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Chapter 1

Introduction

This is a specialized course on machine learning that focuses on statistical learning
theory and kernel methods. The syllabus is as follows1:

I. Background Introduction to

� Statistical Learning Theory and Support Vector Machines (25%)

� Kernel Methods (15%)

II. Advanced Topics Learning theory, Formalization and Algorithms for:

� Semi-supervised Learning (25%)

� Learning with Structured-Data (20%)

� Handling Dataset-shift (15%)

We will begin by introducing the theory which answers the fundamental
question \can we build systems that predict future well". The setting of \Su-
pervised Inductive Learning" (SIL) is considered �rst (chapter 2). Section 2.1
presents the learning theory for this case and will enable us to formalize the learn-
ing problem (in this setting) as an optimization problem. We then study how the
well-known Support Vector Machines implement this formalization in section 2.2.
will be updated as and when required

1Numbers in brackets roughly indicate the number of lectures spent on the corresponding topic
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Chapter 2

Supervised Inductive Learning

Humans are amazingly good at many cognitive tasks. For instance they recognize
people from a distance and perhaps even when they are in odd postures. The
question then comes whether we can build systems that perform similar cogni-
tive tasks. However very less is known regarding how this cognition happens in
humans.

Motivated by the process by which humans tend to learn, for instance to
recognize people, we consider the simplest learning setting called the Supervised
Inductive Learning (SIL). Here a training set consisting of input-output (x; y)
pairs are assumed to be available. Training dataset D = f(x1; y1); : : : ; (xm; ym)g.
Each pair (xi; yi) is called a training instance; while xi is called the training ex-
ample/training data-point and yi denotes its label. For eg., the input x could
be a picture and the output could be whether it contains a human or not. The
task in this example is to build a model which can predict whether any picture
shown contains a human or not. Such a system perhaps could be used to improve
google's image search. In general, given D, the goal in SIL is to build a function
f such that f(x) = y for any new data-point x.

The special case where y takes only two distinct values, such as the example
given above, is known as the setting of Binary Classi�cation. Case where y takes
on a set of �nite values, for example we need to predict whether the given image
is of a place in India or US or Japan etc., is known as Multi-class Classi�cation.
Multi-label Classi�cation is the case similar to multi-class classi�cation but data-
points are allowed to be labeled with multiple values from a �nite set, for eg.
predict whether a image contains humans and/or animals and/or trees etc. In
Ordinal Regression, y takes on �nite number of numeric values (which makes labels
comparable); for eg. one needs to predict whether a picture is highly-relevant or
moderately-relevant or neutral or irrelevant to a particular topic/subject like say,
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politics. The case of Regression is with y taking on real values, for eg. indicating
the degree of relevance of the picture to politics. As one can see there are many
real-world applications in which an SIL system is desirable.

Statistical Learning Theory (SLT) is the theory which focuses on the question
whether such learning systems can be built. If so, what are the kind of guarantees
we have on their performance etc. We introduce this theory in the SIL setting in
the subsequent section.

2.1 Statistical Learning Theory (for SIL case)

Here we assume that the unknown concept modeling the input-output relation is
some joint distribution FXY (x; y), where X 2 X ; Y 2 Y are the random variables
denoting the input and output respectively. To simplify notation we use P (x; y)
for FXY (x; y). We further assume that the training dataset is a set ofm iid samples
from P (x; y).

The ideal goal is to construct a function f such that the prediction error
is low. One way of saying this is: \�nd an f from a function-class F such that

E[1f(X)6=Y ] is least", where 1f(X)6=Y =

(
1 if f(X) 6= Y;
0 otherwise

. In other words f =

argminf2FE[1f(X)6=Y ] = argminf2FP [f(X) 6= Y ]:

Its not necessary that we always penalize an f for mislabeling and moreover
equally penalize for all mislabelings. For example, in case of regression, one might
want to penalize less for small deviations from the true label and more for large
deviations. It is hence typical to urge the application to provide with a loss
function: l : X �Y�F 7! R+. Typical loss functions used are listed and discussed
in section 3.1 in Sch�olkopf and Smola [2002]. The simplest loss-function, discussed
above, l(X;Y; f) = 1f(X)6=Y is called the zero-one loss.

Lets also take a quick look at the possible function classes F . The most in-
teresting and widely used (because of its simplicity) is the set of linear functions:

F l
W =

n
f j f(x) = w>x; kwk �W

o
. For regression problems and binary classi�-

cation problems with loss other than 0-1, one uses this function class frequently.
However if one wishes to employ the 0-1 loss in the binary classi�cation case, then
one usually considers the composition of the F l class with sign function, leading

to the class of linear discriminators: F ld =
n
f j f(x) = sign(w>x)

o
. One can eas-

ily think about counterparts of these classes for the a�ne, quadratic, cubic, etc.
cases.

The expected loss with a function f is known as the risk with that f : R[f ] =
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E[l(X;Y; f)]. R is called the risk functional which takes a f and outputs a number
indicating the risk in employing the function as the predictor. With this notation,
the ideal goal is to solve:

(2.1) f� = argminf2FR[f ]:

Obviously this goal is note achievable as R[f ] is unknown because P (x; y) is
unknown1. Learning theory helps us realize what kind of goals can be reached
starting from D;F and also helps to formalize the learning problem with the
(perhaps) relaxed goal.

We realized that a (random) quantity computable from D, which is the av-
erage loss over the training set | denoted by R̂m[f ] =

1
m

Pm
i=1 l(Xi; Yi; f) and

known in Machine Learning (ML) community as empirical risk of f , has an in-
teresting property: the sequence of random variables R̂1[f ]; R̂2[f ]; : : : ; R̂m[f ]; : : :
obtained by including a new sample from P (x; y) into the training set at each stage
and computing the average loss converges in probability to the (true) risk. i.e.,n
R̂m[f ]

o
p�! R[f ]. This is from (weak) Law of Large Numbers (LLN) in probabil-

ity theory (refer lectures 22-24 in Nath [2009]). This motivates the �rst induction
principle:

Empirical Risk Minimization (ERM) [Vapnik, 1998]: Solve

(2.2) fERMm = argminf2FR̂m[f ]:

Note that unlike (2.1), solving this problem may not be impossible. Though this
makes ERM attractive, it is still a question how far will the true risk with fERMm

be from that with f�. Given the results like LLN from probability theory we will
be happy if:

n
R[fERMm ]

o
p�! R[f�]. If this convergence happens then we say ERM

is consistent. Note that with such goals we are relaxing our initial goal (2.1) and
saying that we are happy as long as we are Probably Approximately Correct (PAC)
i.e., for �nite m with high probability the risk with ERM candidate is close to risk
with true candidate (in other words, ERM candidate is approximate). Now either
when cardinality of F denoted by jFj is unity or when F includes a f which incurs
zero loss on every sample of P (x; y), then it is easy to see that ERM is consistent.

We gave an example where ERM is not (non-trivially) consistent: consider
the case of binary classi�cation with F containing all possible functions. Suppose
we construct a f which simply remembers all training instances correctly (i.e.,
f(xi) = yi) and then outputs 1 (indicating positive class, say) for all other unseen
data-points. Clearly the empirical risk with f is zero and the ERM picks it. With

1Note that E[l(X;Y; f)] =
R
l(x; y; f)dP (x; y). And it is not possible to recover the mean from

�nite number of samples.
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whatever m this is true; while the true risk could be arbitrary2. We then began
the exploration \when is ERM consistent?". We realized that the condition for
consistency is rather hard to verify because it involves true risk R (and not the R̂).
Hence we thought of writing down a su�ciency condition (which was proved to
be a necessary condition for non-trivial consistency by Vapnik and Chervonenkis
[1991]) for ERM consistency:

(2.3) lim
m!1

P
�
max
f2F

�
R[f ]� R̂m[f ]

�
> �

�
= 0; 8 � > 0:

Refer sec. 5.4 in Sch�olkopf and Smola [2002] for the derivation of these conditions.
In some sense this says that the ERM is (non-trivially) consistent i� the deviation
in the true and empirical risks in the worst-case f goes to zero. We will refer
to this condition as the uniform convergence condition for ERM consistency3. In
the subsequent section we analyze the case of �nite function classes for ERM
consistency.

2.1.1 ERM Consistency — Finite F case

Lets assume F has �nite no. functions. Using Boole's inequality we have: P
h
maxf2F

�
R[f ]� R̂m[f ]

�
> �

i
�P

f2F P
h
R[f ]� R̂m[f ] > �

i
. Now we require to bound probabilities involving de-

viations of average of iid random variables from its mean. Cherno� bounding
technique [Cherno�, 1952], is a general technique which provides a bound for
probability of a linear function of independent random variables deviating from
its true mean. The key steps in this technique are4:

� P
h
R[f ]� R̂m[f ] > �

i
= P

�
es(R[f ]�R̂m[f ]) > es�

�
for some s > 0.

� Applying Markov inequality gives LHS� e�s�E[es(R[f ]�R̂m[f ])]

2Provided the space X is not �nite.
3Because it resembles that of uniform convergence criteria in case of sequence of real-valued

functions on R. The di�erence being the present condition is \one-sided".
4Note that the technique is generic and when applied with di�erent partial information about

the involving random variables and the function combining them, one gets di�erent bounds. We
will shortly see another bound called McDiarmid's inequality which follows most of these basic
steps. You can also refer sec.5.2 in Sch�olkopf and Smola [2002] for detailed derivation (for case
jcalF j = 1). Here we provide the version with the relevant random variables for the present
context.

8



� Use the fact that the random variables5 L1(f); L2(f); : : : ; Lm(f) are inde-
pendent (infact iid): LHS� e�s��m

i=1E[e
s
m
(E[Li(f)]�Li(f))]

� Use the Hoe�ding bound (refer http://en.wikipedia.org/wiki/Hoeffding%
27s_lemma for proof) to bound the moment generating function (mgf) of the
mean zero and �nitely supported random variable E[Li(f)] � Li(f) (�nite
support is true whenever the loss function is bounded, which in particular

is true with zero-one loss): LHS� jFje�s�e s2

8m .

� Finally, choose the best s (by minimizing the bound on RHS): LHS� jFje�2m�2

This bounding �rst of all shows that the probability term in question which is
sandwiched between zero and jFje�2m�2 goes to zero asm!1| con�rming that
ERM is consistent in �nite jFj case6. In other words, PAC learning is possible
with ERM in the �nite jFj case. Secondly, re-writing the bound by denoting
� = jFje�2m�2 gives:

with probability 1� �,

(2.4) R[f ] � R̂m[f ] +

vuut 1

2m
log

 jFj
�

!
8 f 2 F :

Inequalities of such type are called as VC-type inequalities7. Interestingly
this gives an upper-bound on the risk (the quantity we want to minimize) that
involves terms that can be computed based on D and F . Hence such bounds pro-
vide computable (upper) bounds on the performance (risk) of f obtained with an
induction principle like ERM8. Moreover, such bounds motivate a new induction
principle that suggests minimizing the bound itself:

Structural Risk Minimization (SRM) [Vapnik, 1998]: Given a F con-
struct the sets F1 � F2 � : : : � F . This is like giving structure to F , based
on increasing size/complexity/richness9. Solve: i� = argminiminf2Fi R̂m[f ] +r

1
2m

log
�
jFij
�

�
. The candidate for SRM is fSRMm = argminf2Fi� R̂m[f ].

5We denote the random variable (Xi; Yi) by Zi and the random variable l(Xi; Yi; f) = l(Zi; f)
by Li(f).

6Note that the analysis is very similar in the countable case. It is the uncountable case which
calls for a di�erent analysis. Nevertheless at a later stage we will clarify why countable case is
similar to the �nite case.

7As they were popularized by Vapnik and Chervonenkis.
8We commented on the play between jFj;m; � and the tightness of the bound.
9Application speci�c domain knowledge can perhaps motivate preferring a particular structure

over the others.
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The story seems to good in the �nite/countable F case. However for real-
world applications, such function classes are rather useless. Hence we turned our
attention to the case of arbitrary (possibly uncountable) function classes. Refer
theorem 5 in Bousquet et al. [2004] for the details of the derivation in this case10.
In the following section we provided a rough sketch of the same.

2.1.2 ERM Consistency — General F case

In arbitrary function class case one cannot resort to the Boole's inequality and
one needs to focus on the random variable g(Z1; : : : ; Zm) = maxf2F R[f ]� R̂m[f ].
We noted that g is a function of iid random variables and moreover satis�es the
bounded di�erence property. Hence one can employ the McDiarmid's inequal-
ity [McDiarmid, 1989] to bound probability of high deviations of g from its mean.
Refer www.cs.berkeley.edu/~bartlett/courses/281b-sp06/bdddiff.pdf for an
easy proof of the McDiarmid inequality and the de�nition of bounded di�erence
property. With this we have that with probability 1� �,

(2.5) R[f ] � R̂m[f ] + E
�
max
f2F

R[f ]� R̂m[f ]
�
+

s
1

2m
log

�
1

�

�
; 8 f 2 F

The equation holds for losses which vary between 0 and 1 (like 0-1 loss or truncated
hinge-loss). Needless to say, a similar statement can be written for any bounded
loss function.

We noted that the expectation in the RHS above represents how big a func-
tion class is and hence the VC-type inequality in the general F case is very similar
to that in the �nite case (2.4). In order that the bound is useful we wanted to
further bound the expectation term (which is unknown):

Ghost Samples: E
h
maxf2F R[f ]� R̂m[f ]

i
= E

h
maxf2F E

h
R̂
0

m[f ]
i
� R̂m[f ]

i
. Here

R̂
0

m[f ] =
1
m

Pm
i=1 l(Z

0

i; f) represents the empirical risk with f evaluated on a

set ofm iid samples Z
0

1; : : : ; Z
0

m (called ghost samples) which are independent
of the given training set.

Max. and Expectation interchange: Since maximum of sum/integral is less

than or equal to sum/integral of maxima, we have11: E
h
maxf2F E

h
R̂
0

m[f ]
i
� R̂m[f ]

i
�

E
h
maxf2F R̂

0

m[f ]� R̂m[f ]
i
= E

h
maxf2F

1
m

Pm
i=1

�
l(Z

0

i; f)� l(Zi; f)
�i
. Note

that the �nal expectation is wrt. both Zi and Z
0

i forall i.

10Refer Koltchinskii [2001] for the original paper.
11This explanation is perhaps more apt than the contrived Jensen's inequality argument pre-

sented in lecture.
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Rademacher variables: With motivation from studies of empirical processes [Ledoux
and Talagrand, 1991] and the fact that we want to elevate the di�culty
in computing the expectation (which is unknown as distribution P itself
is unknown) by using ideas of conditioning on expectation, we introduce
new random variables �1; : : : ; �m, called Rademacher variables, which are
iid with distribution: P [�i = 1] = 0:5; P [�i = �1] = 0:5. We have,

E
h
maxf2F

1
m

Pm
i=1

�
l(Z

0

i; f)� l(Zi; f)
�i

= E
h
maxf2F

1
m

Pm
i=1 �i

�
l(Z

0

i; f)� l(Zi; f)
�i
.

This equality is true because the distribution of l(Z
0

i; f) � l(Zi; f) is sym-
metrical. Note that the expectation in the last expression is wrt. all random
variables i.e., Zi; Z

0

i; �i; 8 i.

Again, max. and sum inequality: E
h
maxf2F

1
m

Pm
i=1 �i

�
l(Z

0

i; f)� l(Zi; f)
�i

=

E
h
maxf2F

1
m

Pm
i=1 �il(Z

0

i; f)
i
+E

h
maxf2F

1
m

Pm
i=1��il(Zi; f)

i
= 2E

h
maxf2F

1
m

Pm
i=1 �il(Zi; f)

i
.

This expectation has a name: Rademacher average of a function class G
is de�ned as R (G) = E

h
maxg2G

1
m

Pm
i=1 �ig(Zi)

i
, where the expectation is

over the random variables Zi; �i; 8 i. With this notation the expecta-
tion in the �nal expression above can be called as Rademacher average12

of the class L = l � F = fl(�; �; f) j f 2 Fg. The Rademacher average con-
ditioned on the training examples is called the conditional Rademacher av-
erage: R̂ (G) = E

h
maxg2G

1
m

Pm
i=1 �ig(Zi) j Z1; : : : ; Zm

i
. Note that unlike R,

the quantity R̂ can be computed (given the training set). Hence we would
like to have a bound in terms of R̂ rather than R.

McDiarmid Inequality: It is easy to see that the function h(Z1; : : : ; Zm) =
R̂ (L) satis�es bounded di�erence property and hence application of Mc-
Diarmid's inequality13 gives with probability 1� �:

(2.6) R (L) = E
h
R̂ (G)

i
� R̂ (L) +

s
1

2m
log

�
1

�

�

Union bound: Combining equations (2.5) and (2.6) with a union bound (Boole's
inequality) we have with probability 1� �:

(2.7) R[f ] � R̂m[f ] + 2R̂ (L) + 3

s
1

2m
log

�
2

�

�
; 8 f 2 F

12In lecture we gave intuition of why Rademacher average measures complexity of a function
class.

13Again, the inequality is written with 0-1 loss of truncated hinge-loss in mind. Similar expres-
sion for any bounded loss can be written.
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Now one su�ciency condition for ERM being consistent is ofcourse R̂(L)!
0 as m ! 1. This is evident from (2.7) by re-writing it as upper bound on
probability of the complementary event. Clearly this does not happen with F
being the set of all (measurable) functions as in that case R̂ = 0:5 (assuming 0-1
loss). This establishes the statement that PAC learning may not be possible unless
the function class is restricted in its complexity (as measured by Rademacher
averages). In the subsequent section we look at linear-discriminant function classn
f j f(x) = sign(w>x)

o
, which is shown to be \good" for text categorization tasks,

and look at what restrictions lead to ERM consistency.

2.1.3 Example of function/loss class with ERM consistency
— Linear functions

We took the case of binary classi�cation. We noted that the 0-1 loss is not at-
tractive for two reasons: i) in binary classi�cation problems one may want a hold
on con�dence of the label prediction. Hence one may want to use hinge-loss of its
variants (which basically says more the value of w>x, more the con�dence that x
belongs to the positive class and vice-versa). ii) the ERM problem with 0-1 loss
itself is computationally hard (a hard combinatorial optimization problem)14.

The following discussion hence assumes truncated hinge-loss with which also
(2.7) holds. We focus on the class of linear functions F l

W in n-dimensional Eu-
clidean space15. Notation: let l(x; y; f) = �(yf(x)), where �(z) = min(max(0; 1�
z); 1) (representing the truncated hinge loss). We came up with an upper bound
on the conditional Rademacher average in this case16 (we assume things as and
when necessary):

Contraction Lemma:

R̂(L) = E
"
max
kwk�W

1

m

mX
i=1

�i�
�
yiw

>xi
�#
� E

"
max
kwk�W

1

m

mX
i=1

�iyiw
>xi

#
:

This follows from the contraction lemma [Ledoux and Talagrand, 1991] (refer
Lemma5 in Meir and Zhang [2003] for a simple proof) as � is a Lipschitz
continuous function17 with Lipschitz constant as unity.

14Infact a more comprehensive statement can be made: refer Feldman et al. [2009] for details.
15We noted that in real-world text categorization applications promising results were obtained

using Fl and hinge-loss (for which the truncated hinge loss forms a lower bound) | making this
example a non-trivial and infact interesting one.

16The derivation presented here is based on the proof of theorem 24 in Lanckriet et al. [2004]
17A function f is said to be Lipschitz continuous with Lipschitz constant L i� jf(x) � f(y)j �

Lkx� yk 8 x; y 2 dom(f).
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Cauchy-Schwartz Inequality:

E
"
max
kwk�W

1

m

mX
i=1

�iyiw
>xi

#
� W

m
E
"
k

mX
i=1

�iyixik
#
=
W

m
E
hp

�̂>K�̂
i
;

where �̂ is the vector with entries as �iyi and K is the matrix of all possible
dot products: (i; j)th entry in K is Kij = x>i xj. Such a matrix is called a
gram matrix. So K is the gram matrix of the training datapoints.

Jensen’s Inequality: W
m

E
hp

�̂>K�̂
i
� W

m

q
E [�̂>K�̂] and this is equal to W

m

q
trace(K),

as �i are iid with mean zero and variance unity18.

Radius bound: Now one can easily come up with cases where the above bound
may not go to zero (for m ! 1) as the trace term in the numerator may
itself blow. One way of restricting this is to say that the input space X
is bounded i.e., there exists an r such that kxk � r 8 x 2 X . With this
assumption one obtains the following radius-margin bound19:

(2.8) R̂(L) � Wrp
m
;

which indeed goes to zero as m!1.

Hence ERM should be consistent in this case. Using similar learning theory
bounds Vapnik [Vapnik, 1998] proposed a optimization formalism that implements
the ERM principle. This is the well celebrated formulation of SVMs (Support
Vector Machines), which is the subject of discussion in the subsequent section.

2.2 Support Vector Machines (SVMs)

Motivated by the result that ERM is consistent, one can look for a linear function
which solves the following problem:

min
w2Rn

Pm
i=1 l(xi; yi; w);

s.t. kwk �W(2.9)

One may use the truncated hinge loss or any upper bound of it. For eg. hinge loss.
The advantage with hinge-loss is it is convex20, whereas the truncated hinge-loss

18Trace of matrix M is sum of its diagonal entries
19We noted in the lecture why the bound is intuitive in the binary classi�cation case.
20One may also re-derive the bounds for hinge-loss case, which would lead to similar expressions

and results.
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is not. With hinge loss (2.9) can be written as:

min
w2Rn

Pm
i=1max(0; 1� yiw

>xi);

s.t. kwk �W(2.10)

The above problem is convex (and hence can be solved e�ciently). Infact it can
be posed as a Second-Order Cone Program (SOCP)21, once the objective is turned
linear: we used a standard trick of introducing additional variables �i such that
�i � max(0; 1� yiw

>xi). This gives:

min
w2Rn

Pm
i=1 �i;

s.t. kwk �W; �i � 0; yiw
>xi � 1� �i:(2.11)

Infact problems of the form (2.9) have been studied in optimization theory.
Most common example is with the case of square-loss (regression problem). The
term in the objective measures the �t of the model to the data, while the constraint
\regularizes" the model. Such a regularization is known as Ivanov regularization.
Moreover, regularization problems can be written in two more equivalent forms:

Tikhonov regularization:

(2.12) min
w2Rn

kwk+ C
mX
i=1

l(xi; yi; w);

where C is a parameter (plays a role similar to W ). Here the interpretation is
�t the model to the data while regularizing it. C controls the trade-o� between
data �t and regularization. Some also refer to such a form as \Regularized risk
minimization" (which we have shown is equivalent to ERM). Here regularized risk
refers to the weighted sum of the regularizer and empirical risk.

Morozov regularization:

min
w2Rn

kwk;
s.t.

Pm
i=1 l(xi; yi; w) � A;(2.13)

where A is a parameter similar to C and W . Here the interpretation maximally
regularize the model while data �t is under certain tolerance. A is a bound on the
(empirical) error of data �t.

The Tikhonov regularized version with hinge-loss was used by Cortes and
Vapnik [1995] and published as SVMs (only di�erence being 0:5kwk2 is used in-
stead of kwk as the regularizer):

min
w2Rn

1
2
kwk2 + C

Pm
i=1 �i;

s.t. �i � 0; yiw
>xi � 1� �i:(2.14)

21refer http://stanford.edu/~boyd/papers/socp.html.
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The squared version of the regularizer was used to obtain a nice convex Quadratic
Program (as above), for which highly e�cient o�-the-shelf solvers exist.

The Morozov regularized version (with squared-regularizer, hinge-loss and
A = 0 i.e., no empirical error) was used in a preliminary paper before SVM [Boser
et al., 1992] and leads to what usually is known as the hard-margin SVM:

min
w2Rn

1
2
kwk2;

s.t. yiw
>xi � 1:(2.15)

Please read Burges [1998], which is an excellent tutorial on SVMs. Here we
tried to cover things not covered there (including learning theory results). We
next provide an insight into the specialty of the solution with the SVM problem
that will be helpful in our analysis later on.

Note that the geometric interpretation of (2.15) is that of maximally sep-
arating two set of points. It is well known that this problem is equivalent to
minimizing distance between convex hulls of the two sets of points22. Infact, the
normal to the maximally separating hyperplane (i.e., w) will be in the direction
of line joining the two minimum distant points in the convex hulls. From this it is
immediate that w =

Pm
i=1 �ixi. Infact, later on we will (rigorously) prove a more

generic statement under the name \Representer theorem" | which says (loosely)
any \SVM-kind" of problem (i.e., norm-regularized linear �t problem) has a so-
lution of the form w =

Pm
i=1 �ixi i.e., the solution is a linear combination of the

training datapoints. Moreover, the name \Support Vector" is also motivated from
this duality result: from the above argument it is also clear that many �s can be
zero at optimality and hence the solution is a linear combination of few important
examples called \support vectors". Will �ll-in more details as and when required.

With this discussion we are clear about ERM. Though ERM is consistent,
the function class F itself may be too big (in which case we may over�t) or too
small (in which case we may under�t). The problem of which F to choose is hence
crucial and is discussed in the subsequent section.

2.3 Model Selection Problem

Here we deal with the question which F to choose? Ideally we want F to be as
big a set as possible so that R[f�] is as close as possible to R[f��], where f�� =
argminfR[f ] i.e., the minimizer of true risk among all (measurable) functions. f

��

22Infact, this equivalence drives all duality principles in optimization. Refer notes at http:
//www.cse.iitb.ac.in/saketh/teaching/cs709.html for details.
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is called the Bayes (optimal) function23. The risk with f�� is called the Bayesian
(optimal) risk. However we at a very early stage of our analysis realized that one
may not be consistent if F is very big (say all functions).

So the obvious idea is to try several Fi and choose the \best". Now the prob-
lem of choosing the \best" Fi is called the model selection problem. Analogously,
the problem of �nding the \best" fi given Fi may be called the model-parameter
selection problem (hence ERM is a principle for model-parameter selection). On
passing, we introduce some more terminology: given an induction principle (like
ERM), let the candidate selected by it in a function class F be f�m. The di�er-
ence between risks of f�m 2 F and f� 2 F (which is the true minimizer of risk in
F) is called the Estimation error: EstErr = R[f�m] � R[f�]. This indicates the
error introduced in �nding risk minimizer because of �nite data and it usually
decreases with m (atleast we know that in probability it goes to zero as m ! 1
for f�m returned by ERM). The di�erence between the risks of f� 2 F and the
Bayesian risk is called the approximation error: AprErr = R[f�] � R[f��]. This
indicates the error in approximating the set of all functions with F . The related
quantity that measures di�erence in risks with the induced f�m and the Bayes func-
tion is called the generalization error: GenErr = R[f�m] � R[f��]. Needlessly to
say, generalization error is of atmost interest to us. One says that an induction
principle is Bayes consistent i� fR[f�m]g p�! R[f��]. We still need to do quite a bit
of analysis to answer questions about Bayes consistency. For the time being we
will be happy with (statistical) consistency i.e., fR[f�m]g p�! R[f�], which was our
subject of discussion from the beginning.

What ever is the terminology, the important question is which F to choose?
A hint towards this goal is given by (2.7) itself! For example, one may look for
the fi 2 Fi which minimizes this bound. Then the hope is that the true risk is
minimized by minimizing its upper bound. This ofcourse is the idea behind SRM
discussed earlier:

One chooses a hierarchy of function classes: F1 � F2 � : : : � Fn � : : :, each
of which have decaying Rademacher average (i.e., ERM consistency is guaranteed),
and then picks i� = argminiminf2Fi ~R[f ], where ~R[f ] is called the guaranteed risk
with f which is the vc-type bound on the true risk (one may use RHS of (2.4) or
(2.7) as the case may be24). The candidate for SRM is fSRMm = argminf2Fi� R̂m[f ].

23In case of binary classi�cation, this optimal is given by f��(x) =�
1 if P [Y = 1=X = x] � P [Y = �1=X = x]
�1 if P [Y = �1=X = x] > P [Y = 1=X = x]

. Refer Duda et al. [2000] or any other

classical pattern recognition/machine learning book for an in depth discussion. Note that the
Bayes optimal function cannot be realized as P (x; y) is unknown.

24Infact, researchers have come up with various bounds which sometimes involve notions about
function-class complexity other than Rademacher averages. Please refer the following for de-
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It is easy to see that such a principle, provided we prove its consistency, is
indeed useful for model selection. Infact, a closer look convinces us that with such a
principle we can perhaps get close to Bayes consistency. This is because SRM kind
of searches in [1i=1Fi, which itself need not be a class where ERM is consistent. For
eg. one may choose F l

1;F l
2; : : : ;F l

n; : : : whose union is all possible linear functions.
We will prove that SRM is (statistically) consistent in the subsequent section.

On passing, we note that there are alternative principles for model selection.
The most frequently used is the validation-set method and its variants. Here one
divides the given dataset into two parts: i) the training set ii) the validation set.
Using the training set alone, f�im 2 Fi; i = 1; : : : ; k are constructed by implement-
ing some induction principle (say, ERM). Now the problem of model selection is

equivalent choosing among F =
n
f�1m ; f�2m ; : : : ; f�km

o
. While in case of SRM this

choice is made by further looking at guaranteed risk, here one evaluates each f im
on the validation set and computes validation risk (which is same as empirical risk
but evaluated with validation set samples rather than training set samples). Again
since LLN gives that validation risk is a good (asymptotic) estimate of the true
risk, we pick the f�im which gives least validation error. While this is �ne because
we have a relation similar to (2.4), the bound also says one should not take too
high k and then look for a validation risk minimizer because like with ERM, this
might lead to over-�tting (to the validation set); while taking small k may lead to
under-�tting (to the validation set). One may resort to something like SRM again
to decide what k. Nevertheless in practice one just �xes a \reasonable" k = 5; say
and looks for validation risk minimizer. This is called the validation-set method.
Please refer Chapelle et al. [2002] for other variants.

2.3.1 SRM consistency

In this section we show that SRM is consistent in the speci�c case as that in
section 2.1.3. Refer appendix-1 for the details and a proof25 of SRM consistency
that is based on the derivations in Lugosi and Zeger [1996].

We commented that this is a remarkable result as it gives us a way of being
(statistically) consistent in potentially large function classes (i.e., [1i=1Fi; whose
Rademacher average may not decay with m) while performing a principled search
(SRM) among function classes (Fi) with restricted capacity. This will lead us to
Bayes consistency provided we consider functions class ([1i=1Fi) which can well
approximate or contain the Bayes optimal function. Since the Bayes optimal func-
tion can be any \measurable" function and need not be linear, we �rst generalize

tails: Bousquet et al. [2004], Bartlett and Mendelson [2002], Vapnik [1998]
25All appendix sections appear towards the end of this notes.
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our analysis to non-linear function classes. This analysis is presented in the next
section (which is an abridged version of the explanation in section 2.1 in Sch�olkopf
and Smola [2002]).

2.4 Non-linear Function-classes

Through examples of a�ne and quadratic functions, we noted that non-linear func-
tions in input space X are nothing but linear functions in a suitable (non-linearly)
transformed space �(X ). e.g. f(x) = ax21 + bx22 +

p
2cx1x2 = [a b c]>�(x); �(x) =

[x21 x
2
2

p
2x1x2]

> (here x = [x1 x2]
> 2 R2). We also noted this is the case with

all polynomial functions. This observation motivates the following methodology
for handling non-linear function classes: given a polynomial function class (say
all polynomials upto degree d) we �rst create the space �(X ) that contains in
each dimension a monomial involving the input dimensions. Then we consider
linear function classes over this new feature space �(X ). And one can repeat the
entire analysis in previous sections. The only constraint is � should be such that
kxk � r ) k�(x)k � r

0

for some r
0

and this holds for the polynomials case atleast.

For a moment we might think the problem is solved, but as Lokesh pointed
out creation of the feature space might require astronomical time: if the input
dimensionality is n and degree of polynomials under consideration is d, then the
size of the feature vector is n+d+1 choose d. This number could be unmanageable
with even reasonable n; d. So though our methodology is awless theoretically,
when it comes to implementation it looks like it may take a beating.

The obvious question is do we really need to compute �(x)? A re-look at
the nature of SVM solution hinted towards the end of section 2.2 suggests that it
is enough to know the dot-products of examples in order to solve the SVM (i.e.,
ERM) problem. This is because, using w =

Pm
i=1 �ixi, (2.14) can be re-written as:

min
�2Rm

Pm
i=1max

�
0; 1� yi

Pm
j=1 �jx

>
j xi

�
;

s.t.
p
�K� �W;(2.16)

here K is the gram matrix with the training datapoints. Moreover, the evalua-
tion of the SVM/ERM candidate function can be done using dot-products alone:
f(x) =

Pm
i=1 �ix

>
i x. This raises the question can we (atleast in some cases) e�-

ciently compute the dot products in feature spaces using the input space vectors?
If so, then we can solve the SVM in the feature space without explicitly going into
the feature space.

We realized that this again can be done in the polynomial function class case
as above: e.g. for homogeneous quadratic in R2 case �(x)>�(z) = x21z

2
1 + x22z

2
2 +
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2x1x2z1z2 = (x>z)2. Similarly, in case of non-homogeneous d degree polynomials
we can compute the dot product in the feature space using (1 + x>z)d.

So till now the story is excellent... we can handle polynomial function classes
on Euclidean spaces using the analysis of linear function classes and computation-
wise also there are no challenges. Now this makes us greedy and ask the question
can we do this for non-linear functions over arbitrary input spaces X that are not
Euclidean (such a situation arises for example in a task of classifying images/videos
etc. | which are hard to describe using Euclidean vectors). Secondly, since our
primary goal is Bayes consistency the key question is do we get large enough
function classes with polynomials? Intuitively atleast the answer seems no as
it is sounding too restrictive to say that Bayes optimal is a polynomial function.
However what might be more believable is that perhaps ex

>z (we write this function
by looking at (x>z)d) is the function which might represent a dot product in the
feature space that have all monomials without any degree restriction. Even if
this were true, ofcourse such a feature space wont be a Euclidean space rather a
Hilbert space26, which generalizes the notion of Euclidean spaces. In summary,
we are looking at results in mathematics that kind of say which class of functions
(we name them as positive kernels later) represent inner-products (generalization
of dot product notion) in some Hilbert space? Infact such results are well-known,
even at the beginning of the previous century, in the �eld of operator theory. In
the subsequent section we will discuss such a key result that will help us solve
both our problems (handling generic input spaces and feature maps which lead to
\big" function classes such as with ex

>z) in one shot.

2.4.1 Kernels and Kernel-trick

With the motivation in the previous section we begin with the following de�nition:
Given an input space X (need not be Euclidean; infact need not be a vector space),
a positive kernel is any function k : X � X ! R satisfying i) symmetry: x; z 2
X ) k(x; z) = k(z; x) and ii) Positivity: x1; : : : ; xm 2 X ) Gk(x1; : : : ; xm) � 0,
where Gk(x1; : : : ; xm) is the matrix with ij

th entry as k(xi; xj) i.e., it is the matrix
of all possible kernel evaluations on the given set of m points. The symbol M � 0
means that the matrix M is positive semi-de�nite (psd)27.

26Refer lecture-notes 1-4 in Saketh [2009] for refreshing the idea of Hilbert spaces. We also
noted two non-Euclidean Hilbert-spaces: space of square-summable sequences (l2) http://en.
wikipedia.org/wiki/Sequence_space and space of square integrable functions (L2) http://en.
wikipedia.org/wiki/Lp_space. Infact, all in�nite-dimensional (separable) Hilbert spaces are
\equivalent" to the l2 space, which is an intuitive generalization of Euclidean space.

27M � 0 , x>Mx � 0 8 x. Some textbooks may prefer to de�ne psd matrices as symmetric
ones satisfying this condition | leading to a de�nition of positive kernels in Sch�olkopf and Smola
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One can now prove the following crucial theorem [Sch�olkopf and Smola,
2002]:

Theorem 2.4.1. Consider an input space X and a positive kernel k over it.
Then there exists a Hilbert space Hk and a feature map �k : X ! Hk such that
the kernel evaluation of any two datapoints in the input space, i.e., k(x; z), is
equal to the inner product of those two datapoints in the feature space, i.e.,
h�k(x); �k(z)iHk

. In other words, k(x; z) = h�k(x); �k(z)iHk
.

Refer section 2.2.2 in Sch�olkopf and Smola [2002] for a proof of the same28.

Note that this theorem shows existence of a Hilbert space. Obviously there
may be several space and mappings satisfying this criteria. Refer to theorem 2.10
and proposition 2.12 in Sch�olkopf and Smola [2002] for an alternate Hilbert space,
actually an l2 space, construction.. However, from the proof it is clear that the
theorem points out a special Hilbert space that satis�es the following condition:
f 2 Hk ) f(x) = hf(�); k(x; �)iHk

. Note that this condition may not be satis�ed
by other Hilbert spaces that satisfy the criteria. This special Hilbert space pointed
out in theorem 2.4.1 above is called a Reproducing Kernel Hilbert Space (RKHS).

Now all this development is useful, only if we show some examples of positive
kernels. Before giving examples lets look at some operations that preserve posi-
tivity of kernels, which come in handy to prove positiveness of a given function.
i) conic combination of positive kernels is positive ii) product of positive kernels
is positive iii) limit of a sequence of positive kernels (if exists) is positive. Refer
section 13.1 in Sch�olkopf and Smola [2002] for details. Though these results are
simple to prove we argued that from application perspective they are far reaching:
consider an application involving multi-modal data (say, video,audio, text modes)
and suppose kernels for video, audio and text data are given. By linearly combin-
ing products of such kernels, one can obtain (non-trivial) feature representations
for the multi-modal data!

We then showed that the functions (x>z)d, (1 + x>z)d for d 2 N are positive
kernels (on the Euclidean space). Here is the sketch of the proof: we �rst showed
that dot-product x>z is a kernel29. This is because a gram matrix can be written

[2002] (refer de�nition 2.5).
28Justi�cation of (2.31) in Sch�olkopf and Smola [2002] needs to be done as we did in lecture rather

than as done in Sch�olkopf and Smola [2002]. Basically we need Cauchy-Schwartz inequality to hold
for any two functions in Hilbert space rather than for kernels alone. In lecture we showed that
this is indeed the case. Also in the lecture we gave a nice justi�cation for the choice of the feature
map, which is at the heart of the proof. We said that representing an object by its similarities
with all other objects is the most obvious representation (and infact the richest representation).

29Infact, any inner-product is a kernel. Easiest proof of this is from equivalence of any �nite-
dimensional Hilbert space to Euclidean space and any in�nite-dimensional (separable) Hilbert

20



as X>X where X is the matrix containing the m datapoints in the columns. Now,
X>X is obviously symmetric and z>X>Xz = (Xz)>(Xz) � 0 8 z and hence
dot-products are kernels. Secondly we know that product of the two positive
kernels k1(x; z) = (x>z) and k2(x; z) = (x>z) is again positive30. By induction,
(x>z)d; d 2 N is a kernel. We gave a proof for the non-homogeneous case too.

Infact, usually one starts with x>�y, where � � 0 and constructs kernels
k(x; z) = (x>�z)d (known as the homogeneous polynomial kernel) and k

0

(x; z) =�
1 + x>�z

�d
(known as the non-homogeneous polynomial kernel). It is again an

easy exercise to show that these are positive kernels (for a given � � 0). By
varying d 2 N;� � 0 we obtain various kernels. Hence d;� are the parameters to
a polynomial kernel.

After this, it was easy to show that k(x; z) = ex
>�z, is a positive kernel

(by using the series expansion of ex and the fact that polynomial kernels are
positive and conic combinations of positive kernels is positive, which follows from
simple linear algebra.). Usually one normalizes this kernel in the following way

k;(x; z) = k(x;z)p
k(x;;x)k(z;z)

= e�
1

2
(x�z)>�(x�z). This is called the Gaussian kernel or the

Radial Basis Function (RBF) kernel. Again, it is an easy exercise to show that
normalized version of a positive kernel is positive.

Now that we have examples of kernels and the existence of Hilbert space
theorem 2.4.1, the only thing left to be proved is the representer theorem, which
says SVM-kind of problems require only inner-products rather than feature rep-
resentations:

Theorem 2.4.2. Let k be some positive kernel de�ned over an input space X .
Let Hk be the RKHS (or any other equivalent) and �k be the corresponding
feature map. Suppose the model is all linear functions in that space i.e.,
f(x) = hw; �k(x)iHk

with a (complexity) restriction kwkHk
�W . Now consider

the problem of ERM:

min
w2Hk

Pm
i=1 l(yihw; �k(xi)iHk

);

s.t. kwkHk
�W:(2.17)

Then an optimal solution of the ERM problem of the form: w =
Pm

i=1 �i�k(xi)
exists for some �i 2 R. Needless to say, the same statement holds for the
Tikhonov and Morozov forms of the above Ivanov ERM problem.

Refer section 4.2 in Sch�olkopf and Smola [2002] for details.

space to l2 space. In either case the gram matrix can be written as sum of gram-matrices obtained
from each individual feature. And since sum of positive kernels is positive, we get the result.

30You may refer to any proof of Schur product theorem oating on the internet for this.
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With this theorem, it is obvious that the problem (2.17) is equivalent to the
following optimization problem in the Euclidean space:

min
�2Rm

Pm
i=1 l

�
yi
Pm

j=1 �jk(xi; xj)
�
;

s.t.
p
�>Gk� �W:(2.18)

Here Gk is the matrix of all kernel evaluations on the training points and by
theorem 2.4.1, it is the gram matrix of the training datapoints in Hk. Moreover,

(2.19) f(x) = hw; �k(x)iHk
=

mX
i=1

�ik(xi; x):

Hence both the ERM/SVM problem and the label prediction can be done using
the kernel alone (and the feature representation �k is not required)! Infact, this
\kernel trick" can be be used in any problem where dot-products are only involved.
Refer section 14.2 in Sch�olkopf and Smola [2002] for example of such a problem.

Also, (2.19) clearly shows why non-linear functions will be induced by kernels
like polynomial and Gaussian. The form of the learnt function will be some linear
combination of the kernel functions with one argument �xed. In case of Gaussian
kernels, we get that the function learnt is again a Gaussian function. On passing
we also noted a specialty of the Gaussian kernel: theorem 2.18 in Sch�olkopf and
Smola [2002]. This is special because for a linear kernel in n dimensions, the
rank of the gram matrix (with any number of points) cannot be more than n i.e.,
the map of the input space is atmost an n-dimensional subspace in the feature
space. However this result for a Gaussian kernel says that as the number of points
increases the rank of gram-matrix increases and hence the map of the input space
may be the entire feature space (which is possibly in�nite dimensional)!

The examples till now are of kernels on Euclidean spaces. We now give an
example of a kernel over distributions. Refer Jebara et al. [2004] for details. Such
kernels are necessary in applications like Bioinformatics (refer section 8.2 in Jebara
et al. [2004]) or in cases where the training datapoints are themselves noisy samples
of the true inputs. In particular, one interesting result from the paper is: using a
Gaussian kernel is like assuming there is a Normally distributed noise around the
datapoints and we are classifying/regressing on these Normal distributions (refer
section 3.1 in Jebara et al. [2004]). Hence using a Gaussian kernel would bring in
some kind of robustness towards noise.

Now that one objective of this section is achieved (that of solving ERM in
arbitrary spaces), lets move on to the second goal of whether some kernels lead
to big enough function classes which well approximate the Bayes optimal? The
answer is yes and such kernels are called as Universal kernels, which are the subject
of study in the next section.
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2.4.2 Universal Kernels

Lets begin with the question which is the \minimal" function class that approx-
imates Bayes optimal well? The answer is provided by the Luzin's theorem [Fol-
land, 1996], which gives that minf2C(X )R[f ] = R[f��] i.e., the minimum risk in the
set of all continuous functions (C(X )) is equal to the Bayes optimal risk. Hence we
would be happy if the function class induced by a kernel is C(X ) or atleast dense
in C(X ), so that the minimum risk is close enough to the Bayes risk31. Hence we
go with the following de�nition [Steinwart]:

Universal Kernel: A positive kernel k over an input space X is said to
be a universal kernel (for that space) i� the function class induced by the kernel
i.e., Fk = ff j f(x) = hw; �k(x)iHk

; w 2 Hkg is dense in the set of all continuous
functions C(X ).

Now lets show an example of a universal kernel on the Euclidean space.
We claim that the Gaussian kernel (un-normalized one and hence the normal-
ized one32) is universal. The proof33 simply follows from the Stone-Weierstrass
theorem [Rudin, 1976]. Refer theorem 1 in Steinwart for a version relevant to us.

It is easy to verify that Gaussian kernel satis�es all conditions of Stone-
Weierstrass theorem: the function class induced by Gaussian kernel

Fk =

(
f j f(x) =

mX
i=1

�ie
x>
i
x; xi 2 Rn

)
;

is i) an algebra because it is ofcourse a vector space and product of two functions in
this class will again be linear combinations of exponential functions and hence the
space is closed under multiplication34. ii) non-vanishing because for any x 2 Rn,
we can take f(x) = k(z; x) = ez

>x > 0 for any z 2 Rn. iii) separates X because
x; y 2 Rn; x 6= y ) fz(x) = ez

>x 6= fz(y) = ez
>y for any z 2 Rn. Hence the

Gaussian/RBF kernel is universal on the Euclidean space.

With this machinery one can show that ERM implemented using SVM with
Gaussian kernel and model selection implemented using SRM leads to Bayes con-
sistency. This is discussed in the subsequent section. On passing, we note the
following paper Christmann and Steinwart [2010], which provides examples of
universal kernels over non-Euclidean spaces.

31We are assuming true risk functional is continuous.
32The normalized version of a universal kernel is universal [Steinwart].
33You may also refer to Steinwart for an alternate proof which is more insightful.
34Note that closedness wrt. multiplication is what fails in case of linear or polynomial kernel.

Infact one can show that such kernels are not universal [Steinwart].
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2.5 Bayes Consistency

Though we know from the previous section that the function class induced by
Gaussian kernels is big enough, using it for ERM may not lead to consistency
(the estimation error might be high though the approximation error is low |
because the conditional Rademacher average for this class blows up.). Hence the
idea is to use the class of functions induced by Gaussian kernel with an additional
restriction that kwkHk

� W . We know that this class is \good" in the sense
that the conditional Rademacher average decays with m. Now we might get low
estimation error but high approximation error. The trade-o� can be achieved by
SRM:

Consider the sequence of function classes induced by the Gaussian kernel:
F1;F2; : : : ;Fn; : : :, where Fn = ff j f(x) = hw; �k(x)iHk

; w 2 Hk; kwkHk
� ng. Now

if one implements SRM, we will achieve Bayes consistency because i) SRM is con-
sistent (section 2.3.1) ii) [1i=1Fi = ff j f(x) = hw; �k(x)iHk

; w 2 Hkg, which we
already showed well approximates the Bayes optimal function. In summary, in
this case, we get both low estimation error (as SRM is consistent) and low ap-
proximation error as the essential function class (union over the sequence) is big
enough.

This completes the �rst milestone of our analysis: we are able to show an
algorithm which achieves Bayes consistency i.e., an algorithm which produces
a function whose risk is arbitrarily close to Bayesian risk with high probability
(ofcourse this is an asymptotic result i.e., holds as m ! 1). In the subsequent
section we illustrate that the risk bounds/learning theory we have done till now
might also be useful for learning problems other than Supervised learning we began
with.

2.6 Other Applications of Risk Bounds: Kernel/Feature

Learning

The learning theory developed till now is not only useful for showing theoretical
results like consistency or for motivating SVM, but infact such results motivate
many of the existing learning formulations. In this section we show yet another
example of a learning formalization motivate from our (2.7,2.8) risk bound.

It is easy to see that the performance of a learning algorithm crucially de-
pends on the feature representation for the input data, which in case of kernel-
based algorithms (as the ones we use) depends on the kernel itself. Using the risk
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bounds (2.7,2.8) one can infact study the inuence of the kernel on the learning
bound and hence try to optimize the kernel for the data in hand.

We refer to the following seminal paper: Lanckriet et al. [2004] for the details.
Following is a short summary of this work along with the work in Rakotomamonjy
et al. [2007].

One way to optimize the kernel is to consider conic combinations of given
set of p base kernels k1; : : : ; kp and then learn the optimal weights in the conic
combination i.e., k =

Pp
i=1 �iki; �i � 08 i and the weights �i are learnt. Such a

kernel learning setting would be particularly interesting for multi-modal data35,
where each base kernel is constructed from a di�erent mode of describing the data.

Let Hi; �i be the RKHS, feature map with the kernel ki and let Ĥi; �̂i be
those for the kernel �iki. It is easy to see that

p
�i�i = �î and the RKHS of k

is direct sum of individual RKHS i.e., H = Ĥ1 � : : : � Ĥp, inner product for k
is hf; giH =

Pp
i=1hfi; giiĤi

(here, fi; gi represent the component/projection of f; g
onto the ith RKHS). Using this notation, a linear function in H can be written as:
f(x) = hw; �̂(x)iH =

Pp
i=1hwi; �̂(x)iiĤi

=
Pp

i=1

p
�ihwi; �i(x)iĤi

.

From the risk bounds (2.7,2.8) it follows that the capacity of the induced
function class is bounded as long as kwk2H =

Pp
i=1 kwik2Ĥi

�W and trace(
Pp

i=1 �iKi) =Pp
i=1 �itrace(Ki) � T for some W and T . Now, one can write the ERM problem

as:

min
�;w

Pm
i=1 l(yi

Pp
i=1

p
�ihwi; �i(x)iĤi

);

s.t.
Pp

i=1 kwik2Ĥi
�W; �i � 0;

Pp
i=1 �itrace(Ki) � T(2.20)

In this form it is not clear whether (2.20) is a convex program. Convexity is seen
by replacing ŵi =

p
�iwi and re-writing (2.20) as:

min
�;ŵ

Pm
i=1 l(yi

Pp
i=1hŵi; �i(x)iĤi

);

s.t.
Pp

i=1

kŵik
2

Ĥi

�i
�W; �i � 0;

Pp
i=1 �itrace(Ki) � T(2.21)

This program is convex36 as
kŵik

2

Ĥi

�i
is a convex function in ŵi and �i [Boyd and Van-

denberghe, 2004]. The work of Rakotomamonjy et al. [2007] presents an e�cient
projected gradient descent algorithm for solving (2.21).

Intuitively, the condition
Pp

i=1 �itrace(Ki) � T implies that the weights for
kernels where the data is spread out will be less. Hence the ERM problem above

35For e.g., a meeting described using video, audio, scribes etc. Here video, audio and scribes are
the di�erent modes

36Provided the loss is a convex function.
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looks for a kernel combination that gives a good trade-o� for: (low) empirical risk,
(large) margin and (low) radius/spread of data.
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Chapter 3

Semi-Supervised Learning

The learning theory bounds presented in the previous chapter suggest that more
the number of training examples, the better. However obtaining training data is
a laborious task, primarily because it involves an expert to provide labels for the
simulated/synthesized datapoints. What we observed is that in many application
domains, obtaining training datapoints alone without the labels is easy (for eg.
text categorization). The key question then is can unlabeled examples be useful?

We argued intuitively that there are atleast three ways in which unlabeled
data might be useful: i) Inductive Learning: In this context, the question trans-
lates to asking whether knowledge of p(x) (with enough number of unlabeled
examples p(x) can be accurately estimated) improves our guess of p(y=x)? Em-
pirical studies on object recognition in babies show that this indeed is the case.
Babies tend to identify objects easily if their names are frequently heard by them!

The next scenario is transduction: where labeled and unlabeled examples
are provided and the goal is to label the unlabeled correctly. This is in contrast
with the case of induction where the goal is to predict label of any unseen ex-
ample irrespective of whether observed during training stage or not. Clearly, one
would expect this to be a \simpler" task than induction and hence better learning
bounds.

Thirdly, unlabeled examples might be useful to restrict the learning algo-
rithm to not over-generalize. For eg. consider the task of classifying digit 2 vs
4. A SIL learner would be given examples of 2s and 4s. However the learning
algorithm might start over-generalizing and try to classify a digit 1 to one of
these classes. In such cases, perhaps one wants to provide examples of all digits
which are not 2; 4, which is called the universum and insist that the universum
should not be classi�ed or classi�ed with low con�dence. This idea is explored
in Weston et al. [2006], Sinze et al. [2007]. In summary, unlabeled examples might
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be useful for improved generalization, improved learning bounds, or restricting
over-generalization etc.

The focus of this course is on induction and transduction. The slides in
the appendix (end of this notes) give a rough de�nition of both these cases and
provide a comparison. One key observation is a inductive algorithm can be used
for transduction and vice-versa. We will begin with analysis of Semi-supervised
Transductive learning (SSTL)1 in the subsequent section.

3.1 Semi-Supervised Transductive Learning

We began with discussing the paper by Derbeko et al. [2004], which provides
learning bounds for the case of transduction. Later on we will devise algorithms
based on these bounds.

3.1.1 Transductive Learning Theory

Transduction can be analyzed under two settings (see page 120 in Derbeko et al.
[2004]). In setting-1, a set of m + u datapoints is given. At random (selection
without replacement) m of them are chosen and given to an expert for labeling.
We further assume that p(y=x) is peaked i.e., non-noisy supervisor (p(y=x) is
either 0 or 1). With such a scheme, training examples are no more independent.
Setting-2, is the extension of iid case to SSL. Theorem 2 in the paper connects
both the settings. As mentioned in the paper, the analysis is easy with setting-1
and is henceforth employed in the reminder of this notes.

Following the notation in the paper, we de�ne Rf(Xu) (refer eqn. (1) in
paper) to be the true risk with f on the unlabeled set Xu. The goal in transduction
is to �nd a f 2 F that minimizes this risk. R̂f(Sm) is the empirical risk with f on
the labeled set Sm. The following couple of observations provide a way to write a
learning bound:

� Lemma 5 that relates Rf(Xu) and Rf(Xm+u).

� Eqn. 20 that shows E[R̂f(Sm)] = Rf(Xm+u).

In view of the above, we �rst try to bound P [E[R̂f(Sm)] � R̂fSm > �] (for
the 0-1 loss or truncated hinge-loss case) using the Seing bound (theorem 14 in

1Henceforth, SSL stands for Semi-Supervised Learning. SSIL stands for Semi-Supervised In-
ductive Learning.
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the paper). Then using Lemma5 we have that, with probability atleast 1� �, the
following holds for a given f :

Rf(Xu) � R̂f(Sm) +

s
(m+ u)(u+ 1)

2mu2
log

�
1

�

�

Note that as m ! 1; u ! 1, the con�dence term in the above bound goes to
zero. This suggests the principle of ERM for transduction. Again, in the case of
�nite-sized2 F , using a union bound one obtains3: with probability atleast 1� �:

(3.1) Rf(Xu) � R̂f(Sm) +

vuut(m+ u)(u+ 1)

2mu2
log

 jFj
�

!
; 8 f 2 F

With such a uniform bound, it is easy to show that ERM is consistent. Hence
PAC learning can be performed in case of Semi-supervised transduction. While
this result is interesting, the bound in the above raises the following concerns: i)
According to the bound, learning may not possible in cases m or u alone go to
in�nity while the other is constant. ii) is the learning rate faster than in supervised
learning?

Uma and Agam answered i) by looking at an alternative bound given by
Vapnik that is tighter than (3.1). Refer corollary 9 in the paper for details of
the Vapnik bound. They concluded that PAC learning is possible when either
of m or u go to in�nity and empirical risk is zero. They also observed that the
Vapnk's bound improves as u increases for a given m (whereas with the loose
bound (3.1), lesser the u, for a �xed m, the better). Answering ii) conclusively is
more di�cult. What is possible is a comparison of bounds for SSL and SIL cases,
which can be taken up by some of you4. Though the bound in (3.1) is loose, it
motivate SSL algorithms, whereas the Vapnik bound, though tight, is implicit and
hard to analyze.

Note that the ERM principle does not use any unlabeled data. However,
we wish to derive a learning algorithm which uses unlabeled data and perhaps
improves the generalization with the given labeled data.

The way out is SRM, which is motivated by the bound (3.1). The idea is to
use the unlabeled data to come up with a \good" structure over the function class.

2In setting-1 of transduction, since the input space is �nite, any function class indeed looks like
a �nite one. Atleast in case of binary classi�cation with 0-1 loss this is clear. In case of regression
or other problems one can choose a suitable loss where any function class is equivalent to a �nite
one.

3A slight variant of this result is proved in theorem 22 of the paper, which is the key result
in the paper. The only di�erence is while taking union bound we consider probabilities as �p(f),
where p(f) is some prior probability in choosing f . This leads to eqn. (19) in the paper.

4Attempt it in case you want bonus marks :)
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Since the form of bound remains same in case of induction (2.4) or transduction
(3.1), in the following we forget this distinction and focus on how to derive clever
structures that use unlabeled data. Each such a structure will lead to a formulation
and corresponding SSL algorithm.

3.2 Semi-Supervised Learning Formulations

In this section we present various SSL formulations. Each one of them is motivated
from SRM and di�er only in the structure built over the function class.

The �rst example we gave was the case of binary classi�cation where the
domain knowledge provides the expected +ve to -ve datapoints ratio i.e., the class
balance is known. Without loss of generality, let us assume that the in the given
application it is expected that the classes are balanced i.e., no. positives among
the m+u datapoints is close to the no. negatives. As mentioned earlier, since
the input space is the m + u datapoints and is �nite, the e�ective size of the
usual linear function class is �nite and � 2m+u (all possible labelings). In such
a scenario, one would perhaps arrange the usual linear function class as follows:
H0 � H1 � : : : � H, where Hi represents all those labelings with the given
linear function class that achieve a deviation in class balance by atmost i, i.e., the
di�erence in number of +ves and -ves in the m + u examples with classi�ers in
Hi is less than or equal to i. Basically, the structure is built such that classi�ers
who achieve the right class balance are preferred over the others. Note that this
structure can be obtained without using any label information i.e., prior to being
exposed to the training data. It only uses the input space, which is the set of the
m+u datapoints. In the following section we present another structure discussed
in Joachims [1999].

3.2.1 Transductive SVM

The bounds in supervised learning theory motivate an alternative structure. The
bounds suggest that linear classi�ers that achieve large-margin (in turn high con-
�dence in predictions) are preferred over the others. Hence the idea is to use the
following structure: F1 � : : : � FW � : : :, where

FW =
n
f j 9w 3 f(x) = w>x; kwk �W; jw>xij � 1 8 i = 1; : : : ;m+ u

o
:

In plain words, FW is all those linear functions that achieve a margin greater than
or equal to 1

W
on all the datapoints. Basically, the structure prefers predictors

with high con�dence.
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Lets write down the corresponding ERM problem as a mathematical program
in Morozov form (using hinge-loss):

min
w2Rn

1
2
kwk2;

s.t.
Pm

i=1max
�
0; 1� yiw

>xi
�
� A; jw>xij � 1 8 i = 1; : : : ;m+ u

Motivated by the hard-margin SVM (2.15), Joachims considered the case A = 0
and re-wrote the above formulation as:

min
w2Rn

1
2
kwk2;

s.t. yiw
>xi � 1 8i = 1; : : : ;m; jw>xij � 1 8 i = m+ 1; : : : ;m+ u

One can re-write the above as5:

min
w2Rn;ym+1;:::;ym+u

1
2
kwk2;

s.t. yiw
>xi � 1 yi 2 f�1; 1g; 8i = 1; : : : ;m+ u

Again, drawing analogy from SVMs (2.14), we have the following soft-version of
the above:

minw2Rn;ym+1;:::;ym+u

1
2
kwk2

s.t.
Pm

i=1
max(0;1�yiw>xi)�A1;

Pm+u

i=m+1
max(0;1�yiw>xi)�A2; yi2f�1;1g; 8i=m+1;:::;m+u(3.2)

Note that the OP2 formulation in the Joachims paper is same as the Tikhonov
form of (3.2).

Though visually the above transductive SVM formulations closely resemble
the SVM, they are not convex. Infact, OP1 and OP2 are combinatorial optimiza-
tion problems and in general, one cannot do better than exhaustive enumeration:
one has to enumerate all possible labels yi; i = m + 1; : : : ;m + u, which are 2u

in number, and solve a regular SVM those many times and �nd the minimum
objective of them in order to solve (3.2). Since this strategy is computationally
infeasible for even moderately sized problems, Joachims suggests an algorithm
which �nds a local optima for the combinatorial problem. Refer �gure 4 in paper
for details. We commented that there are multiple strategies suggested by various
researchers to solve this problem (refer chapter 3 in Sindhwani [2007] for a survey).
Each has its own merit and de-merit. However the way Joachims solves it, the
methodology has striking similarity with self-training [Yarowsky, 1995].

Finally, we noted that one can implement SRM with the bound (3.1) in
this case provided one knows the essential number of labelings possible with FW .

5This is the �nal form (OP1) considered in the Joachims paper.
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To this end, Vapnik provided a simple bound on the number of labelings. Refer
theorem 1 in Joachims paper for the details6. In the subsequent another kind of
structure over the function class is studied.

3.2.2 Manifold Regularization

We began looking at alternative explanations for the large-margin principle. We
argued that large-margin principle, in a way, implements the following related
ideas: i) prefers high con�dence predictions ii) prefers low density separation
(discriminating hyperplane passes through areas of low likelihood of observing
datapoints) iii) \clustering assumption": close-by datapoints have close-by labels.

Motivated by the clustering assumption, we wished to arrive at a structure
that explicitly implements it. Accordingly, we came-up with this structure: F1 �
: : : � FW � : : :, where

FW =

8<
:f j 9w 3 f(x) = w>x; kwk �W1;

m+uX
i=1

m+uX
j=1

Mij

�
w>xi � w>xj

�2 �W2

9=
; :

here, Mij represents how close xi; xj are and is such that Mij = Mji � 0. One
may use Mij =

1
kxi�xjk

or Mij = e�kxi�xjk etc. or any positive kernel7.

In plain words, this structure while preferring large margins (when used with
variants of hinge-loss), also prefers those functions that vary slowly when Mij is
high (i.e., when xi and xj are close) and varies considerably whenever Mij is low.
Note that this is one particular way of implementing the clustering assumption.

Now lets write the corresponding ERM problem as a mathematical program
(Ivanov form):

min
w2Rn

Pm
i=1 l(yi; w

>xi);

s.t. kwk �W1;
Pm+u

i=1

Pm+u
j=1 Mij

�
w>xi � w>xj

�2 �W2

The following Tikhonov form of the above is discussed in detail in Belkin et al.
[2006]:

(3.3) min
w2Rn

1

2
kwk2 + C1

mX
i=1

l(yi; w
>xi) + C2

m+uX
i=1

m+uX
j=1

Mij

�
w>xi � w>xj

�2

6Note that Abhinav corrected the typos in this theorem.
7Note that the matrix M with entries as Mij � 0 needs to be symmetric. It need NOT be psd.

However one may employ a positive kernel such that Mij = k(xi; xj). In this case M will be psd.
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The third term in the objective of (3.3) is usually referred to as the manifold regu-
larization term: it penalizes large deviations in predictions for near-by datapoints
and smoothens the manifold of the optimal function learnt.

The above formulation is interesting in multiple ways: i) unlike the trans-
ductive svm (3.2), the above formulation is a convex program8 and hence can be
solved e�ciently. Infact, with the square loss, the Tikhonov form is unconstrained
minimization of a convex quadratic function, which has an analytical solution
ii) Theorem 2 in the paper presents a representer theorem9, which gives that
w =

Pm+u
i=1 �ixi. Hence this formulation can be kernelized (extended to non-linear

functions using the kernel trick).

We then noted an interesting way of re-writing (3.3):

(3.4) min
ŵ2Rn

1

2
kŵk2 + C1

mX
i=1

l(yi; ŵ
>x̂i);

where ŵ =
�
I + 4C2XLX>

� 1
2 w, x̂i =

�
I + 4C2XLX>

��1
2 xi, X is the data matrix

containing labeled and unlabeled datapoints as column vectors and L = D �M ,
D is a diagonal matrix with Dii =

Pm+u
j=1 Mij. Infact, the matrix L is well studied

and is known as the Laplacian of the graph with adjacency matrix given by M .

Note that (3.4) is nothing but an SVM constructed using the labeled points

alone and kernel as: k(xi; xj) = x̂>i x̂j = x>i
�
I + 4XLX>

��1
xj. The corresponding

gram-matrix Gk for the m + u points is Gk = X>
�
I + 4XLX>

��1
X. Thus, the

manifold regularization formulation (3.3) can be understood as a two step process:
i) Get the right kernel using the labeled and unlabeled examples. ii) train an SVM
using labeled examples.

This key observation motivates alternative SSL algorithms where the step-i)
of choosing the right kernel is done leading to a kernel di�erent than in (3.4). Since
the key ingredient in the vanilla kernel in (3.4) is L, in the following text we will
explore some interesting properties of L, which will later on motivate alternate
SSL algorithms.

The graph Laplacian, L, is a psd matrix10: z>Lz =
Pm+u

i=1

Pm+u
j=1 Mij (zi � zj)

2 �
0 8 z. Infact, it is a diagonally dominant matrix. Since L is psd we have its
eigen-value decomposition (EVD): L = V �V > =

Pm+u
i=1 �iviv

>
i , where V is the

matrix with column vectors as vi, � is a diagonal matrix with entries as �i � 0

8Provided the loss is convex.
9Contrast this with the usual representer theorem: the only di�erence is here the unlabeled

examples are also involved in the linear combination!
10Provided the adjacency matrix M is non-negative and symmetric, which is indeed the case in

our discussion.
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and v>i vj is 0 if i 6= j and is 1 if i = j. Without loss of generality lets assume
�1 � �2 � : : : �m+u. The EVD of L provides key insights into the extent of
connectedness of the graph:

Theorem 3.2.1. A graph has k connected components if and only if the num-
ber of 0 eigen-values (i.e., the algebraic multiplicity of 0) of L is k. Infact,
a basis for the eigen-space of 0 is fv1; v2; : : : ; vkg where each vi has non-zero
equal-valued entries for the nodes in the ith component and has zero as entry
for all the other nodes.

Refer Proposition 2.3 in Mohar [1997] for a proof. Also, z>Lz will be higher
as z has more component from the larger eigen-vectors. Infact, it will be highest
if z = vm+u, the last eigen-vector and the corresponding eigen-value �m+u gives
v>m+uLvm+u, the weighted mean-square variation in entries of z = vm+u. In other
words, the eigen-vectors corresponding to large eigen-values have large deviations
in entries; while those corresponding to small eigen-values have less deviations
and for the zero eigen-values, the variation is zero in each connected-component.
Refer �gure 1.1 in Zhu et al. [2006] for a visualization of this theorem and the
above observation. We will present alternate SSL formulations that exploit these
key observations in the subsequent section.

3.2.3 SSL via Kernel Learning

This section presents alternative kernels to be employed in SSL. Most of the
works try to choose a kernel k from among the following family of kernels: all
those kernels with whom the gram-matrix with m+ u datapoints looks like Gk =Pm+u

i=1 �iviv
>
i , where vi are the eigenvectors of graph Laplacian and �i � 0 are

the weights (eigen-values of gram-matrix) that need to be chosen. Di�erent works
suggest di�erent schemes for choosing the �is.

Lets have a closer look at the manifold regularization term: we want the
term

Pm+u
i=1

Pm+u
j=1 Mij (hw; �k(xi)ik � hw; �k(xj)ik)2 to be low. Lets use representer

theorem: w =
Pm+u

i=1 �i�k(xi). Substituting this in the term of interest gives:
�>GkLGk� should be low. Whereas SVM, as per (2.18), chooses � such that
�>Gk� is low. Hence, choice of �i (and hence Gk) must be such that �>Gk� is
low ) �GkLGk� is low. One simple choice is Gk = L�1 i.e., �i =

1
�i
, then both

the quadratic terms are equal. Since L may not always be invertible, hence Smola
and Kondor [2003] suggest the following kernel: Gk = (L + �I)�1, where � is a
small quantity. This kernel is called as the regularized Laplacian kernel.

From the above discussion, it is easy to see that, any choice of �i that is
inversely proportional to �i is �ne. Accordingly Smola and Kondor [2003] suggest
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the di�usion kernel: �i = e�
�2

2
�i (here � is the di�usion kernel parameter). Other

choices of � are listed on Smola and Kondor [2003], Zhu et al. [2006].

Given this wide choice of SSL kernels, the question arises: which one is
the best. One can perform a equivalent of cross-validation etc. to �nd the best.
Alternatively, in Zhu et al. [2006], it is suggested that the weights be learnt (i.e.,
learn the kernel) from the training data itself. One way to do this is by using the
multi-modal kernel learning formulation (2.21) with the base kernels as: ki = viv

>
i .

As we know, (2.21) returns the weights �i with which ki needed to be combined:
k =

Pm+u
i=1 �iki. Additionally one may want to explicitly put order constraints:

�1 > �2 > : : : > �m+u, so that the inverse proportionality criteria mentioned
above is met. This leads to the following formulation:

min
�;ŵ

Pm
i=1 l(yi

Pp
i=1hŵi; �i(x)iĤi

);

s.t.
Pp

i=1

kŵik
2

Ĥi

�i
�W; �i � 0;

Pp
i=1 �itrace(Gki) � T;

�1 � �2; �2 � �3; : : : ; �m+u�1 � �m+u:

Note that the only di�erence from (2.21) is the additional order constraints that
are appropriate in context of SSL.

The above formulation in addition to the kernel weights �i, also learns the
optimal linear function (w). One may instead devise a formulation similar in
spirit to the above that returns only the kernel weights, so that the learnt kernel
can be employed for any task using any kernel-based algorithm. This direction is
explored in Zhu et al. [2006]. In order to understand this we �rst need to come up
with a generic criteria that characterizes a good kernel, given the training data.
One such criteria is kernel target alignment Cristianini et al. [2002].

The basic idea is very simple. In case we know the true labels of x, say
y(x), then the ideal kernel is kI(x; z) = y(x)y(z). The idea is to maximize the
match/alignment of the given kernel to this ideal kernel on the labeled training
data. This is similar to minimizing empirical risk. Consistency in this case is
proved in Cristianini et al. [2002]. We didn't go into the learning theory details,
however used the alignment of kernel to kI . Suppose the gram-matrix with the
kernel to be learnt is Gk and suppose the ideal gram-matrix is GkI = yy>, where y
is the vector with entries as labels of training datapoints. Then one would like to

maximize hGk(labeled);yy
>iFp

hGk(labeled);Gk(labeled)iF hyy>;yy>iF
, where Gk(labeled) is the gram-matrix

for the labeled datapoints alone and h�; �iF is the Frobenius inner-product. This
expression is nothing but the cosine of the angle between the given and ideal gram-
matrices and hence needs to be maximized for alignment. Using this criteria, Zhu
et al. [2006] arrive at a new formulation (refer eqns. 1.18-1.22 in the paper). We
leave the details to the reader.
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3.2.4 SSL with Multiple Manifolds

Motivated from a real-world Bioinformatics application, here we consider the case
where multiple graphs representing closeness in datapoints are given and one
wishes to perform SSL. The idea is discussed in detail in Shin et al. [2009]. In the
following we present the key ideas.

One way to handle this problem is to create kernels from each graph (perhaps
di�usion or regularized Laplacian etc.) then use them as base kernels in the multi-
modal kernel learning (2.21). An alternate way is to extend (3.3) to multiple
graphs case: let L1; : : : ; Lp be the Laplacians of the given p number of graphs. A
simple idea is to add the corresponding edge weights in each graph11 and use it in
manifold regularization:

min
w2Rn

1

2
kwk2 + C1

mX
i=1

l(yi; w
>xi) + C2w

>X
pX
i=1

LiX
>w

This formulation gives equal importance to all the graphs. Sometimes one may
want to regularize the worst-case graph:

min
w2Rn

1

2
kwk2 + C1

mX
i=1

l(yi; w
>xi) + C2 max

i=1;:::;p
w>XLiX

>w

This minimizes the maximum deviation in the prediction values. In lecture we
derived a dual of this for the case of square-loss (regression):

min
�2Rp

y>X>
l

�
I + 2C1XlX

>
l + 2X(

Pp
i=1 �iLi)X

>
��1

Xly;

s.t. �i � 0;
Pp

i=1 �i = C2;

where Xl is the n �m data matrix for the labeled datapoints. The �is play the
role of weights for the graphs indicating their importance. Whenever �i = 0, the
corresponding graph is not used in the solution. One e�cient way to solve this
optimization problem is projected gradient descent. The partial di�erential of the
objective in the above wrt. �i is given by

y>X>
l

 
I + 2C1XlX

>
l + 2X(

pX
i=1

�iLi)X
>

!�1
Li

 
I + 2C1XlX

>
l + 2X(

pX
i=1

�iLi)X
>

!�1
Xly:

Since the Li are all sparse matrices, the term
�
I + 2C1XlX

>
l + 2X(

Pp
i=1 �iLi)X

>
��1

Xly
can be computed very e�ciently. Also, since the feasibility set for this problem is
a simplex, the projection step is very easy. The authors claim that this algorithm
runs faster than the multi-modal kernel learning algorithm while achieving similar
accuracy.

11This is equivalent to adding all the Laplacians
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Chapter 4

Structured Prediction

We began by looking at learning problems where the goal is to construct a function
g : X ! Y; however, unlike the cases dealt with till now e.g., binary/multi-
classi�cation, regression etc., here the labels y 2 Y need not be simple numbers
but some complex objects like sequences, graphs, sets etc. In order to get more
insight, we looked at applications where such complex prediction functions need to
be built: e.g., sequence labeling problem, parse tree construction in NLP, retrieval
of diverse web-pages for a given topic etc.

We noted that in each of these applications: i) the label to be predicted in
not a number but is a sequence, tree, set respectively ii) The space of labels Y
is extremely large | typically exponential in some input size1. iii) As a result,
training data of examples of each label y 2 Y cannot be created. Hence one may
need to generalize across labels too in addition to generalizing across inputs. And,
ofcourse one may need to exploit the speci�c structure in the label/output-space
for such a generalization.

This brings us to the notion of structured prediction2, where the prediction
task is expected to exploit the structure in the label-space. With this in mind,
we changed our perspective of looking at learning problems as task of building
g : X ! Y to that of building f : X � Y ! R, which measures how compatible
is an input x 2 X to an output/label y 2 Y. Though both are in some sense
equivalent3, the latter perspective is more attractive for structured prediction as
it gives a way to generalize across inputs and outputs simultaneously (as the
problem is essentially that where the input is (x; y) and output/label is a real).

1Exponential in length of sequence for �rst two applications and exponential in the number of
topic-relevant pages on web in the third case.

2This chapter is a summary of Tsochantaridis et al. [2005].
3We noted this equivalence starting with per-class models in the lecture.
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Recalling the story with kernels, we considered the following form for the
compability function f(x; y) = hw; �(x; y)i, where � : X �Y ! H�k is some feature
map from direct-sum space of inputspace X and outputspace Y to some Hilbert
space H�k induced by a positive kernel �k : (X � Y) � (X � Y) ! R. Unlike
the kernels we encountered till now that measure similarity between input pairs,
this kernel measures similarity betweens pairs of input-output pairs. From our
experience of kernels, it is easy to see that with such linear functions in kernel
induced spaces, it is easy to handle both complex inputs as well as complex outputs
(e.g., input can be a set, output can be a graph etc.). The other interpretation of
f(x; y) = hw; �(x; y)i in case of �nite dimensional H�k is: f is a weighted sum of
basic compatibility functions �i.

We then noted that the training data D = f(xi; yi) j 8 ig essentially says
that compatibility of xi with yi, given by f(xi; yi), is greater than (or equal
to) that of xi with any y 2 Ynfyig, given by f(xi; y). That is, hw; �(xi; yi)i �
maxy2Ynfyighw; �(xi; y)i � 0. Employing hinge loss this essentially is the same
as saying for each training datapoint xi, we must minimize the hinge-loss term:
max

�
0; 1�

�
hw; �(xi; yi)i �maxy2Ynfyighw; �(xi; y)i

��
. With such a hinge-loss term

and a linear model an SVM-kind of formulation (refer eqn. (7) in Tsochantaridis
et al. [2005]) is immediate. The authors call this formulation the struct-SVM4.

Representer theorem was immediate giving: w =
Pm

i=1

P
y2Ynfyig �iy��(xi; y),

where ��(xi; y) = �(xi; yi) � �(xi; y). Using this, both the formulation (7) above

and the function f can be computed using the kernel: k
�
(xi; y) ;

�
xj; y

0
��

=

h��(xi; y); ��(xj; y0)i. It is easy to see that given �k (above) one can obtain k and
vice-versa.

We then went over the example applications in section 4 of the paper, and
realized the typical � or k employed. We noted that the easiest way of obtaining
a kernel k of the above form was by using a kernel k1 on the inputspace and
a kernel k2 on the outputspace: k

�
(xi; y) ;

�
xj; y

0
��

= k1 (xi; xj) + k2
�
y; y

0
�
or

k
�
(xi; y) ;

�
xj; y

0
��

= k1 (xi; xj) k2
�
y; y

0
�
.

We then went on to derive the Lagrange-dual of the struct-SVM (refer section
3.1 in the paper). We noted that the dual problem is a convex QP, however involv-
ing m(jYj�1) number of variables. This makes solving the dual challenging as jYj
itself could be exponential in some input-dimension5. We then intuitively argued
that many of the dual variables must be zero (equivalently many inequalities in
primal are non-active) at optimality. This motivated us to study an active-set

4Note the variants of the above formulation given in the paper: eqns. (6),SVM�s
1 ,SVM�m

1 and
the corresponding variants with squared-hinge-loss: SVM�s

2 ,SVM�m
2 . In the lectures and notes

we focus on (7) alone; however the analysis etc. remain similar.
5It is exponential in length of sequence in case of sequence labeling problem.
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(cutting-plane) algorithm (refer section 3.2 and 3.3 for details). It was easy to
see that the per-iteration complexity of the algorithm is polynomial provided the
inference problem is tractable (polynomial complexity). Moreover, the number
iterations can be shown to be polynomial in m (refer theorem 18 in paper). Hence
the active set algorithm is guaranteed to optimally6 solve the struct-SVM problem
in polynomial time.

We then went on and looked at a speci�c application of struct-SVM in opti-
mizing multivariate performance measures [Joachims, 2005].

6upto some numerical precision.
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Motivation

Supervised Learning ⇒ more the training examples the better

Creating large training data is difficult:

Speech recognition
Relevance feedback
Medical diagnosis
Sentiment analysis

However un-labeled data is easy to obtain (in above cases)

Can un-labeled data boost performance?
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Can un-labeled data help?

Inductive Learning:

Association of pictures with words in babies

modeling p(x) helps in better modeling p(y/x)? (any assumptions?)

Transductive Learning:

Un-labelled data is the only test data (applications;domain adaptation?)

better learning bounds; use to learn structure (SRM)?

Learning with universum:

Training: red-ish objects, blue-ish objects; Un-labelled: magenta
(availability?)

Avoid un-necessary generalization; use to learn structure (SRM)?

Perhaps there are more ways!
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Semi-supervised Learning

Given:

Labeled set: Dl = {(xi, yi) | xi ∈ X , yi ∈ Y i = 1, . . . ,ml}
Un-labeled set: Du = {zi | zi ∈ X , i = 1, . . . ,mu}

Inductive:

Choose F and f ∈ F for which R[f ] is minimum

Transduction:

Choose F and f ∈ F for which “risk of employing f on Du” is minimum
(define formally later!)
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Induction vs. Transduction[chp. 25, Chapelle et.al., 2006]

Induction Transduction

Any transduction algo works Any induction algo works

Theoretical investigation complex Theoretical investigation simple (basic step?)

Loose bounds Tighter bounds

Seems to benefit as u→∞ Seems tougher as u→∞ (approaches induction)

Seems to make assumptions Seems to make no assumptions (but most algo do!)

Prediction not dependent on testset Prediction depends on testset (domain adaptation?)
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