Refer page-2 in http://www.damienfrancois.be/blog/files/modelperfcheatsheet.

pdf for details. The most popular measure however is not mentioned in this pdf.
It is called as explained variance. It is given by: 1 − MSE

var(yi)
, where var(yi) denotes

the variance in the y values in the training set. If this quantity is ≥ 0 for a regres-
sion algorithm, then it means that the algorithm is better than a simple baseline of
always predicting y as the average y across the training set.
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