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1. Show that i) hinge-loss is convex and Lipschitz continuous but non-differentiable
ii) squared hinge-loss is convex and differentiable but not Lipschitz con-
tinuous ii) the truncated hinge-loss is neither convex nor concave; however
is Lipschitz continous and not differentiable.

2. Consider the case of binary classification. Suppose that the (usually)
unknown joint distribution P(x,y) relating the input x and output y is
known. In this case find the Bayes optimal classifier as well as the risk
with it. Justify your results using probability theory.

3. Consider a finite set of binary classifiers: F = {f1, . . . , fn}, where fi :
X → {−1, 1} ∀ i. Show that the conditional Rademacher average of this

function class is upper bounded: R̂m(F) ≤ 2
√

log(|F|)
m . Now compare the

bound (2.4) and (2.7) in lecture notes. Which is better?

4. Starting from (2.5) in lecture notes, obatin a VC-type bound similar to
(2.7) that involves the maximum discrepency1 M(F) measure of function
class complexity rather than the Rademacher average. Needless to say, the
VC-type bound should involve quantities which can be computed from the
training set alone.

5. Obtain an upper bound on the true risk with the SRM candidate involving
the true risk with the ERM candidate, which holds with high probability.
Does your upper bound conclusively say that asymptotically SRM is better
than ERM? Or perhaps the other way?

6. The following involves simulations using the Parkinsons Dataset available
at archive.ics.uci.edu/ml/datasets/Parkinsons. The objective is to
try out various model selection procedures and access their performance
on this dataset. Lets assume the ERM problem is solved using an SVM
formalism (The Ivanov regularized version2). Also lets (randomly3) split

1You may use http://jmlr.csail.mit.edu/papers/volume3/bartlett02a/bartlett02a.

pdf for the definition of Maximum discrepency. However you should not use any results in
that paper. In particular you must start from (2.4) and follow similar steps as in lectures and
arrive at an analogous expression for (2.7).

2Use cvx available at cvxr.com/cvx/ for solving the corresponding SOCP problem.
3While splitting make sure the ratio of +ve to -ve examples is maintained.
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the dataset into two parts one with 100 examples that are to be used for
building the model/model-parameters (i.e. training); while the rest are
to be used to evaluate the performance of the model built (i.e. test set).
The model selection schemes you need to try are: i) SRM using (2.7) and
further bounding by (2.8) ii) leave-one-out cross-validation. Restrict your
model selection problem i.e. search for optimal W in the range 10−2 to
102 taking 5 values uniformly in log-scale i.e., try 10−2, 10−1, 1, 10, 100
as values of W. By evaluating the test set accuracy achieved with SRM
and leave-one-out decide which one wins. Now take increasing number
of samples in the same range of W : 5 (already done), 10, 15, 20. What
happens to the test set error? Do you see that SRM does not overfit
whereas leave-one-out overfits? Better confidence on your observations
may be got by considering various random train-test splits.

7. Given an input space X with ‖x‖ ≤ r ∀x ∈ X and the non-homogeneous
polynomial kernel k(x, y) = (1+x>y)d, show that ‖φk(x)‖Hk

≤
√

(1 + r2)d.
Using this with the radius-margin bound provides a way of arguing that
the class of functions induced by non-homogeneous polynomial kernel
grows with d. Now can you use a similar argument to show that the
Gaussian kernel (any suitable variant) is “bigger” than polynomial ker-
nel?

8. Given a +ve kernel k show that that kernel k
′

given by: k
′
(x, y) =

k(x.y)√
k(x,x)k(y,y)

is also +ve.

9. For any kernel k show that k(x, y) ≤ (k(x, x) + k(y, y))/2.

10. Solve following problems from Smola’s book: 2.10, 2.15, 2.20, 13.2, 13.9.
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