
Validation with Guided Search of the State Space
C. Han Yang

Stanford University
Gates Building, Room 312
Stanford, CA 94305-9030

hyang@verify.stanford.edu

David L. Dill
Stanford University

Gates Building, Room 349
Stanford, CA 94305-9030

dill@cs.stanford.edu

ABSTRACT

In practice, model checkers are most useful when they
find bugs, not when they prove a property. However,
because large portions of the state space of the design
actually satisfy the specification, model checkers devote
much effort verifying correct portions of the design. In
this paper, we enhance the bug-finding capability of a
model checker by using heuristics to search the states
that are most likely to lead to an error, first. Reductions
of 1 to 3 orders of magnitude in the number of states
needed to find bugs in industrial designs have been
observed. Consequently, these heuristics can extend the
capability of model checkers to find bugs in designs.
Keywords
Model checking, Guided search, Verification

1. Introduction
The complexity of modern chip designs has stretched the ability
of the verification techniques and methodologies. Traditional
verification techniques use simulators with handcrafted or random
test vectors to validate the design. Unfortunately, generating
handcrafted test vectors is very labor-intensive, and one is never
certain which cases random testing have missed. Model checking
techniques [2][7], like MurM [3], SMV [8], are other means for
checking the compliance between implementation and
specification. In practice, the primary value of model checkers
has been to search for design errors, not to prove correctness.

This paper proposes to optimize model checking for bug
finding by using heuristics to search the part of the state space that
is most likely to contain design flaws. The property being model
checked is described in an assertion checker, which describes an
anomalous condition. If the heuristics do find problems, they
usually find the problem in substantially fewer states than
conventional model checkers, which use breadth-first or depth-
first search. When a design is too large for model checking to run
to completion, our method is much more likely to find an error
before the program exhausts available time or memory.
Consequently, these guided search heuristics give the verification
engineer another tool that can handle larger designs than

traditional model checking.
Several heuristics are discussed in this paper. The first one is

Target Enlargement, where the error states are enlarged so they
can be found with less searching. The second technique is to use
Hamming distance [4] as the search metric. The third technique,
called Tracks, uses approximate preimages to help find the
violations to assertions. Finally, the last technique uses explicit
hints, called Guideposts, given by designer to help direct the
search. Based on our experience with large industrial examples,
we find that Target Enlargement combined with Tracks and
Guideposts can consistently find errors much faster than breadth-
first search.

The heuristics presented here are more sophisticated, more
effective, and are applied to more designs than those found in [11]
and [12]. Using Target Enlargement and Hamming distance for
guided search were first proposed in [11]. Yuan et al.
independently applied similar techniques to two simple designs.
In this paper, Target Enlargement and Hamming distance are
applied to a much larger set of design examples with wider range
in performance.

In the following section, some terminology will be defined.
Section 3 discusses the basic guided search algorithm. Section 4
discusses the designs to which these techniques were applied. In
sections 5-8, each of the heuristics will be discussed. Section 9
discusses the overall experimental results. Finally, section 10 has
some concluding remarks.

2. Background
A finite state machine (FSM) is a 6-tuple, (S, I, O, G, O, s0), where
S is the set of states, I is the set of input values, O is the set of
output values. G : S u I o S is the next state function, O : S u I o
O is the set of output function, and s0 � S is the initial state. In
this paper, let B = {0, 1}. V is the set of Boolean state variables in
the system. Each state is a bit vector, which we represent
mathematically as a map from the set of state variables to Boolean
values. Hence, S is the set of all such bit vectors, which we write
as][BV o .

If A is a set of states in S, the preimage of A under G is
defined as follows.

Definition 1: Preimage

)},(' . ' . |{),(IssAsIisAPreImage GG ����

In essence, PreImage is the set of states that can reach a state in A
in one transition.

The projection of a set of state onto another set of states with
respect to a set of variables Vi is defined as follows.

Definition 2: Projection

)}()(' . . |]['{)(vtvtVvTtBVtTProj iiV ����o�

35th Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC 98, June 15-19, 1998, San Francisco, CA USA
ISBN 1-58113-049-x/98/06…$5.00

599

In other words, the projection of T onto Vi is the set of bit vectors,
which have the same values for variables in Vi as some bit vector
in T (and have any value for variables not in Vi).

3. Guided Search Algorithm
The guided search algorithms are implemented in a verifier called
MurM++. Designs can be described directly in MurM++ (which is
similar to C++) or be translated from Verilog [5]. The algorithm
for the verifier is shown in Figure 1. During the search, there are
two types of states, explored states and visited states. Explored
states are those that have their next states generated, and visited
states are those that have been encountered in the search but
whose next states have not been generated. Given an initial
assignment to all the state variables that is in the PriorityQueue,
MurM++ retrieves a visited state and finds all next states. Because
MurM++ is able to represent all combinations of inputs
symbolically, all next states are found at once. Then, the
evaluation function is used to compute the score for each next
state. If the state has not been seen before, then all values for the
state variables are stored in a hash table, and the state is placed in
the priority queue. For breadth-first search, the evaluation
function is simply a constant. Otherwise, the search heuristic will
provide a score for each next state, and the state is stored in the
priority queue according to its score. Backtracking is used to find
all reachable states. When no more states are found, the
verification process is complete. Assertion checker, which
describes what should not happen in the design, is also coded as
part of the description. If an assertion is violated during the
generation of the reachable states, an error trace is printed out.

Figure 1 Guided Search Algorithm

4. Benchmark Designs
Several realistic industrial designs are used to evaluate the
effectiveness of the heuristics. They are briefly described below.

4.1 S3.mp Data Link Level Protocol
Sun Microsystems’ S3.mp distributed shared memory computer
uses workstations connected with a gigabit serial link to form a
parallel computer [9]. The data link level protocol used in the
serial link, which operates over a slotted ring [10], was first
developed in the MurM verification system [3]. The description of
this protocol is about 1200 lines of MurM++ code. For a ring with
4, 6, and 8 slots, there are 61, 85, and 107 state bits, respectively.

4.2 FLASH Examples
Many of the benchmarks are portions of the Stanford FLASH
(FLexible Architecture for Shared memory) multiprocessor [6].
These designs were all converted from the original Verilog code
that was annotated to extract the control logic [5]. Many of the
assertions were also translated directly from the FLASH
validation suite in Verilog. All of the bugs that we have found
were actually encountered by the FLASH design team through
their validation testing.

Table 1 lists some information about each design. There are
two versions of MC2, big and small. The only difference between
the two is the range of inputs that were considered. For the
smaller designs, it is easier to discuss some of the behavior of the
heuristics (in Section 7.1).

Design
State
Bits

Min Cycles to
Violate Assertion

Inbox with Cache Control
(Inbox)

174 5

Memory Controller State
Machine (MC1)

39 17

Memory Controller with
SDRAM Control (MC2)

180 39

Load/Store Control (LSC) 112 49

Table 1 Flash Benchmarks

5. Target Enlargement
As the name suggests, Target Enlargement is an effort to make the
set of states that will violate the assertion, called error states,
bigger.1 The preimage of these error states is the set of states that
in one cycle can reach an error state. If it is possible to reach a
state in the preimage from a start state, then it is also possible to
reach an error state. Each successive preimage potentially
describes an even larger set of states that can reach the error
states. The larger target increases the opportunity for the guided
search to find a path to the error states and consequently reduces
the amount of searching that needs to be done. Because
computing preimages can be a memory intensive operation,
Target Enlargement computes successive preimages until a given
computer memory limitation is reached.

5.1 Target Enlargement Experimental Results
Table 2 shows the number of cycles of target enlargement that was
possible with each of the designs within 200 Mbytes of memory.
While the size of the Binary Decision Diagrams(BDDs) is not
very large, computing the next larger preimage for all the
examples except Inbox, MC1, and MC2 (Small), exceeded the
memory limit [1].

Design

Max Cycles of
Target

Enlargement

BDD Size of
Largest Target
Enlargement

CM (4 Slots) 4 55,301
CM (6 Slots) 4 33,374
CM (8 Slots) 4 25,235
Inbox 5 28
MC1 5 95
MC2 (Small) 4 1,457
MC2 (Big) 6 23,885
LSC 4 13,172

Table 2 Target Enlargement

Table 3 shows the number of visited states and explored
states. The number of visited states includes those that eventually
became explored states. The number of visited states is an
indication of the size of the hash table that holds the reachable
states. The number of explored states is an indication of the
efficiency of the search heuristic. Fewer explored states would
mean a better search heuristic. For some designs, like MC2 (Big),

1 Yuan et al. refer to target enlargement as retrograde analysis.

1. Put Start State in PriorityQueue
2. While (PriorityQueue not empty)
3. Dequeue State from Priority-Queue
4. Find set of Next States
5. Use Evaluation Function to find

score for each Next State
6. If Next States not in HashTable
7. Put into PriorityQueue
8. Check for Assertion violation for

each Next State

600

it was not possible to find the set of reachable states within 160
Mbytes of memory.

Visited States Explored States

Design
Breadth-

first Search
Target

Enlargement
Breadth-

first Search
Target

Enlargement

CM (4 Slots) 32,773 197 12,784 83
CM (6 Slots) 386,994 17,650 379,088 6,437
CM (8 Slots) >2,362,324 >2,362,324 >432,177 >145,498
Inbox 77,313 38,913 35,842 12,802
MC1 117,889 57,089 90,320 47,874
MC2 (Small) 161,577 119,802 149,210 113,920
MC2 (Big) >4,799,484 >4,799,484 >2,278,144 >2,278,144
LSC 246,553 224,767 237,508 223,744

Table 3 Target Enlargement Experimental Results

Table 3 shows that Target Enlargement can have significant
reductions in the number of visited and explored states to find a
violation of the assertions. While Yuan et al. also reported some
reductions in the number of states needed to find bugs on two
small examples, Table 3 illustrates the use of Target Enlargement
on a larger and more realistic set of examples [12]. In addition,
the reduction on this set of examples can be up to two orders of
magnitude, which is much larger than shown by Yuan et al..
Unfortunately, the effectiveness of Target Enlargement varies
dramatically from one design to another.

5.2 Analysis of Target Enlargement
Target Enlargement is most effective when it substantially
increases the probability of visiting a target state, assuming a
search that randomly generates inputs. Consider an example
where Target Enlargement is not very effective: Suppose there is
a sequence of n pipeline registers between the point where an
erroneous signal is generated and the assertion that is eventually
violated by the signal. In this case, the probability of hitting an
error becomes 1 when the signal is generated n cycles before it is
actually detected. Target Enlargement will not improve the search
significantly until n + 1 cycles of preimages have been computed.
One of our benchmarks, MC2, has this behavior. On the other
hand, if one out of a thousand inputs reaches an error state in the
next cycle, one cycle of target enlargement will increase the
probability of visiting the error state by a thousand fold. MC2’s
first cycle of target enlargement exhibits this behavior. Because
Target Enlargement’s ability to increase the error probability
strongly depends on the design, the location of the inputs and the
location of the assertions, the performance of Target Enlargement
varies widely across the benchmark designs. Despite the
dependency on the design, Target Enlargement consistently
reduces the number of states needed to find violation to the
assertions; consequently, it is used in conjunction with all other
heuristics described later in this paper.

6. Hamming Distance
The first search heuristic is Hamming distance, which is defined
as the number of bits that are different between two bit vectors
[4]. In generating the set of reachable states, Hamming distance
can be used as a search metric [11][12]. Those states that have
the lowest Hamming distance to the largest Target Enlargement
are explored first. In essence, we hope states with very few bits
differing from the enlarged target will require very few cycles to
reach that target. The minimum Hamming distance between a
single state and the enlarged target is computed using an
algorithm that has a complexity which is linear with respect to the
size of the BDD of the enlarged target.

6.1 Hamming Distance Experimental Results
Table 4 and Table 5 show the result for applying Hamming
distance to the benchmark designs. At first, the Hamming
distance is measured against the largest enlarged target. In the
case of the communication module, this simple heuristic worked
exceptionally well. In the case of CM with 6 and 8 slots, the
reduction in the number of states found was about 1 to 2 orders of
magnitude. In other designs, Hamming distance’s performance
was less stellar. For the FLASH examples, the reduction in the
number of states for most designs ranged from 10-50%. For the
case of LSC, the result was actually worse than Target
Enlargement.

Target
Enlargement

Hamming Distance
(Large Target) +

Target Enlargement

Hamming Distance
(Small Target) +

Target Enlargement

CM (4 Slots) 197 197 179
CM (6 Slots) 17,650 17,176 1,092
CM (8 Slots) >2,362,324 417,671 5,947
Inbox 38,913 38,913 12,913
MC1 57,089 38,913 28,161
MC2 (Small) 119,802 119,802 94,618
MC2 (Big) >4,799,484 >4,793,500 >4,793,500
LSC 224,767 343,128 225,344

Visited States

Design

Table 4 Hamming Distance Visited States

Target
Enlargement

Hamming Distance
(Large Target) +

Target Enlargement

Hamming Distance
(Small Target) +

Target Enlargement

CM (4 Slots) 83 81 83
CM (6 Slots) 6,437 6,348 499
CM (8 Slots) >145,498 901 2,735
Inbox 12,802 12,802 12,802
MC1 47,874 22,019 8,451
MC2 (Small) 113,920 113,594 88,442
MC2 (Big) >2,278,144 >2,274,048 >2,260,480
LSC 223,744 245,817 222,357

Explored States

Design

Table 5 Hamming Distance Explored States

CM (4 Slots) Hamming Distance

0

1

2

3

4

0 20 40 60 80 100 120 140 160

States Explored

H
am

m
in

g
D

is
ta

nc
e

Explored State Score Minimum Next States Score

 Figure 2 Hamming Distance Example

For example, Figure 2 shows the explored state’s Hamming
distance state and the minimum Hamming distance of its next
states for a small example, CM (4 Slots). The start state has a
relatively large Hamming distance. Soon, the search rapidly
reduced the Hamming distance to 1. Unfortunately, these states
did not lead to states that were even closer. Eventually, the search
had to resort to states with Hamming distance of 2. After

601

exhausting more states with Hamming distance of 1, the search
again had to find a state with distance 2. Eventually, the search
found the enlarged target. Throughout the search, all the next
states had a Hamming distance of 1 or 2. This is typical of
Hamming distance, which tends not to be very discriminating.

Our experiments show an interesting interaction between
Hamming distance and Target Enlargement. While Hamming
distance is “aiming” toward a target, Target Enlargement is really
making the target larger and therefore less discriminating, which
negates some of the effectiveness of Hamming distance. In fact,
when Hamming distance is “aimed” toward the smallest target,
which is the least fuzzy, the results were better. Using this
technique, another order of magnitude of improvement can be
achieved with the CM. In addition, all the FLASH benchmarks
also showed improvement over Hamming distance with large
target.

Based on these experimental results, it appears that Hamming
distance can be a useful heuristic in finding the violations of
assertions. On a few small examples, Yuan et al. reported modest
reduction in number of steps needed to find the error [12]. This
much larger set of design benchmarks suggests that while
Hamming distance can reduce the number of states needed to find
the error by up to several orders of magnitude, its performance is
also very inconsistent across designs.

7. Tracks
As can be seen from the results in Section 5, for many of the
designs, it is not possible to do Target Enlargement for many
cycles. However, approximate preimages that are based on a
subset of the state variables may be computed for more cycles
than Target Enlargement. In practice, a subset of the state
variables can control most of the behavior of the design. This
subset may be the state variables from a few of the state machines
within the design, or may be a few key state variables within a
FSM that dictates its behavior. For example, in the control logic
of FSMs, the Verilog description usually has a switch statement
that depends on a state variable that determines much of the
behavior. Track computes a series of approximate preimages
based on a given set of variables that strongly control the behavior
of the system. With multiple tracks implicitly conjoined, it may
be possible to construct a sufficiently accurate preimage that aids
the guided search.

Tracks are defined formally in Equation 1.

Equation 1 Track Computation

)](TProjPreImage[T
k

iiV

1k

i ,G
�

where T is one layer of one track, i is the Track number, Vi is the
variables in Track i, and k is the layer number, or number of
cycles away from the largest enlarged target.

0

iT is the largest enlarged target. In essence, the next layer of a

track is the preimage of the projection of the last layer onto the
variables in the track. Because all the variables that are not in the
track are projected out, the resulting preimage is always a superset
of the true preimage. The projection also reduces the size of the
BDD and thus enables computation of more preimages.

Our experience shows that the following guidelines are
useful in choosing the variables in a track.
1. Identify the main FSMs in the design
2. Identify the main state variables in the FSMs
3. Rank other variables that the designer deem “important”

4. Start with the assertion and working backward toward
primary inputs, include as many FSMs as possible. The size
of the partition depends on the size of the BDDs for each of
the preimages.
More than one track can be used to approximate the true

preimage more accurately. In fact, tracks can have overlapping
state variables. During the guided search, the state’s score
depends on to which layer the state belongs. The score is the least
layer number in which all tracks contain the state. This score is
the minimum cycle number that satisfies the implicit conjunction
of all the tracks. Consequently, this evaluation function greedily
chooses the layer number that is closest to the target. States that
have the smallest score, or those that are closest to the enlarged
target, are explored first.

Figure 3 Tracks Evaluation Function Example

As an example of the evaluation function, Figure 3 shows a
state that is in layers 2, 3, and 4 of three tracks. Because the
tracks are approximate preimages, a state can actually belong to
multiple layers of the same track. The evaluation function returns
a value of 4 since all tracks agree that it is the minimum layer
number.

7.1 Tracks Experimental Results
For most of the designs, Tracks worked quite well across all
designs except LSC (Table 6).

Visited States Explored States

Design
Target

Enlargement

Tracks +
Target

Enlargement
Target

Enlargement

Tracks +
Target

Enlargement

CM (4 Slots) 197 99 83 41
CM (6 Slots) 17,650 1,655 6,437 644
CM (8 Slots) >2,362,324 2,313 >145,498 969
Inbox 38,913 4,162 12,802 5
MC1 57,089 11,394 47,874 76
MC2 (Small) 119,802 1,498 113,920 161
MC2 (Big) >4,799,484 17,474 >2,278,144 4,283
LSC 224,767 210,946 223,744 208,228

Table 6 Tracks Experimental Results

Figure 4 shows the score for MC2 (Small) during the search.
Because MC2 (Small) has relatively few nondeterministic inputs,
it was possible to compute preimages from the assertion to the
start state and plot the true distance of the explored states to the
enlarged target. This example illustrates the effectiveness of the
approximate preimages. As can be seen in Figure 4, the score
produced by Tracks initially was routinely off by 10 cycles or
more. If all states were uniformly inaccurate, then the score still
would give the right guidance to the search. In fact, Figure 4
shows that the curve between the explored state score and the
actual distance to have similar shape.

Track Number

321

1

X2

X3

XXX4

602

MC2 (Small) Score

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140 160

States Explored

S
co

re

Explored State Score Minimum Next States Score

Actual Distance of Explored State to Target

 Figure 4 Tracks Score Compared with True Score

However, there was a local minimum introduced in the search due
to varying amount of inaccuracy occurring at exploring states 10
and 14. Because of this local minimum, the search explored states
that had good score, but were not able to lead to the enlarged
target. At state 123, the search finally went back to the states that
were found when exploring states 10 and 14. Eventually,
exploring these resulted in finding states that eventually lead to
the target zone.

Tracks allow the verification engineer to trade off between
accuracy and size of BDDs. While a track with more state bits
offers more accuracy, the size of the BDD usually grows faster.
When the size of the BDD is too large, the verification engineer
can remove some state bits and introduce several new overlapping
tracks to compensate for the loss in accuracy. Consequently,
Tracks enables the verification engineer to give high-level
guidance to the search while working within the computer
memory limitation.

Unfortunately, Tracks did not work very well with the LSC
design. This particular design had many very small interacting
FSMs. The other design usually had one large FSM that
controlled the behavior of the system. Because of the large
number of FSMs, it was very difficult to pick a series of tracks
that were able to compute preimages with any accuracy.
Consequently, Guidepost was added to help in the search for LSC.

8. Guidepost
In addition to more automated heuristics mentioned previously,
designers can also provide hints to the guided search. The hints,
called Guideposts, are a series of conditions that the designer
believe to be interesting or even required preconditions for the
assertion checker to be violated.

Guidepost encodes the number of hints that the search has
gone through in the score itself. Consequently, the score for a
child state is dependent on the score of the parent state and on the
properties in the child state. Equation 2 shows the evaluation
function for Guideposts. Just like the evaluation function for
Tracks, a lower score is deemed to be a state that is closer to the
target. In other words, the passage of more guideposts should
indicate a lower score, which is simply the number of guideposts
yet to be encountered or (TGuideposts – PGuideposts). The
multiplication of this term with MCycles ensures that the number
past guideposts dominates over the score from Tracks. In fact, the
Track score only has an effect when the number of previous
guideposts is the same. With this kind of evaluation function, the
score is a summary of the history of the hints that the search has
encountered.

Equation 2 Guidepost Evaluation Function

Score = (TGuideposts – PGuideposts) * M Cycles + ScoreTracks

Where TGuideposts is the total number of guideposts
PGuideposts is the number of guideposts that the current state

and its ancestors have past through
MCycles is the maximum number of cycles in all the tracks.
ScoreTracks is the Score from Tracks evaluation function
This evaluation function biases the search towards going

through the guideposts. As the search encounters a new hint, the
score improves according to the number of hints that it has
encountered in the past. Consequently, the score only improves
when the hints are found in the prescribed total order.

8.1 Guidepost Experimental Results
 Table 7 shows the results for Guidepost. Only one guidepost was
used for each design benchmark. Many of the guideposts were
only to help the search to get out of a local minimum that was
introduced by Tracks.

In the LSC, many FSMs control the complex operations of
handling normal loading and storing of data from the cache,
managing the store buffers and exceptions such as loading before
storing. In the LSC, the condition of the guidepost was the FSM
in the state ready to start a cache refill operation and starting a
counter that would indicate the completion of the cache refill.
With this simple condition, the enlarged target for the LSC can be
found in about 15% of the states needed for Target Enlargement.

Visited States Explored States

Design
Target

Enlargement

Guideposts +
Target

Enlargement
Target

Enlargement

Guideposts +
Target

Enlargement

CM (4 Slots) 197 94 83 38
CM (6 Slots) 17,650 1,650 6,437 641
CM (8 Slots) >2,362,324 2,296 >145,498 955
Inbox 38,913 4,162 12,802 5
MC1 57,089 11,394 47,874 12
MC2 (Small) 119,802 1,834 113,920 39
MC2 (Big) >4,799,484 9,602 >2,278,144 289
LSC 224,767 37,070 223,744 30,503

 Table 7 Guidepost Experimental Results

9. Comparison of Heuristics
 Figure 5 shows the number of visited states as a percentage of the
breadth-first states. Similarly, Figure 6 shows percentages for the
explored states (Note that the vertical axes in both of these figures
are in logarithmic scale). As can be seen, Target Enlargement
always reduces the search space except CM (8 Slots) and MC2
(Big), which were simply too big to find the error using Target
Enlargement alone. Hamming distance with the large target did
not perform well consistently; however, Hamming distance with
small target did show reductions in either explored or visited
states for all designs. With Tracks and Guidepost, the error states
was found consistently faster.

603

Number of Visited States to Reach Target Zone
(Normalized to BFS)

0.0%

0.1%

1.0%

10.0%

100.0%

1000.0%

CM (4
Slots)

CM (6
Slots)

CM (8
Slots)

Inbox MC1 MC2
(Small)

MC2
(Big)

LSC

P
er

ce
nt

ag
e

of
 B

F
S

 S
ta

te
s

Breadth-first Search Target Enlargement (TE)
Hamming Distance (Large Target) + TE Hamming Distance (Small Target) + TE
Tracks + TE Guidepost + TE

 Figure 5 States Visited as a Percentage of Breadth-first
Search

Number of States Explored to ReachTarget Zone
(Normalized to BFS)

0.0%

0.1%

1.0%

10.0%

100.0%

1000.0%

CM (4
Slots)

CM (6
Slots)

CM (8
Slots)

Inbox MC1 MC2
(Small)

MC2
(Big)

LSC

P
er

ce
nt

ag
e

of
 B

F
S

 S
ta

te
s

Breadth-first Search Target Enlargement (TE)
Hamming Distance (Large Target) + TE Hamming Distance (Small Target) + TE
Tracks + TE Guidepost + TE

 Figure 6 States Explored as a Percentage of Breadth-first
Search

10. Conclusion and Future Work
Several heuristics have demonstrated to be very effective in
guiding the search to find violations to assertions in realistic
designs. These heuristics can find the errors in much fewer states
than the breadth-first search that is used in model checking.
These techniques extend the capability of model checking while
providing a more powerful tool than conventional simulation.

Hamming distance is relatively easy to implement; however,
its effectiveness is rather inconsistent. Techniques like Tracks
and Guidepost offer more robustness. Unfortunately, they also
require more designer input. This set of heuristics offers the
verification engineer tradeoffs for manual labor and effectiveness
in the guided search.

Guidepost can be extended to allow for creation of high level
test vectors. The verification engineer only needs to specify the
critical events that a test vector needs to go through. Then, the

heuristic can go through the design and fill in a set of inputs that
will lead the design through those critical events. Being able to
specify such a high level test vectors should improve the
productivity of verification engineers and merits further study.

11. Acknowledgements
Many thanks for David Nakahira and Jules Bergmann for their
help in the memory controller and load/store control design
examples, respectively. This work was sponsored under contract
number DABT63-95-C-0049-P00005. The content of this paper
does not necessarily reflect the position of the policy of the
Government and no official endorsement should be inferred.

12. References
1. R. E. Bryant, Graph-based Algorithms for Boolean function

Manipulation. IEEE Transactions on Computers, 6(C-
35):677-691, August 1986

2. E. M. Clarke, E. A. Emerson, A. P. Sistla, Automatic
Verification of Finite-state Concurrent Systems using
Temporal Logic Specifications, ACM Transactions on
Programming Languages and Systems, vol. 8, no. 2 pp. 244-
63

3. D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang, Protocol
Verification as a Hardware Design Aid. 1992 ICCD,
pp.522-525

4. R. W. Hamming. Error Detecting and Error Correcting
Codes. Bell System Tech Journal, 9:147-160, April 1950.

5. R. C. Ho, C. H. Yang, M. A. Horowitz, and D. L. Dill.
Architecture Validation for Processors., 1995 ISCA, pp.
403-413

6. J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K.
Gharachorloo, J. Chapin, D. Nakahira, J. Baxter, M.
Horowitz, A. Gupta, M. Rosunblum, and J. Hennesy. The
Stanford FLASH Multiprocessor. 1994 ISCA, pp. 302-313

7. F. Maruyama, M. Fujita, Hardware Verification, Computer,
vol. 18, no. 2, pp 22-32, Feb 1985.

8. K. L. McMillan, Symbolic Model Checking. Ph.D. thesis,
School of Computer Science, Carnegie Mellon University,
May 1992.

9. A. G. Nowatzyk, M. C. Browne, E. J. Kelly, and M. Parkin.
S-connect: From Network of Workstations to Supercomputer
Performance. 1995 ISCA, pp. 71-82

10. A. S. Tanenbaum, Computer Networks, chapter 7, pp. 312-
313. Prentice-Hall Inc., 1981

11. C. H. Yang, D. L. Dill, SpotLight: Best-First Search of FSM
State Space. IEEE International High Level Design
Validation and Test Workshop, presented on November 16,
1996, http://verify.stanford.edu/hyang/hldvtSlides.ps

12. J. Yuan, J. Shen, J. Abraham, A. Aziz, On Combining
Formal and Informal Verification, 1997 CAV, pp. 376-387

604

