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Chapter 1

Introduction

This is a specialized course on machine learning that focuses on statistical learning
theory and kernel methods. The syllabus is as follows1:

I. Background Introduction to

• Statistical Learning Theory (25%)

• Kernel Methods (40%)

II. Advanced Topics Learning theory, Formalization and Algorithms for:

• Kernel Learning

We will begin by introducing the theory which answers the fundamental ques-
tion “can we build systems that predict future well”. The setting of “Supervised
Inductive Learning” (SIL) is considered first (chapter 2). Section 2.1 presents the
learning theory for this case and will enable us to formalize the learning problem (in
this setting) as an optimization problem. We then study how the well-known Sup-
port Vector Machines implement this formalization in section 2.2. will be updated
as and when required

1Numbers in brackets roughly indicate the number of lectures spent on the corresponding topic
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Chapter 2

Supervised Inductive Learning

Humans are amazingly good at many cognitive tasks. For instance they recognize
people from a distance and perhaps even when they are in odd postures. The
question then comes whether we can build systems that perform similar cognitive
tasks. However very less is known regarding how this cognition happens in humans.

Motivated by the process by which humans tend to learn, for instance to recog-
nize people, we consider the simplest learning setting called the Supervised Inductive
Learning (SIL). Here a training set consisting of input-output (x, y) pairs are as-
sumed to be available. Training dataset D = {(x1, y1), . . . , (xm, ym)}. Each pair
(xi, yi) is called a training instance; while xi is called the training example/training
data-point and yi denotes its label. For eg., the input x could be a picture and the
output could be whether it contains a human or not. The task in this example is
to build a model which can predict whether any picture shown contains a human
or not. Such a system perhaps could be used to improve google’s image search. In
general, given D, the goal in SIL is to build a function f such that f(x) = y for any
new data-point x.

The special case where y takes only two distinct values, such as the example
given above, is known as the setting of Binary Classification. Case where y takes on
a set of finite values, for example we need to predict whether the given image is of
a place in India or US or Japan etc., is known as Multi-class Classification. Multi-
label Classification is the case similar to multi-class classification but data-points are
allowed to be labeled with multiple values from a finite set, for eg. predict whether
a image contains humans and/or animals and/or trees etc. In Ordinal Regression,
y takes on finite number of numeric values (which makes labels comparable); for
eg. one needs to predict whether a picture is highly-relevant or moderately-relevant
or neutral or irrelevant to a particular topic/subject like say, politics. The case of
Regression is with y taking on real values, for eg. indicating the degree of relevance
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of the picture to politics. As one can see there are many real-world applications in
which an SIL system is desirable.

Statistical Learning Theory (SLT) is the theory which focuses on the question
whether such learning systems can be built. If so, what are the kind of guarantees
we have on their performance etc. We introduce this theory in the SIL setting in
the subsequent section.

2.1 Statistical Learning Theory (for SIL case)

Here we assume that the unknown concept modeling the input-output relation is
some joint distribution FXY (x, y), where X ∈ X , Y ∈ Y are the random variables
denoting the input and output respectively. To simplify notation we use P (x, y) for
FXY (x, y). We further assume that the training dataset is a set of m iid samples
from P (x, y).

The ideal goal is to construct a function f such that the prediction error
is low. One way of saying this is: “find an f from a function-class F such that

E[1f(X)6=Y ] is least”, where 1f(X)6=Y =

{
1 if f(X) 6= Y,
0 otherwise

. In other words f =

argminf∈FE[1f(X)6=Y ] = argminf∈FP [f(X) 6= Y ].

Its not necessary that we always penalize an f for mislabeling and moreover
equally penalize for all mislabelings. For example, in case of regression, one might
want to penalize less for small deviations from the true label and more for large
deviations. It is hence typical to urge the application to provide with a loss function:
l : X ×Y ×F 7→ R+. Typical loss functions used are listed and discussed in section
3.1 in Schölkopf and Smola [2002]. The simplest loss-function, discussed above,
l(X, Y, f) = 1f(X)6=Y is called the zero-one loss.

Lets also take a quick look at the possible function classes F . The most in-
teresting and widely used (because of its simplicity) is the set of linear functions:
F lW =

{
f | f(x) = w>x, ‖w‖ ≤ W

}
. For regression problems and binary classifi-

cation problems with loss other than 0-1, one uses this function class frequently.
However if one wishes to employ the 0-1 loss in the binary classification case, then
one usually considers the composition of the F l class with sign function, leading
to the class of linear discriminators: F ld =

{
f | f(x) = sign(w>x)

}
. One can easily

think about counterparts of these classes for the affine, quadratic, cubic, etc. cases.

The expected loss with a function f is known as the risk with that f : R[f ] =
E[l(X, Y, f)]. R is called the risk functional which takes a f and outputs a number
indicating the risk in employing the function as the predictor. With this notation,
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the ideal goal is to solve:

(2.1) f ∗ = argminf∈FR[f ].

Obviously this goal is note achievable as R[f ] is unknown because P (x, y) is un-
known1. Learning theory helps us realize what kind of goals can be reached starting
from D,F and also helps to formalize the learning problem with the (perhaps) re-
laxed goal.

We realized that a (random) quantity computable from D, which is the aver-
age loss over the training set — denoted by R̂m[f ] = 1

m

∑m
i=1 l(Xi, Yi, f) and known

in Machine Learning (ML) community as empirical risk of f , has an interesting
property: the sequence of random variables R̂1[f ], R̂2[f ], . . . , R̂m[f ], . . . obtained by
including a new sample from P (x, y) into the training set at each stage and comput-

ing the average loss converges in probability to the (true) risk. i.e.,
{
R̂m[f ]

}
p−→ R[f ].

This is from (weak) Law of Large Numbers (LLN) in probability theory (refer lec-
tures 22-24 in Nath [2009]). This motivates the first induction principle:

Empirical Risk Minimization (ERM) [Vapnik, 1998]: Solve

(2.2) fERMm = argminf∈FR̂m[f ].

Note that unlike (2.1), solving this problem may not be impossible. Though this
makes ERM attractive, it is still a question how far will the true risk with fERMm

be from that with f ∗. Given the results like LLN from probability theory we will
be happy if:

{
R[fERMm ]

} p−→ R[f ∗]. If this convergence happens then we say ERM
is consistent. Note that with such goals we are relaxing our initial goal (2.1) and
saying that we are happy as long as we are Probably Approximately Correct (PAC)
i.e., for finite m with high probability the risk with ERM candidate is close to risk
with true candidate (in other words, ERM candidate is approximate). Now either
when cardinality of F denoted by |F| is unity or when F includes a f which incurs
zero loss on every sample of P (x, y), then it is easy to see that ERM is consistent.

We gave an example where ERM is not (non-trivially) consistent: consider the
case of binary classification with F containing all possible functions. Suppose we
construct a f which simply remembers all training instances correctly (i.e., f(xi) =
yi) and then outputs 1 (indicating positive class, say) for all other unseen data-
points. Clearly the empirical risk with f is zero and the ERM picks it. With
whatever m this is true; while the true risk could be arbitrary2. We then began
the exploration “when is ERM consistent?”. We realized that the condition for

1Note that E[l(X,Y, f)] =
∫
l(x, y, f)dP (x, y). And it is not possible to recover the mean from

finite number of samples.
2Provided the space X is not finite.
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consistency is rather hard to verify because it involves true risk R (and not the R̂).
Hence we thought of writing down a sufficiency condition (which was proved to be a
necessary condition for non-trivial consistency by Vapnik and Chervonenkis [1991])
for ERM consistency:

(2.3) lim
m→∞

P

[
max
f∈F

(
R[f ]− R̂m[f ]

)
> ε

]
= 0, ∀ ε > 0.

Refer sec. 5.4 in Schölkopf and Smola [2002] for the derivation of these conditions.
In some sense this says that the ERM is (non-trivially) consistent iff the deviation
in the true and empirical risks in the worst-case f goes to zero. We will refer to
this condition as the uniform convergence condition for ERM consistency3. In the
subsequent section we analyze the case of finite function classes for ERM consistency.

2.1.1 ERM Consistency — Finite F case

Lets assume F has finite no. functions. Using Boole’s inequality we have: P
[
maxf∈F

(
R[f ]− R̂m[f ]

)
> ε
]
≤∑

f∈F P
[
R[f ]− R̂m[f ] > ε

]
. Now we require to bound probabilities involving devi-

ations of average of iid random variables from its mean. Chernoff bounding tech-
nique [Chernoff, 1952], is a general technique which provides a bound for probability
of a linear function of independent random variables deviating from its true mean.
The key steps in this technique are4:

• P
[
R[f ]− R̂m[f ] > ε

]
= P

[
es(R[f ]−R̂m[f ]) > esε

]
for some s > 0.

• Applying Markov inequality gives LHS≤ e−sεE[es(R[f ]−R̂m[f ])]

• Use the fact that the random variables5 L1(f), L2(f), . . . , Lm(f) are indepen-
dent (infact iid): LHS≤ e−sεΠm

i=1E[e
s
m

(E[Li(f)]−Li(f))]

3Because it resembles that of uniform convergence criteria in case of sequence of real-valued
functions on R. The difference being the present condition is “one-sided”.

4Note that the technique is generic and when applied with different partial information about
the involving random variables and the function combining them, one gets different bounds. We
will shortly see another bound called McDiarmid’s inequality which follows most of these basic
steps. You can also refer sec.5.2 in Schölkopf and Smola [2002] for detailed derivation (for case
|calF | = 1). Here we provide the version with the relevant random variables for the present context.

5We denote the random variable (Xi, Yi) by Zi and the random variable l(Xi, Yi, f) = l(Zi, f)
by Li(f).
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• Use the Hoeffding bound (refer http://en.wikipedia.org/wiki/Hoeffding%
27s_lemma for proof) to bound the moment generating function (mgf) of the
mean zero and finitely supported random variable E[Li(f)]−Li(f) (finite sup-
port is true whenever the loss function is bounded, which in particular is true

with zero-one loss): LHS≤ |F|e−sεe s2

8m .

• Finally, choose the best s (by minimizing the bound on RHS): LHS≤ |F|e−2mε2

This bounding first of all shows that the probability term in question which
is sandwiched between zero and |F|e−2mε2 goes to zero as m → ∞ — confirming
that ERM is consistent in finite |F| case6. In other words, PAC learning is possible
with ERM in the finite |F| case. Secondly, re-writing the bound by denoting δ =
|F|e−2mε2 gives:

with probability 1− δ,

(2.4) R[f ] ≤ R̂m[f ] +

√
1

2m
log

(
|F|
δ

)
∀ f ∈ F .

Inequalities of such type are called as VC-type inequalities7. Interestingly this
gives an upper-bound on the risk (the quantity we want to minimize) that involves
terms that can be computed based on D and F . Hence such bounds provide com-
putable (upper) bounds on the performance (risk) of f obtained with an induction
principle like ERM8. Moreover, such bounds motivate a new induction principle that
suggests minimizing the bound itself:

Structural Risk Minimization (SRM) [Vapnik, 1998]: Given a F construct the
sets F1 ⊂ F2 ⊂ . . . ⊂ F . This is like giving structure to F , based on increasing

size/complexity/richness9. Solve: i∗ = argmini minf∈Fi
R̂m[f ]+

√
1

2m
log
(
|Fi|
δ

)
. The

candidate for SRM is fSRMm = argminf∈Fi∗
R̂m[f ].

The story seems to good in the finite/countable F case. However for real-
world applications, such function classes are rather useless. Hence we turned our
attention to the case of arbitrary (possibly uncountable) function classes. Refer

6Note that the analysis is very similar in the countable case. It is the uncountable case which
calls for a different analysis. Nevertheless at a later stage we will clarify why countable case is
similar to the finite case.

7As they were popularized by Vapnik and Chervonenkis.
8We commented on the play between |F|,m, δ and the tightness of the bound.
9Application specific domain knowledge can perhaps motivate preferring a particular structure

over the others.
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theorem 5 in Bousquet et al. [2004] for the details of the derivation in this case10.
In the following section we provided a rough sketch of the same.

2.1.2 ERM Consistency — General F case

In arbitrary function class case one cannot resort to the Boole’s inequality and one
needs to focus on the random variable g(Z1, . . . , Zm) = maxf∈F R[f ] − R̂m[f ]. We
noted that g is a function of iid random variables and moreover satisfies the bounded
difference property. Hence one can employ the McDiarmid’s inequality [McDiarmid,
1989] to bound probability of high deviations of g from its mean. Refer www.cs.

berkeley.edu/~bartlett/courses/281b-sp06/bdddiff.pdf for an easy proof of
the McDiarmid inequality and the definition of bounded difference property. With
this we have that with probability 1− δ,

(2.5) R[f ] ≤ R̂m[f ] + E
[
max
f∈F

R[f ]− R̂m[f ]

]
+

√
1

2m
log

(
1

δ

)
, ∀ f ∈ F

The equation holds for losses which vary between 0 and 1 (like 0-1 loss or truncated
hinge-loss). Needless to say, a similar statement can be written for any bounded
loss function.

We noted that the expectation in the RHS above represents how big a function
class is and hence the VC-type inequality in the general F case is very similar to
that in the finite case (2.4). In order that the bound is useful we wanted to further
bound the expectation term (which is unknown):

Ghost Samples: E
[
maxf∈F R[f ]− R̂m[f ]

]
= E

[
maxf∈F E

[
R̂
′
m[f ]

]
− R̂m[f ]

]
. Here

R̂
′
m[f ] = 1

m

∑m
i=1 l(Z

′
i , f) represents the empirical risk with f evaluated on a

set of m iid samples Z
′
1, . . . , Z

′
m (called ghost samples) which are independent

of the given training set.

Max. and Expectation interchange: Since maximum of sum/integral is less than or

equal to sum/integral of maxima, we have11: E
[
maxf∈F E

[
R̂
′
m[f ]

]
− R̂m[f ]

]
≤

E
[
maxf∈F R̂

′
m[f ]− R̂m[f ]

]
= E

[
maxf∈F

1
m

∑m
i=1

(
l(Z

′
i , f)− l(Zi, f)

)]
. Note

that the final expectation is wrt. both Zi and Z
′
i forall i.

10Refer Koltchinskii [2001] for the original paper.
11This explanation is perhaps more apt than the contrived Jensen’s inequality argument pre-

sented in lecture.
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Rademacher variables: With motivation from studies of empirical processes [Ledoux
and Talagrand, 1991] and the fact that we want to elevate the difficulty in com-
puting the expectation (which is unknown as distribution P itself is unknown)
by using ideas of conditioning on expectation, we introduce new random vari-
ables σ1, . . . , σm, called Rademacher variables, which are iid with distribution:
P [σi = 1] = 0.5, P [σi = −1] = 0.5. We have, E

[
maxf∈F

1
m

∑m
i=1

(
l(Z

′
i , f)− l(Zi, f)

)]
=

E
[
maxf∈F

1
m

∑m
i=1 σi

(
l(Z

′
i , f)− l(Zi, f)

)]
. This equality is true because the

distribution of l(Z
′
i , f)− l(Zi, f) is symmetrical. Note that the expectation in

the last expression is wrt. all random variables i.e., Zi, Z
′
i , σi, ∀ i.

Again, max. and sum inequality: E
[
maxf∈F

1
m

∑m
i=1 σi

(
l(Z

′
i , f)− l(Zi, f)

)]
= E

[
maxf∈F

1
m

∑m
i=1 σil(Z

′
i , f)

]
+

E
[
maxf∈F

1
m

∑m
i=1−σil(Zi, f)

]
= 2E

[
maxf∈F

1
m

∑m
i=1 σil(Zi, f)

]
. This expec-

tation has a name: Rademacher average of a function class G is defined as
R (G) = E

[
maxg∈G

1
m

∑m
i=1 σig(Zi)

]
, where the expectation is over the ran-

dom variables Zi, σi, ∀ i. With this notation the expectation in the final
expression above can be called as Rademacher average12 of the class L =
l ◦ F = {l(·, ·, f) | f ∈ F}. The Rademacher average conditioned on the
training examples is called the conditional Rademacher average: R̂ (G) =
E
[
maxg∈G

1
m

∑m
i=1 σig(Zi) | Z1, . . . , Zm

]
. Note that unlike R, the quantity R̂

can be computed (given the training set). Hence we would like to have a bound
in terms of R̂ rather than R.

McDiarmid Inequality: It is easy to see that the function h(Z1, . . . , Zm) = R̂ (L)
satisfies bounded difference property and hence application of McDiarmid’s
inequality13 gives with probability 1− δ:

(2.6) R (L) = E
[
R̂ (G)

]
≤ R̂ (L) +

√
1

2m
log

(
1

δ

)
Union bound: Combining equations (2.5) and (2.6) with a union bound (Boole’s

inequality) we have with probability 1− δ:

(2.7) R[f ] ≤ R̂m[f ] + 2R̂ (L) + 3

√
1

2m
log

(
2

δ

)
, ∀ f ∈ F

Now one sufficiency condition for ERM being consistent is ofcourse R̂(L)→ 0
as m→∞. This is evident from (2.7) by re-writing it as upper bound on probability

12In lecture we gave intuition of why Rademacher average measures complexity of a function
class.

13Again, the inequality is written with 0-1 loss of truncated hinge-loss in mind. Similar expression
for any bounded loss can be written.
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of the complementary event. Clearly this does not happen with F being the set of all
(measurable) functions as in that case R̂ = 0.5 (assuming 0-1 loss). This establishes
the statement that PAC learning may not be possible unless the function class is re-
stricted in its complexity (as measured by Rademacher averages). In the subsequent
section we look at linear-discriminant function class

{
f | f(x) = sign(w>x)

}
, which

is shown to be “good” for text categorization tasks, and look at what restrictions
lead to ERM consistency.

2.1.3 Example of function/loss class with ERM consistency — Linear
functions

We began with the case of binary classification, linear discriminant function class
and 0-1 loss. In this case we gave an intuition why/how the Rademacher complexity
provides a measure for complexity of the function class. This intuition lead to the
definition of VC-dimension Burges [1998], Vapnik [1998]: the maximum number of
datapoints that can be shattered, i.e. given all possible labelings, using the function
class. It was easy to see that the VC-dim.(denoted by h henceforth) is d+ 1 for the
linear discriminant function class over d-dimensional input space. We then noted

the Haussler-Dudley bound on empirical Rademacher complexity: R̂m(F) ≤ a
√

hF
m

(for some a > 0). This gives us that the Rademacher complexity indeed decays to
zero with m and hence ERM is consistent.

We noted two reasons why the above analysis is not attractive: i) the bound
above is NOT independent of dimensionality of the input data. This seems restric-
tive because on one hand one might want to use as many features as possible for
describing the data to improve learning (say, empirical risk), however, it seems that
the complexity term increases though. This is usually referred to as the curse of
dimensionality. In the subsequent paragraphs we present a function class with no
curse of dimensionality and is essentially linear. ii) the 0-1 loss is not attractive for
two reasons: a) in binary classification problems one may want a hold on the confi-
dence of the label prediction. Hence one may want to use hinge-loss of its variants
(which basically says more the value of w>x, more the confidence that x belongs
to the positive class and vice-versa). b) the ERM problem with 0-1 loss itself is
computationally hard (a hard combinatorial optimization problem)14.

The following discussion hence assumes truncated hinge-loss with which also
(2.7) holds. We focus on the class of linear functions F lW in n-dimensional Euclidean
space15. Notation: let l(x, y, f) = φ(yf(x)), where φ(z) = min(max(0, 1 − z), 1)

14Infact a more comprehensive statement can be made: refer Feldman et al. [2009] for details.
15We noted that in real-world text categorization applications promising results were obtained

using Fl and hinge-loss (for which the truncated hinge loss forms a lower bound) — making this
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(representing the truncated hinge loss). We came up with an upper bound on
the conditional Rademacher average in this case16 (we assume things as and when
necessary):

Contraction Lemma:

R̂(L) = E

[
max
‖w‖≤W

1

m

m∑
i=1

σiφ
(
yiw

>xi
)]
≤ E

[
max
‖w‖≤W

1

m

m∑
i=1

σiyiw
>xi

]
.

This follows from the contraction lemma [Ledoux and Talagrand, 1991] (refer
Lemma5 in Meir and Zhang [2003] for a simple proof) as φ is a Lipschitz
continuous function17 with Lipschitz constant as unity.

Cauchy-Schwartz Inequality:

E

[
max
‖w‖≤W

1

m

m∑
i=1

σiyiw
>xi

]
≤ W

m
E

[
‖

m∑
i=1

σiyixi‖

]
=
W

m
E
[√

σ̂>Kσ̂
]
,

where σ̂ is the vector with entries as σiyi and K is the matrix of all possible
dot products: (i, j)th entry in K is Kij = x>i xj. Such a matrix is called a gram
matrix. So K is the gram matrix of the training datapoints.

Jensen’s Inequality: W
m
E
[√

σ̂>Kσ̂
]
≤ W

m

√
E [σ̂>Kσ̂] and this is equal to W

m

√
trace(K),

as σi are iid with mean zero and variance unity18.

Radius bound: Now one can easily come up with cases where the above bound may
not go to zero (for m → ∞) as the trace term in the numerator may itself
blow. One way of restricting this is to say that the input space X is bounded
i.e., there exists an r such that ‖x‖ ≤ r ∀ x ∈ X . With this assumption one
obtains the following radius-margin bound19:

(2.8) R̂(L) ≤ Wr√
m
,

which indeed goes to zero as m→∞.

example a non-trivial and infact interesting one.
16The derivation presented here is based on the proof of theorem 24 in Lanckriet et al. [2004]
17A function f is said to be Lipschitz continuous with Lipschitz constant L iff |f(x) − f(y)| ≤

L‖x− y‖ ∀ x, y ∈ dom(f).
18Trace of matrix M is sum of its diagonal entries
19We noted in the lecture why the bound is intuitive in the binary classification case.
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Hence ERM should be consistent in this case. Using similar learning theory
bounds Vapnik [Vapnik, 1998] proposed a optimization formalism that implements
the ERM principle. This is the well celebrated formulation of SVMs (Support Vector
Machines), which is the subject of discussion in the subsequent section.

On passing we made an important comment that the function class we started
with had no “curse of dimensionality”, as the expression for guaranteed risk is
(not very loosely) upper-bounded by an expression independent of the input space
dimensionality. We also commented that, in early 1990s (time of birth of SVMs),
such non-cursed set of linear functions were not known20.

2.1.4 Other Examples

We looked at the 1-norm constrained function class: F1
W = {f | f(x) = w>x, ‖w‖1 ≤

W}. The Rademacher bound derived above can be derived in this case too; just by
replacing the Cauchy-Schwartz Inequality by the Holder’s Inequality. This would
lead to the bound: W

m
E
[
‖
∑m

i=1 σiyixi‖∞
]
. However, since always ‖z‖∞ ≤ ‖z‖2,

we obtain exactly the same radius-margin bound as above (which has no curse of
dimensionality).

We then looked at: F∞W = {f | f(x) = w>x, ‖w‖∞ ≤ W}. In this case, the
Holder’s inequality would give the bound: W

m
E
[
‖
∑m

i=1 σiyixi‖1

]
. We finally obtain

the bound Wr
√
d√

m
, because ‖z‖1 ≤

√
d‖z‖2. We commented that there seems to be a

curse of dimensionality for this case.

Infact, one can easily generalize to function class with a generic norm bound. It
is easy to see that one would obtain its dual-norm Saketh [2012] in the Rademacher
bound. Actually, one can even start with a function class with some convex function
of w being bounded, as long as its support function Saketh [2012] is bounded. In
the next section we will write down the ERM problems with some of these function
class as optimization problems.

20Recall that the VC-dim of set of all linear classifiers is d+ 1, where d is dimensionality of the
input space; and is indeed NOT independent of dimensionality.
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2.2 Support Vector Machines (SVMs)

Motivated by the result that ERM is consistent, one can look for a linear function
which solves the following problem:

min
w∈Rn

∑m
i=1 l(xi, yi, w),

s.t. ‖w‖ ≤ W(2.9)

One may use the truncated hinge loss or any upper bound of it. For eg. hinge loss.
The advantage with hinge-loss is it is convex21, whereas the truncated hinge-loss is
not. With hinge loss (2.9) can be written as:

min
w∈Rn

∑m
i=1 max(0, 1− yiw>xi),

s.t. ‖w‖ ≤ W(2.10)

The above problem is convex (and hence can be solved efficiently). Infact it can
be posed as a Second-Order Cone Program (SOCP)22, once the objective is turned
linear: we used a standard trick of introducing additional variables ξi such that
ξi ≥ max(0, 1− yiw>xi). This gives:

min
w∈Rn

∑m
i=1 ξi,

s.t. ‖w‖ ≤ W, ξi ≥ 0, yiw
>xi ≥ 1− ξi.(2.11)

Infact problems of the form (2.9) have been studied in optimization theory.
Most common example is with the case of square-loss (regression problem). The
term in the objective measures the fit of the model to the data, while the constraint
“regularizes” the model. Such a regularization is known as Ivanov regularization.
Moreover, regularization problems can be written in two more equivalent forms:

Tikhonov regularization:

(2.12) min
w∈Rn

‖w‖+ C
m∑
i=1

l(xi, yi, w),

where C is a parameter (plays a role similar to W ). Here the interpretation is fit the
model to the data while regularizing it. C controls the trade-off between data fit and
regularization. Some also refer to such a form as “Regularized risk minimization”

21One may also re-derive the bounds for hinge-loss case, which would lead to similar expressions
and results.

22refer http://stanford.edu/~boyd/papers/socp.html.
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(which we have shown is equivalent to ERM). Here regularized risk refers to the
weighted sum of the regularizer and empirical risk.

Morozov regularization:

min
w∈Rn

‖w‖,

s.t.
∑m

i=1 l(xi, yi, w) ≤ A,(2.13)

where A is a parameter similar to C and W . Here the interpretation maximally
regularize the model while data fit is under certain tolerance. A is a bound on the
(empirical) error of data fit.

The Tikhonov regularized version with hinge-loss was used by Cortes and
Vapnik [1995] and published as SVMs (only difference being 0.5‖w‖2 is used instead
of ‖w‖ as the regularizer):

min
w∈Rn

1
2
‖w‖2 + C

∑m
i=1 ξi,

s.t. ξi ≥ 0, yiw
>xi ≥ 1− ξi.(2.14)

The squared version of the regularizer was used to obtain a nice convex Quadratic
Program (as above), for which highly efficient off-the-shelf solvers exist.

The Morozov regularized version (with squared-regularizer, hinge-loss and A =
0 i.e., no empirical error) was used in a preliminary paper before SVM [Boser et al.,
1992] and leads to what usually is known as the hard-margin SVM:

min
w∈Rn

1
2
‖w‖2,

s.t. yiw
>xi ≥ 1.(2.15)

Please read Burges [1998], which is an excellent tutorial on SVMs. Here we
tried to cover things not covered there (including learning theory results). We next
provide an insight into the specialty of the solution with the SVM problem that will
be helpful in our analysis later on.

Note that the geometric interpretation of (2.15) is that of maximally separating
two set of points. It is well known that this problem is equivalent to minimizing
distance between convex hulls of the two sets of points23. Infact, the normal to the
maximally separating hyperplane (i.e., w) will be in the direction of line joining the
two minimum distant points in the convex hulls. From this it is immediate that
w =

∑m
i=1 αixi. Infact, later on we will (rigorously) prove a more generic statement

under the name “Representer theorem” — which says (loosely) any “SVM-kind”

23Infact, this equivalence drives all duality principles in optimization. Refer notes at http:

//www.cse.iitb.ac.in/saketh/teaching/cs709.html for details.
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of problem (i.e., norm-regularized linear fit problem) has a solution of the form
w =

∑m
i=1 αixi i.e., the solution is a linear combination of the training datapoints.

Moreover, the name “Support Vector” is also motivated from this duality result:
from the above argument it is also clear that many αs can be zero at optimality
and hence the solution is a linear combination of few important examples called
“support vectors”. Will fill-in more details as and when required.

We ended this discussion by writing down the optimization problems corre-
sponding to various loss functions and functions classes: F lW with square-loss is
known as ridge-regression Hoerl and Kennard [1970] or regularized least-squares or
min. norm least squares24. F lW with square-hinge loss is referred to as l2-SVM. F lW
with ε-insensitive loss is called as Support Vector Regression Smola and Schölkopf
[2004]. F1

W with square-loss is called as LASSO Tibshirani [1996]. F1
W with hinge-

loss is called as l1-regularized SVM etc.

With this discussion we are clear about ERM. Though ERM is consistent, the
function class F itself may be too big (in which case we may overfit) or too small
(in which case we may underfit). The problem of which F to choose is hence crucial
and is discussed in the subsequent section.

2.3 Model Selection Problem

Here we deal with the question which F to choose? Ideally we want F to be as big a
set as possible so thatR[f ∗] is as close as possible toR[f ∗∗], where f ∗∗ = argminfR[f ]
i.e., the minimizer of true risk among all (measurable) functions. f ∗∗ is called the
Bayes (optimal) function25. The risk with f ∗∗ is called the Bayesian (optimal) risk.
However we at a very early stage of our analysis realized that one may not be
consistent if F is very big (say all functions).

So the obvious idea is to try several Fi and choose the “best”. Now the prob-
lem of choosing the “best” Fi is called the model selection problem. Analogously,
the problem of finding the “best” fi given Fi may be called the model-parameter
selection problem (hence ERM is a principle for model-parameter selection). On
passing, we introduce some more terminology: given an induction principle (like
ERM), let the candidate selected by it in a function class F be f ∗m. The difference
between risks of f ∗m ∈ F and f ∗ ∈ F (which is the true minimizer of risk in F)

24Refer to the limit defn. of Pseudo-inverse.
25In case of binary classification, this optimal is given by f∗∗(x) ={

1 if P [Y = 1/X = x] ≥ P [Y = −1/X = x]
−1 if P [Y = −1/X = x] > P [Y = 1/X = x]

. Refer Duda et al. [2000] or any other

classical pattern recognition/machine learning book for an in depth discussion. Note that the
Bayes optimal function cannot be realized as P (x, y) is unknown.
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is called the Estimation error: EstErr = R[f ∗m] − R[f ∗]. This indicates the error
introduced in finding risk minimizer because of finite data and it usually decreases
with m (atleast we know that in probability it goes to zero as m → ∞ for f ∗m
returned by ERM). The difference between the risks of f ∗ ∈ F and the Bayesian
risk is called the approximation error: AprErr = R[f ∗]−R[f ∗∗]. This indicates the
error in approximating the set of all functions with F . The related quantity that
measures difference in risks with the induced f ∗m and the Bayes function is called
the generalization error: GenErr = R[f ∗m] − R[f ∗∗]. Needlessly to say, generaliza-
tion error is of atmost interest to us. One says that an induction principle is Bayes
consistent iff {R[f ∗m]} p−→ R[f ∗∗]. We still need to do quite a bit of analysis to an-
swer questions about Bayes consistency. For the time being we will be happy with
(statistical) consistency i.e., {R[f ∗m]} p−→ R[f ∗], which was our subject of discussion
from the beginning.

What ever is the terminology, the important question is which F to choose?
A hint towards this goal is given by (2.7) itself! For example, one may look for
the fi ∈ Fi which minimizes this bound. Then the hope is that the true risk is
minimized by minimizing its upper bound. This ofcourse is the idea behind SRM
discussed earlier:

One chooses a hierarchy of function classes: F1 ⊂ F2 ⊂ . . . ⊂ Fn ⊂ . . ., each
of which have decaying Rademacher average (i.e., ERM consistency is guaranteed),
and then picks i∗ = argmini minf∈Fi

R̃[f ], where R̃[f ] is called the guaranteed risk
with f which is the vc-type bound on the true risk (one may use RHS of (2.4) or
(2.7) as the case may be26). The candidate for SRM is fSRMm = argminf∈Fi∗

R̂m[f ].

It is easy to see that such a principle, provided we prove its consistency, is
indeed useful for model selection. Infact, a closer look convinces us that with such a
principle we can perhaps get close to Bayes consistency. This is because SRM kind
of searches in ∪∞i=1Fi, which itself need not be a class where ERM is consistent. For
eg. one may choose F l1,F l2, . . . ,F ln, . . . whose union is all possible linear functions.
We will prove that SRM is (statistically) consistent in the subsequent section.

On passing, we note that there are alternative principles for model selection.
The most frequently used is the validation-set method and its variants. Here one di-
vides the given dataset into two parts: i) the training set ii) the validation set. Using
the training set alone, f ∗im ∈ Fi, i = 1, . . . , k are constructed by implementing some
induction principle (say, ERM). Now the problem of model selection is equivalent
choosing among F =

{
f ∗1m , f

∗2
m , . . . , f

∗k
m

}
. While in case of SRM this choice is made

by further looking at guaranteed risk, here one evaluates each f im on the validation

26Infact, researchers have come up with various bounds which sometimes involve notions about
function-class complexity other than Rademacher averages. Please refer the following for de-
tails: Bousquet et al. [2004], Bartlett and Mendelson [2002], Vapnik [1998]
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set and computes validation risk (which is same as empirical risk but evaluated with
validation set samples rather than training set samples). Again since LLN gives
that validation risk is a good (asymptotic) estimate of the true risk, we pick the f ∗im
which gives least validation error. While this is fine because we have a relation sim-
ilar to (2.4), the bound also says one should not take too high k and then look for a
validation risk minimizer because like with ERM, this might lead to over-fitting (to
the validation set); while taking small k may lead to under-fitting (to the validation
set). One may resort to something like SRM again to decide what k. Nevertheless
in practice one just fixes a “reasonable” k = 5, say and looks for validation risk
minimizer. This is called the validation-set method. Please refer Chapelle et al.
[2002] for other variants.

Note that it is clear from the above discussion that validation or SRM with
finite hierarchy does not actually solve the model selection problem as this can be
repeated recursively ad inf. However they give a reasonable working heuristic. The
actual model selection problem will be solved if be design a hierarchy that includes
the Bayes optimal (for any problem) and then prove SRM is consistent. Since
it is reasonable to expect that Bayes optimal need not lie in any finite-capacity
function class, we prove SRM consistency with a sequence of function classes in
the subsequent section. Later in other sections we explicitly show this “universal”
hierarchy.

2.3.1 SRM consistency

In this section we show that SRM is consistent in the specific case as that in sec-
tion 2.1.3. Refer appendix-1 for the details and a proof27 of SRM consistency that
is based on the derivations in Lugosi and Zeger [1996].

We commented that this is a remarkable result as it gives us a way of be-
ing (statistically) consistent in potentially large function classes (i.e., ∪∞i=1Fi; whose
Rademacher average may not decay with m) while performing a principled search
(SRM) among function classes (Fi) with restricted capacity. This will lead us to
Bayes consistency provided we consider functions class (∪∞i=1Fi) which can well ap-
proximate or contain the Bayes optimal function. Since the Bayes optimal function
can be any “measurable” function and need not be linear, we first generalize our
analysis to non-linear function classes. This analysis is presented in the next section
(which is an abridged version of the explanation in section 2.1 in Schölkopf and
Smola [2002]).

27All appendix sections appear towards the end of this notes.
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2.4 Non-linear Function-classes

Through examples of affine and quadratic functions, we noted that non-linear func-
tions in input space X are nothing but linear functions in a suitable (non-linearly)
transformed space φ(X ). e.g. f(x) = ax2

1 + bx2
2 +
√

2cx1x2 = [a b c]>φ(x), φ(x) =
[x2

1 x
2
2

√
2x1x2]> (here x = [x1 x2]> ∈ R2). We also noted this is the case with

all polynomial functions. This observation motivates the following methodology for
handling non-linear function classes: given a polynomial function class (say all poly-
nomials upto degree d) we first create the space φ(X ) that contains in each dimension
a monomial involving the input dimensions. Then we consider linear function classes
over this new feature space φ(X ). And one can repeat the entire analysis in previous
sections. The only constraint is φ should be such that ‖x‖ ≤ r ⇒ ‖φ(x)‖ ≤ r

′
for

some r
′

and this holds for the polynomials case atleast.

For a moment we might think the problem is solved, but as Lokesh pointed
out creation of the feature space might require astronomical time: if the input
dimensionality is n and degree of polynomials under consideration is d, then the size
of the feature vector is n+d+1 choose d. This number could be unmanageable with
even reasonable n, d. So though our methodology is flawless theoretically, when it
comes to implementation it looks like it may take a beating.

The obvious question is do we really need to compute φ(x)? A re-look at
the nature of SVM solution hinted towards the end of section 2.2 suggests that it is
enough to know the dot-products of examples in order to solve the SVM (i.e., ERM)
problem. This is because, using w =

∑m
i=1 αixi, (2.14) can be re-written as:

min
α∈Rm

∑m
i=1 max

(
0, 1− yi

∑m
j=1 αjx

>
j xi

)
,

s.t.
√
αKα ≤ W,(2.16)

here K is the gram matrix with the training datapoints. Moreover, the evaluation
of the SVM/ERM candidate function can be done using dot-products alone: f(x) =∑m

i=1 αix
>
i x. This raises the question can we (atleast in some cases) efficiently

compute the dot products in feature spaces using the input space vectors? If so,
then we can solve the SVM in the feature space without explicitly going into the
feature space.

We realized that this again can be done in the polynomial function class case
as above: e.g. for homogeneous quadratic in R2 case φ(x)>φ(z) = x2

1z
2
1 + x2

2z
2
2 +

2x1x2z1z2 = (x>z)2. Similarly, in case of non-homogeneous d degree polynomials we
can compute the dot product in the feature space using (1 + x>z)d.

So till now the story is excellent... we can handle polynomial function classes
on Euclidean spaces using the analysis of linear function classes and computation-
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wise also there are no challenges. Now this makes us greedy and ask the question
can we do this for non-linear functions over arbitrary input spaces X that are not
Euclidean (such a situation arises for example in a task of classifying images/videos
etc. — which are hard to describe using Euclidean vectors). Secondly, since our
primary goal is Bayes consistency the key question is do we get large enough function
classes with polynomials? Intuitively atleast the answer seems no as it is sounding
too restrictive to say that Bayes optimal is a polynomial function. However what
might be more believable is that perhaps ex

>z (we write this function by looking at
(x>z)d) is the function which might represent a dot product in the feature space that
have all monomials without any degree restriction. Even if this were true, ofcourse
such a feature space wont be a Euclidean space rather a Hilbert space28, which
generalizes the notion of Euclidean spaces. In summary, we are looking at results
in mathematics that kind of say which class of functions (we name them as positive
kernels later) represent inner-products (generalization of dot product notion) in
some Hilbert space? Infact such results are well-known, even at the beginning of
the previous century, in the field of operator theory. In the subsequent section we
will discuss such a key result that will help us solve both our problems (handling
generic input spaces and feature maps which lead to “big” function classes such as
with ex

>z) in one shot.

2.4.1 Kernels and Kernel-trick

With the motivation in the previous section we begin with the following definition:
Given an input space X (need not be Euclidean; infact need not be a vector space),
a positive kernel is any function k : X ×X → R satisfying i) symmetry: x, z ∈ X ⇒
k(x, z) = k(z, x) and ii) Positivity: x1, . . . , xm ∈ X ⇒ Gk(x1, . . . , xm) � 0, where
Gk(x1, . . . , xm) is the matrix with ijth entry as k(xi, xj) i.e., it is the matrix of all
possible kernel evaluations on the given set of m points. The symbol M � 0 means
that the matrix M is positive semi-definite (psd)29.

One can now prove the following crucial theorem [Schölkopf and Smola, 2002]:

Theorem 2.4.1. Consider an input space X and a positive kernel k over it. Then
there exists a Hilbert space Hk and a feature map φk : X → Hk such that the kernel

28Refer lecture-notes 1-4 in Saketh [2010] for refreshing the idea of Hilbert spaces. We also
noted two non-Euclidean Hilbert-spaces: space of square-summable sequences (l2) http://en.

wikipedia.org/wiki/Sequence_space and space of square integrable functions (L2) http://en.
wikipedia.org/wiki/Lp_space. Infact, all infinite-dimensional (separable) Hilbert spaces are
“equivalent” to the l2 space, which is an intuitive generalization of Euclidean space.

29M � 0 ⇔ x>Mx ≥ 0 ∀ x. Some textbooks may prefer to define psd matrices as symmetric
ones satisfying this condition — leading to a definition of positive kernels in Schölkopf and Smola
[2002] (refer definition 2.5).
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evaluation of any two datapoints in the input space, i.e., k(x, z), is equal to the
inner product of those two datapoints in the feature space, i.e., 〈φk(x), φk(z)〉Hk

. In
other words, k(x, z) = 〈φk(x), φk(z)〉Hk

.

Refer section 2.2.2 in Schölkopf and Smola [2002] for a proof of the same30.

Note that this theorem shows existence of a Hilbert space. Obviously there
may be several space and mappings satisfying this criteria. Refer to theorem 2.10
and proposition 2.12 in Schölkopf and Smola [2002] for an alternate Hilbert space,
actually an l2 space, construction.. However, from the proof it is clear that the
theorem points out a special Hilbert space that satisfies the following condition:
f ∈ Hk ⇒ f(x) = 〈f(·), k(x, ·)〉Hk

. Note that this condition may not be satisfied by
other Hilbert spaces that satisfy the criteria. This special Hilbert space pointed out
in theorem 2.4.1 above is called a Reproducing Kernel Hilbert Space (RKHS).

Now all this development is useful, only if we show some examples of positive
kernels. Before giving examples lets look at some operations that preserve positivity
of kernels, which come in handy to prove positiveness of a given function. i) conic
combination of positive kernels is positive ii) product of positive kernels is positive
iii) limit of a sequence of positive kernels (if exists) is positive. Refer section 13.1
in Schölkopf and Smola [2002] for details. Though these results are simple to prove
we argued that from application perspective they are far reaching: consider an
application involving multi-modal data (say, video,audio, text modes) and suppose
kernels for video, audio and text data are given. By linearly combining products of
such kernels, one can obtain (non-trivial) feature representations for the multi-modal
data!

We then showed that the functions (x>z)d, (1 + x>z)d for d ∈ N are positive
kernels (on the Euclidean space). Here is the sketch of the proof: we first showed
that dot-product x>z is a kernel31. This is because a gram matrix can be written
as X>X where X is the matrix containing the m datapoints in the columns. Now,
X>X is obviously symmetric and z>X>Xz = (Xz)>(Xz) ≥ 0 ∀ z and hence dot-
products are kernels. Secondly we know that product of the two positive kernels

30Justification of (2.31) in Schölkopf and Smola [2002] needs to be done as we did in lecture rather
than as done in Schölkopf and Smola [2002]. Basically we need Cauchy-Schwartz inequality to hold
for any two functions in Hilbert space rather than for kernels alone. In lecture we showed that this
is indeed the case. Also in the lecture we gave a nice justification for the choice of the feature map,
which is at the heart of the proof. We said that representing an object by its similarities with all
other objects is the most obvious representation (and infact the richest representation).

31Infact, any inner-product is a kernel. Easiest proof of this is from equivalence of any finite-
dimensional Hilbert space to Euclidean space and any infinite-dimensional (separable) Hilbert
space to l2 space. In either case the gram matrix can be written as sum of gram-matrices obtained
from each individual feature. And since sum of positive kernels is positive, we get the result.
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k1(x, z) = (x>z) and k2(x, z) = (x>z) is again positive32. By induction, (x>z)d, d ∈
N is a kernel. We gave a proof for the non-homogeneous case too.

Infact, usually one starts with x>Σy, where Σ � 0 and constructs kernels
k(x, z) = (x>Σz)d (known as the homogeneous polynomial kernel) and k

′
(x, z) =(

1 + x>Σz
)d

(known as the non-homogeneous polynomial kernel). It is again an
easy exercise to show that these are positive kernels (for a given Σ � 0). By
varying d ∈ N,Σ � 0 we obtain various kernels. Hence d,Σ are the parameters to a
polynomial kernel.

After this, it was easy to show that k(x, z) = ex
>Σz, is a positive kernel (by

using the series expansion of ex and the fact that polynomial kernels are positive
and conic combinations of positive kernels is positive, which follows from simple
linear algebra.). Usually one normalizes this kernel in the following way k,(x, z) =

k(x,z)√
k(x,,x)k(z,z)

= e−
1
2

(x−z)>Σ(x−z). This is called the Gaussian kernel or the Radial

Basis Function (RBF) kernel. Again, it is an easy exercise to show that normalized
version of a positive kernel is positive.

Now that we have examples of kernels and the existence of Hilbert space the-
orem 2.4.1, the only thing left to be proved is the representer theorem, which says
SVM-kind of problems require only inner-products rather than feature representa-
tions:

Theorem 2.4.2. Let k be some positive kernel defined over an input space X . Let Hk

be the RKHS (or any other equivalent) and φk be the corresponding feature map.
Suppose the model is all linear functions in that space i.e., f(x) = 〈w, φk(x)〉Hk

with
a (complexity) restriction ‖w‖Hk

≤ W . Now consider the problem of ERM:

min
w∈Hk

∑m
i=1 l(yi〈w, φk(xi)〉Hk

),

s.t. ‖w‖Hk
≤ W.(2.17)

Then an optimal solution of the ERM problem of the form: w =
∑m

i=1 αiφk(xi)
exists for some αi ∈ R. Needless to say, the same statement holds for the Tikhonov
and Morozov forms of the above Ivanov ERM problem.

Refer section 4.2 in Schölkopf and Smola [2002] for details.

With this theorem, it is obvious that the problem (2.17) is equivalent to the
following optimization problem in the Euclidean space:

min
α∈Rm

∑m
i=1 l

(
yi
∑m

j=1 αjk(xi, xj)
)
,

s.t.
√
α>Gkα ≤ W.(2.18)

32You may refer to any proof of Schur product theorem floating on the internet for this.
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Here Gk is the matrix of all kernel evaluations on the training points and by theo-
rem 2.4.1, it is the gram matrix of the training datapoints in Hk. Moreover,

(2.19) f(x) = 〈w, φk(x)〉Hk
=

m∑
i=1

αik(xi, x).

Hence both the ERM/SVM problem and the label prediction can be done using the
kernel alone (and the feature representation φk is not required)! Infact, this “kernel
trick” can be be used in any problem where dot-products are only involved. Refer
section 14.2 in Schölkopf and Smola [2002] for example of such a problem.

Also, (2.19) clearly shows why non-linear functions will be induced by kernels
like polynomial and Gaussian. The form of the learnt function will be some linear
combination of the kernel functions with one argument fixed. In case of Gaussian
kernels, we get that the function learnt is again a Gaussian function. On passing we
also noted a specialty of the Gaussian kernel: theorem 2.18 in Schölkopf and Smola
[2002]. This is special because for a linear kernel in n dimensions, the rank of the
gram matrix (with any number of points) cannot be more than n i.e., the map of
the input space is atmost an n-dimensional subspace in the feature space. However
this result for a Gaussian kernel says that as the number of points increases the rank
of gram-matrix increases and hence the map of the input space may be the entire
feature space (which is possibly infinite dimensional)!

The examples till now are of kernels on Euclidean spaces. We now give an
example of a kernel over distributions. Refer Jebara et al. [2004] for details. Such
kernels are necessary in applications like Bioinformatics (refer section 8.2 in Jebara
et al. [2004]) or in cases where the training datapoints are themselves noisy samples
of the true inputs. In particular, one interesting result from the paper is: using a
Gaussian kernel is like assuming there is a Normally distributed noise around the
datapoints and we are classifying/regressing on these Normal distributions (refer
section 3.1 in Jebara et al. [2004]). Hence using a Gaussian kernel would bring
in some kind of robustness towards noise. We ended the discussion with yet an-
other example of a non-Euclidean kernel that is in the space of strings: Rational
Kernels Cortes et al. [2004].

Now that one objective of this section is achieved (that of solving ERM in
arbitrary spaces), lets move on to the second goal of whether some kernels lead to
big enough function classes which well approximate the Bayes optimal? The answer
is yes and such kernels are called as Universal kernels, which are the subject of study
in the next section.
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2.4.2 Universal Kernels

Lets begin with the question which is the “minimal” function class that approximates
Bayes optimal well? The answer is provided by the Luzin’s theorem [Folland, 1996],
which gives that minf∈C(X ) R[f ] = R[f ∗∗] i.e., the minimum risk in the set of all
continuous functions (C(X )) is equal to the Bayes optimal risk. Hence we would be
happy if the function class induced by a kernel is C(X ) or atleast dense in C(X ), so
that the minimum risk is close enough to the Bayes risk33. Hence we go with the
following definition [Steinwart]:

Universal Kernel: A positive kernel k over an input space X is said to be a
universal kernel (for that space) iff the function class induced by the kernel i.e., Fk =
{f | f(x) = 〈w, φk(x)〉Hk

, w ∈ Hk} is dense in the set of all continuous functions
C(X ).

Now lets show an example of a universal kernel on the Euclidean space. We
claim that the Gaussian kernel (un-normalized one and hence the normalized one34)
is universal. The proof35 simply follows from the Stone-Weierstrass theorem [Rudin,
1976]. Refer theorem 1 in Steinwart for a version relevant to us.

It is easy to verify that Gaussian kernel satisfies all conditions of Stone-
Weierstrass theorem: the function class induced by Gaussian kernel

Fk =

{
f | f(x) =

m∑
i=1

αie
x>i x, xi ∈ Rn

}
,

is i) an algebra because it is ofcourse a vector space and product of two functions in
this class will again be linear combinations of exponential functions and hence the
space is closed under multiplication36. ii) non-vanishing because for any x ∈ Rn, we
can take fz(x) = k(z, x) = ez

>x > 0, z ∈ Rn. iii) separates X because x, y ∈ Rn, x 6=
y ⇒ ∃z 3 z>x < z>y (separation theorem) and hence fz(x) = ez

>x 6= ez
>y = fz(y).

Hence the Gaussian/RBF kernel is universal on the Euclidean space.

With this machinery one can show that ERM implemented using SVM with
Gaussian kernel and model selection implemented using SRM leads to Bayes consis-
tency. This is discussed in the subsequent section. On passing, we note the following
paper Christmann and Steinwart [2010], which provides examples of universal ker-
nels over non-Euclidean spaces.

33We are assuming true risk functional is continuous.
34The normalized version of a universal kernel is universal [Steinwart].
35You may also refer to Steinwart for an alternate proof which is more insightful.
36Note that closedness wrt. multiplication is what fails in case of linear or polynomial kernel.

Infact one can show that such kernels are not universal [Steinwart].
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2.5 Bayes Consistency

Though we know from the previous section that the function class induced by Gaus-
sian kernels is big enough, using it for ERM may not lead to consistency (the esti-
mation error might be high though the approximation error is low — because the
conditional Rademacher average for this class blows up.). Hence the idea is to use
the class of functions induced by Gaussian kernel with an additional restriction that
‖w‖Hk

≤ W . We know that this class is “good” in the sense that the conditional
Rademacher average decays with m. Now we might get low estimation error but
high approximation error. The trade-off can be achieved by SRM:

Consider the sequence of function classes induced by the Gaussian kernel:
F1,F2, . . . ,Fn, . . ., where Fn = {f | f(x) = 〈w, φk(x)〉Hk

, w ∈ Hk, ‖w‖Hk
≤ n}. Now

if one implements SRM, we will achieve Bayes consistency because i) SRM is con-
sistent (section 2.3.1) ii) ∪∞i=1Fi = {f | f(x) = 〈w, φk(x)〉Hk

, w ∈ Hk}, which we
already showed well approximates the Bayes optimal function. In summary, in this
case, we get both low estimation error (as SRM is consistent) and low approximation
error as the essential function class (union over the sequence) is big enough.

This completes the first milestone of our analysis: we are able to show an algo-
rithm which achieves Bayes consistency i.e., an algorithm which produces a function
whose risk is arbitrarily close to Bayesian risk with high probability (ofcourse this is
an asymptotic result i.e., holds as m→∞). In the subsequent section, we present a
discussion on operator-valued kernels (a generalization of the notion of kernels) that
will enable us to perform structured prediction i.e., induce functions of the form
f : X 7→ Y , where Y need NOT be R.

2.6 Operator-valued Kernels

Here we are concerned with the problem of learning functions of the form f : X 7→ Y ,
where Y need NOT be R. This setting is popularly known as “learning in struc-
tured output spaces”. Examples: i) multi-task learning37: simultaneous prediction
of n (mutiple) labels for a given example. Here Y = Rn. ii) Functional Regres-
sion: X as well as Y are some sets of functions. This situation commonly arises
in weather prediction e.g., given temperature profiles, predict precipitation profiles.
Refer Tsochantaridis et al. [2005] for more examples.

We wanted to generalize the notion of kernels to this case as this would then
allow us to learn non-linear functions from X to Y using a simple SVM algorithm.
Carrying forward from the standard case of Y = R, we let H be a Hilbert space

37Needless to say, multi-class classification is a special case of multi-task learning.
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of functions h : X 7→ Y . The first road-block we encountered was in putting down
the form of the function class itself! Clearly, we cannot go with f(x) = 〈f, φ(x)〉H
(standard reproducing property) as Y need NOT be R. Secondly, how would we
measure loss? One simple way out for the second problem (that will later on provide
answer for the first) is to assume we know how to measure deviations between labels.
Formally, we assumed a Hilbert space over Y . Given this, 〈yi, f(xi)〉Y would give
the match between the predicted label of xi, which is f(xi), and the true one,
yi. Now, one can use hinge-loss or square loss or any other loss studied earlier.
l(xi, yi, f) = Φ(〈yi, f(xi)〉Y), where Φ is hinge loss function etc. This also prompted
us to explore the possibility of generalizing the standard reproducing property by
comparing two inner-products (in the Y space and Hilbert space).

In order to get an idea of how this generalization will look like we took the
standard case and multiplied both sides by y: yf(x) = 〈f, yφ(x)〉H . With this
our generalization (guess38) of reproducing property is: 〈y, f(x)〉Y = 〈f, φ(x, y)〉H ,
where φ : X × Y 7→ H is a function linear wrt. y. The next step was to introduce
the notion of kernel, for which we repeated the exercise we did in case of Y = R
of writing ERM problem and then investigating a representer theorem. Here, the
ERM problem is:

min
w∈H

1

2
‖w‖2

H + C
m∑
i=1

Φ(〈yi, f(xi)〉Y)

This is same as:

min
w∈H

1

2
‖w‖2

H + C
m∑
i=1

Φ(〈f, φ(xi, yi)〉H)

Now going through the steps of proof of the standard representer theorem gives: at
optimality w =

∑m
i=1 αiφ(xi, yi) for some αs. Again, as earlier, we do not need w

explicitly for prediction; what we need is w(x) =
∑m

i=1 αiφ(xi, yi)(x). This ex-
pression gave us the form of the generalized kernel: k : X × X 7→ L(Y) and
k(xi, xj) ≡ φ(xi, ·)(xj). Here, L(Y) is the space of linear operators on Y i.e.,
l ∈ L(Y)⇔ l : Y 7→ Y and l is a linear function.

By taking the example of Y = Rn (L(Y) = Rn×n), we gave intuitive expla-
nations for this (generalized) kernel. The kernel value k(xi, xj), which is a matrix,
tells how correlated the labels to be predicted are for the given pair of examples.
Moreover, by representer theorem, w(x) =

∑m
i=1 αik(xi, x)(yi) i.e., the label of x is

a weighted linear combination of labels of the training examples. In this sense too,
the notion of kernel is completely analogous to the Y = R case.

Once the form of reproducing property and kernel are realized, it is easy to
give the definition and characterization of these, “operator-valued kernels”. Please

38Though we present it here as an intuitive guess, this infact is the statement of Riesz representer
theorem and the correct way to generalize the reproducing property.
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refer proposition 2.1 and theorem 2.1 in Micchelli1 and Pontil [2005]. Note that the
properties (b)-(c) in prop. 2.1 define a kernel and are analogous to the conditions of
being symmetric psd in standard case. We ended the discussion by noting examples
of kernels (given on pages 4,5 of Micchelli1 and Pontil [2005]) and some universal
kernels Caponnetto et al. [2008].

2.7 Kernel/Feature Learning

The learning theory developed till now is not only useful for showing theoretical
results like consistency or for motivating SVM, but infact such results motivate
many of the existing learning formulations. In this section we show yet another
example of a learning formalization motivate from our (2.7,2.8) risk bound.

It is easy to see that the performance of a learning algorithm crucially depends
on the feature representation for the input data, which in case of kernel-based al-
gorithms (as the ones we use) depends on the kernel itself. Using the risk bounds
(2.7,2.8) one can infact study the influence of the kernel on the learning bound and
hence try to optimize the kernel for the data in hand.

We refer to the following seminal paper: Lanckriet et al. [2004] for the details.
Following is a short summary of this work along with the work in Rakotomamonjy
et al. [2007].

One way to optimize the kernel is to consider conic combinations of given set of
p base kernels k1, . . . , kp and then learn the optimal weights in the conic combination
i.e., k =

∑p
i=1 λiki, λi ≥ 0∀ i and the weights λi are learnt. Such a kernel learning

setting would be particularly interesting for i) multi-modal data39, where each base
kernel is constructed from a different mode of describing the data. ii) non-linear
feature selection. Obviously, one would like to promote non-sparse combinations for
i) and sparse ones for ii).

Let Hi, φi be the RKHS, feature map with the kernel ki and let Hi, φ̂i be
those for the kernel λiki. It is easy to see that

√
λiφi = φ̂i and the RKHS of k

is direct sum of individual RKHS i.e., H = H1 ⊕ . . . ⊕ Hp. Hence, inner product
〈f, g〉H =

∑p
i=1〈fi, gi〉Hi

(here, fi, gi represent the component/projection of f, g onto
the ith RKHS). Using this notation, a linear function in H can be written as: f(x) =
〈w, φ̂(x)〉H =

∑p
i=1〈wi, φ̂(x)i〉Hi

=
∑p

i=1

√
λi〈wi, φi(x)〉Hi

.

From the risk bounds (2.7,2.8) it follows that the capacity of the induced func-
tion class is bounded as long as ‖w‖2

H =
∑p

i=1 ‖wi‖2
Hi
≤ W and trace(

∑p
i=1 λiKi) =

39For e.g., a meeting described using video, audio, scribes etc. Here video, audio and scribes are
the different modes
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∑p
i=1 λitrace(Ki) ≤ T for some W and T . Now, one can write the ERM problem

as:

min
λ≥0,w∈H

∑m
i=1 l(yi

∑p
i=1

√
λi〈wi, φi(x)〉Hi

),

s.t.
∑p

i=1 ‖wi‖2
Hi
≤ W, λi ≥ 0,

∑p
i=1 λitrace(Ki) ≤ T(2.20)

In this form it is not clear whether (2.20) is a convex program. Convexity is seen
by replacing ŵi =

√
λiwi and re-writing40 (2.20) as:

min
λ≥0,w∈H

∑m
i=1 l(yi

∑p
i=1〈wi, φi(x)〉Hi

),

s.t.
∑p

i=1

‖wi‖2Hi

λi
≤ W, λi ≥ 0,

∑p
i=1 λitrace(Ki) ≤ T(2.21)

This program is convex41 as
‖wi‖2Hi

λi
is a convex function in ŵi and λi [Boyd and

Vandenberghe, 2004]. The work of Rakotomamonjy et al. [2007] presents an efficient
projected gradient descent algorithm for solving (2.21).

Intuitively, the condition
∑p

i=1 λitrace(Ki) ≤ T implies that the weights for
kernels where the data is spread out will be less. Hence the ERM problem above
looks for a kernel combination that gives a good trade-off for: (low) empirical risk,
(large) margin and (low) radius/spread of data.

Firstly, since (2.21) involved l1-norm regularization over λs, we expect to obtain
a sparse solution. Infact using (10) in Rakotomamonjy et al. [2007], we eliminated
λs from a re-parametrized Tikhonov version and rewrote (2.21) as:

(2.22) min
w

1

2

(
p∑
i=1

‖wi‖Hi

)2

+ C
m∑
i=1

l(yi

p∑
i=1

〈wi, φi(x)〉Hi
).

This clearly gives the connection with LASSO: the regularizer in (2.22) is simply a
1-norm over a vector with entries as ‖wi‖Hi

. Hence at optimality many wi = 0 i.e.,
we are performing a sparse combination of base kernels. We also noted the 2-norm
version of (2.22) is the usual SVM with the kernel as k1 + . . .+ kp. We later derived
formulations for various other norms Nath et al. [2009], Kloft et al. [2009].

We then went ahead and tried to observe closely why Lasso promotes sparsity.
We gave an explanation using optimality conditions. Secondly, we wrote the (conic)
dual of (2.22) and realized that infact there is a solution where only one kernel of the
base kernels is active (refer theorem 17 in Lanckriet et al. [2004]). Once convinced

40Here, we know at optimality λi = 0 ⇒ wi = 0, ŵi = 0. Hence, for the function
‖wi‖2Hi

λi
we

define 0
0 = 0.

41Provided the loss is a convex function.
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that Lasso does promote sparsity, we noted a theorem that answers the question
whether the sparsity achieved by Lasso is always the right one? Refer theorems 2,3
in Bach [2008]. In the subsequent section, we present a methodology that enables
us to learn non-linear combinations of the given base kernels.

2.7.1 Hyperkernels

This section provides a brief summary of the methodology proposed in Ong et al.
[2005] for kernel learning.

In the previous section we looked at linear combinations of kernels. One way to
generalize this and look for non-linear combinations is ofcourse use the known trick
of searching in an appropriate Hilbert space of standard kernels. i.e., we aim to study
kernels whose RKHS itself should include/be the space of standard kernels. Such
kernels we will call as hyperkernels, denoted by k. Now we must define hyperkernels.
To this end first lets look at Hk. We want that every h ∈ Hk to be a standard kernel
i.e., h : X × X 7→ R and h is a valid kernel42. First of all this is not going to work
since set of kernels forms a cone and hence every element of Hilbert space cannot
be a kernel. So we will be happy by insisting that the Hilbert space has “many”
kernels (may not all be kernels).

From the form of Hk it is clear that k : X × X 7→ R, where X ≡ X × X .
The obvious conditions for k being a kernel are: i) symmetry: k ((xi, zi), (xj, zj)) =
k ((xj, zj), (xi, zi)). ii) pos.def.: α>Gkα ≥ 0 ∀ α, where Gk is a gram matrix with k.
As mentioned earlier, we want many elements of Hk themselves as kernels. TO this
end, we put this additional constraint that iii) the typical element k ((x, z), (·, ·))
(which is φk (x, z)) is itself a kernel from X × X 7→ R. Note that (iii) ensures that
the conic hull of all images of X in Hk under the map φk are valid kernels over X .
In summary, (i),(ii),(iii) define a hyperkernel.

We then went on to write down the ERM problem:

min
k∈Hk

min
w∈Hk

C2

∑m
i=1 l(yi〈w, φk(xi)〉Hk

),

s.t. ‖w‖Hk
≤ W1, ‖k‖Hk

≤ W2

which can be re-parameterized in Tikhonov form as:

(2.23) min
k∈Hk

min
w∈Hk

1

2
‖w‖2

Hk
+
C1

2
‖k‖2

Hk
+ C2

m∑
i=1

l(yi〈w, φk(xi)〉Hk
)

42Only for notational convenience we restrict ourselves to scalar-valued kernels. However, the
entire discussion can be generalized to operator-valued kernels.
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It was then easy to prove the representer theorem (refer lemma7 in Ong et al. [2005]).
This enabled us to write down the ERM problem as a convex program43 in Euclidean
space (refer (26) in Ong et al. [2005]). We then motivated and presented examples of
hyperkernels (refer section 4 in Ong et al. [2005]). In particular, we noted the choices
of hyperkernels that provide the effect of non-linearly (and linearly) combining given
base kernels.

43The program is convex (and the kernel learnt is valid kernel) if we restrict β ≥ 0. Hence one
can only approximately solve this ERM problem, but efficiently.
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