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ABSTRACT traditional model checking.

Several heuristics are discussed in this paper. The first one is
In practice, model checkers are most useful when they Target Enlargementwhere the error states are enlarged so they
find bugs, not when they prove a property. However, can be found with less searching. The second technique is to use
because large portions of the state space of the design Hamming distancg4] as the search metric. The third technique,
actually satisfy the specification, model checkers devote ~called Tracks uses approximate preimages to help find the
much effort verifying correct portions of the design. In violations to assertions. Finally, the last technique uses explicit

. " . hints, calledGuideposts given by designer to help direct the
this paper, we enhance the bug-finding capability of a search. Based on our experience with large industrial examples,

model checker by using heuristics to search the states we find that Target Enlargement combined with Tracks and

that are most likely to lead to an error, first. Reductions  Guideposts can consistently find errors much faster than breadith-
of 1 to 3 orders of magnitude in the number of states first search.

needed to find bugs in industrial designs have been The heuristics presented here are more sophisticated, more
observed. Consequently, these heuristics can extend the effective, and are applied to more designs than those found in [11]
capability of model checkers to find bugs in designs. and [12]. Using Target Enlargement and Hamming distance for
Keywords guided search were first proposed in [11]. Yuan et al
' ' o independently applied similar techniques to two simple designs.
Model checking, Guided search, Verification In this paper, Target Enlargement and Hamming distance are
. applied to a much larger set of design examples with wider range
1. Introduction inpgerformance. g 9 P 9
The complexity of modern chip designs has stretched the ability | the following section, some terminology will be defined.

of the verification techniques and methodologies. ~Traditional section 3 discusses the basic guided search algorithm. Section 4

verification techniques use simulators with handcrafted or random giscusses the designs to which these techniques were applied. In

test vectors to validate the design. Unfortunately, generatingsections 5-8, each of the heuristics will be discussed. Section 9

handcrafted test vectors is very labor-intensive, and one is nevegiscusses the overall experimental results. Finally, section 10 has

certain which cases random testing have missed. Model checkingome concluding remarks.

techniques [2][7], like Mup [3], SMV [8], are other means for

checking the compliance between implementation and 2. Background

specification. In practice, the primary value of model checkers A finite state machine (FSM) is a 6-tup(&, |, 0,6, 4, 5), where

has been to search for design errors, not to prove correctness. S is the set of states,is the set of input value) is the set of
This paper proposes to optimize model checking for bug output values.s: S x| — Sis the next state functiod,: Sx1 —

finding by using heuristics to search the part of the state space tha® is the set of output function, arsg € Sis the initial state. In

is most likely to contain design flaws. The property being model this paper, IeB = {0, 1}. V is the set of Boolean state variables in

checked is described in an assertion checker, which describes athe system. Each state is a bit vector, which we represent

anomalous condition. If the heuristics do find problems, they mathematically as a map from the set of state variables to Boolean

usually find the problem in substantially fewer states than values. HenceSis the set of all such bit vectors, which we write

conventional model checkers, which use breadth-first or depth-as [V — B].

first search. When a design is too large for model checking to run If Ais a set of states i8, the preimage oA under$ is

to completion, our method is much more likely to find an error defined as follows.

before the program exhausts available time or memory. o )

Consequently, these guided search heuristics give the verificationPé€finition 1: Preimage

engineer another tool that can handle larger designs than Prelmage, A={s|3ie I.3c Ag=5(s 1)}

o - ) ) In essencePrelmageis the set of states that can reach a stage in
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In other words, the projection dfontoV; is the set of bit vectors,
which have the same values for variable¥,ims some bit vector
in T (and haveanyvalue for variables not ix;).

3. Guided Search Algorithm

The guided search algorithms are implemented in a verifier called

Table 1 lists some information abasdch design. There are
two versions of MC2, big and small. The only difference between
the two is the range of inputs that were considered. For the
smaller designs, it is easier to discuss some of the behavior of the
heuristics (in Section 7.1).

Mure++. Designs can be described directly in bt (which is Design Sgﬁ;e Vi'\(;lllgtgxcslseesr:i?)n
similar to C++) or be translated from Verilog [5]. The algorithm -

for the verifier is shown in Figure 1. During the search, there are| P0x With Cache Control 174 5
two types of stategxplored statesndvisited states Explored (Inbox)

states are those that have their next states generated, and visitgd/emory Controller State 39 17
states are those that have been encountered in the search ,{_VIachme (MC1) _

whose next states haveot been generated. Given an initial | Memory Controller with 180 39
assignment to all the state variables that is in the PriorityQueue| SPRAM Control (MC2)

Murg++ retrieves a visited state and finds all next states. Because Load/Store Control (LSC) 112 49

Murep++ is able to represent all
symbolically, all next states are found at once.

combinations of inputs
Then, the
evaluation function is used to compute the score for each next
state. If the state has not been seen before, then all values for th§' Target Enlargement .

state variables are stored in a hash table, and the state is placed fis the name suggests, Target Enlargement is an effort to make the
the priority queue. For breadth-first search, the evaluation S€t of states that will violate the assertion, called error states,

function is simply a constant. Otherwise, the search heuristic will pigger.l The preimage of these error states is the set of states that
provide a score for each next state, and the state is stored in th#) One cycle can reach an error state. If it is possible to reach a
priority queue according to its score. Backtracking is used to find State in the preimage from a start state, then it is also possible to
all reachable states. When no more states amadf the reach_ an error state. Each successive preimage potentially
verification process is complete. Assertion checker, which describes an even larger set of states that can reach the error

describes what should not happen in the design, is also coded a&tates. The larger target increases the opportunity for the guided
part of the description. If an assertion is violated during the search to find a path to the error states and consequently reduces

generation of the reachable states, an error trace is printed out. ~ the ant1_ount of searching tgat needs to bet do_neecal&et_
— computing preimages can be a memory intensive operation,

1. Put Start State in PriorityQueue . . : .
. e Target Enlargement com reim ntil n
While (PriorityQueue not empty) arget Enlargement computes successive preimages until a give

Degueue State from Priority-Queue computer memory limitation is reached.

2

3.

4. Find set of Next States 5.1 Target Enlargement Experimental Results

5 Use Evaluation Function to find Table 2 shows the number of cycles of target enlargement that was

score for each Next State possible with each of the designs witl@@0 Mbytes of memory.

If Next States not in HashTable While the size of the Binary Decision Diagrams(BDDs) is not
Put into PriorityQueue very large, computing the next larger preimage for all the

Check for Assertion violation for examples except Inbox, MC1, and MC2 (Small)cemded the
each Next State memory limit [1].

Table 1 Flash Benchmarks

0N

Figure 1 Guided Search Algorithm Max Cycles of BDD Size of

. Target Largest Target

4. Benchmark DeS|gns Design Enlargement | Enlargement
Several realistic industrial designs are used to evaluate the CM (4 Slots) 4 55,301
effectiveness of the heuristics. They are briefly described below. CM (6 Slots) 4 33,37/
4.1 S3.mp Data Link Level Protocol cld (6 Slots) . 2.2
Sun Microsystems’ S3.mp distributed shared memory computer ,\r/}colx 5 o5
uses workstations connected with a gigabit serial link to form a MC2 (Small) 2 1,457
parallel computer [9]. The data link level protocol used in the MC2 (Big) 6 23,884
serial link, which operates over a slotted ring [10], was first LSC 4 13,174

developed in the Myr verification system [3]. The description of
this protocol is about 1200 lines of Mu#+ code. For a ring with
4, 6, and 8 slots, there are 61, 85, and 107 state bits, respectively.

4.2 FLASH Examp|e5 states. The number of visited states includes those that eventually

Many of the benchmarks are portions of the Stanford FLASH became explored states. The number of visited states is an
(FLexible Architecture for Shared memory) multiprocessor [6]. indication of the size of the hash table that holds the reachable
These designs were all converted from the original Verilog code Stétes. The number of explored states is an indication of the
that was annotated to extract the control logic [5]. Many of the efficiency of the search heuristic. Fewer explored states would
assertions were also translated directly from the FLASH mean a better search heuristic. For some designs, like MC2 (Big),
validation suite in Verilog. All of the bugs that we have found

were actually encountered by the FLASH design team through
their validation testing.

Table 2 Target Enlargement

Table 3 shows the number of visited states and explored

L Yuan et al. refer ttarget enlargemerdsretrograde analysis
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it was not possible to find the set of reachable states within 160g_ 1 Hamming Distance Experimental Results
Table 4 and Table 5 show the result for applying Hamming

Mbytes of memory.

In the

Visited States Explored States distance to the benchmark designs. At first, the Hamming
distance is measured against the largest enlarged target.
Breadth- Target Breadth- Target case of the communication module, this simple heuristic worked
Design first Search| Enlargement] first Search| Enlargement exceptionally well. In the case of CM with 6 and 8 slots, the
CM (4 Slots) 32,779 19 12,784 43 reduction in the number of states found was about 1 to 2 orders of
CM (6 Slots) 386,994 17659 379,048 6487 magnitude. In other designs, Hamming distance’s performance
CM (8 Slots) >2’362’32fl 22,362,334 432,177 2145098 was less stellar. For the FLASH examples, the reduction in the
Inbox 77,319 38,91 35,842 12,8p2 ;
MCL 117 884 57.08b 90330 27 874 number of states for most designs ranged from 10-50%. For the
MC2 (Small) 161,571 119,80p 149,210 113,920 case of LSC, the result was actually worse than Target
MC2 (Big) >4,799,48%  >4,799,444 >2278,144 >2,278J144  Enlargement.
LSC 246,553 224,7¢f¢ 237,508 223,144 Visited States
Table 3 Target Enlargement Experimental Results Hamming Distance | Hamming Distance
o Target (Large Target) + (Small Target) +
Table 3 shows that Target Enlargement can have significant| Desin Enlargement | Target Enlargement | Target Enlargement
reductions in the number of visited and explored states to find alcy @ Slots) To7 101 17
violation of the assertions. While Yuan et al. also reported SOMecm (6 Siots) 17.65( 17.17p 1,042
reductions in the number of states needed to find bugs on twdcwm (8 Slots) >2,362,32 417,671 5,047
small examples, Table 3 illustrates the use of Target Enlargemenfinbox 38,913 38,918 12,9313
on a larger and more realistic set of examples [12]. In addition,|MC1 57,089 38,91B 28,141
the reduction on this set of examples can be up to two orders ofMC2 (Small) 119,804 119,800 94,618
magnitude, which is much larger than shown by Yuan et al..|MC2 (Big) >4,799,48 >4,793,540 >4,793,900
Unfortunately, the effectiveness of Target Enlargement varies[-SC 224,761 343,128 225,3p4
dramatically from one design to another. Table 4 Hamming Distance Visited States
5.2 Analysis of Target Enlargement Explored States
Target Enlargement is most effective when it substantially Hamming Distance | Hamming Distance
increases the probability of visiting a target state, assuming a Target (Large Target) + (Small Target) +
search that randomly generates inputs. Consider an exampl¢__Desgn | Enlargement) Target Enlargement | Target Enlargement
where Target Enlargement is not very effective: Suppose there igCM (4 Slots) 83 81 83
a sequence ofi pipeline registers between the point where an |[EM (6 Slots) 6,431 6,34 499
erroneous signal is generated and the assertion that is eventualfg¥ (8 Slots) >145,49% 901 2,735
violated by the signal. In this case, the probability of hitting an Mngolx ‘l‘?ggz ;232; 1§'§Ef
error becomes 1 when the signal is gene_rateylc_les before it is [Mc2 Gman) 113192( 113504 88',442
a_ctua_lly detecte_d. Target Enlargem_ent will not improve the searchiy ®ig) >2.278.14 >2.274.048 >2.260.480
significantly untiln + 1 cycles of preimages have been computed. [sc 223,74 245,81f7 202,357

One of our benchmarks, MC2, has this behavior. On the other
hand, if one out of a thousand inputaches an error state in the
next cycle, one cycle of target enlargement will increase the
probability of visiting the error state by a thousand fold. MC2’s
first cycle of target enlargement exhibits this behavior. Because
Target Enlargement’s ability to increase the error probability

strongly depends on the design, the location of the inputs and the
location of the assertions, the performance of Target Enlargement

varies widely across the benchmark designs. Despite the
dependency on the design, Target Enlargement consistently
reduces the number of states needed to find violation to the
assertions; consequently, it is used in conjunction with all other
heuristics described later in this paper.

6. Hamming Distance
The first search heuristic is Hamming distance, which is defined
as the number of bits that are different between two bit vectors

[4]. In generating the set of reachable states, Hamming distance
can be used as a search metric [11][12]. Those states that have

the lowest Hamming distance to the largest Target Enlargement
are explored first. In essence, we hope states with very few bits

single state and the enlarged target is computed using arrelatively large Hamming distance.

Table 5 Hamming Distance Explored States

CM (4 Slots) Hamming Distance

Hamming Distance

es oo es “Ao““ es o ss e A“ o sesems sue 4 sosmn o

20

40

60

80 100
States Explored

120 140 16

‘— Explored State Score «+ Minimum Next States Scode

Figure 2 Hamming Distance Example

For example, Figure 2 shows the explored state’s Hamming
differing from the enlarged target will require very few cycles to distance state and the minimum Hamming distance of its next
reach that target. The minimum Hamming distance between astates for a small example, CM (4 Slots). The start state has a

Soon, the search rapidly

algorithm that has a complexity which is linear with respect to the reduced the Hamming distance to 1. Unfortunately, these states

size of the BDD of the enlarged target.
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did not lead to states that were even closer. Eventually, the search

had to resort to states with Hamming distance of 2. After



exhausting more states with Hamming distance of 1, the searchd. Start with the assertion and working backward toward

again had to find a state with distance 2. Eventually, the search primary inputs, include as many FSMs as possible. The size
found the enlarged target. Throughout the search, all the next of the partition depends on the size of the BDDs for each of
states had a Hamming distance of 1 or 2. This is typical of the preimages.

Hamming distance, which tends not to be very discriminating. More than one track can be used to approximate the true
Our experiments show an interesting interaction between preimage more accuratelyin fact, tracks can have overlapping
Hamming distance and Target Enlargement. While Hamming state variables. During the guided search, the state’s score

distance is “aiming” toward a target, Target Enlargement is really depends on to which layer the state belongs. The scoreleatte
making the target larger and therefore less discriminating, whichlayer number in whiclall tracks contain the state. This score is
negates some of the effectiveness of Hamming distance. In factthe minimum cycle number that satisfies the implicit conjunction
when Hamming distance is “aimed” toward the smallest target, of all the tracks. Consequently, this evaluation function greedily
which is the least fuzzy, the results were better. Using this chooses the layer number that is closest to the target. States that
technique, another order of magnitude of improvement can behave the smallest score, or those that are closest to the enlarged
achieved with the CM. In addition, all the FLASH benchmarks target, are explored first.

also showed improvement over Hamming distance with large
target.

Based on these experimental results, it appears that Hamming
distance can be a useful heuristic in finding the violations of
assertions. On a few small examples, Yuan et al. reported modest
reduction in number of steps needed to find the error [12]. This
much larger set of design benchmarks suggests that while
Hamming distance can reduce the number of states needed to find
the error by up to several orders of magnitude, its performance is 1 2 3
also very inconsistent across designs.

7. Tracks Track Number

As can be seen from the results in Section 5, for many of the

designs, it is not possible to do Target Enlargement for many Figure 3 Tracks Evaluation Function Example
cycles. Howeverapproximatepreimages that are based on a . . .
subset of the state variables may be computed for more cycles As an example of the evaluation function, Figure 3 shows a

than Target Enlargement. In practice, a subset of the stateState that is in layers 2, 3, and 4 of three tracks. Because the

variables can control most of the behavior of the design. ThistraCks are approximate preimages, a state can actually belong to

subset may be the state variables from a few of the state machine'g1UItipIe layers .Of the same track. The e"?"‘?a“c’” fur_lc_tion returns
within the design, or may be a few key state variables within ad value of 4 since all tracks agree that it is the minimum layer
FSM that dictates its behavior. For example, in the control logic number.

of FSMs, the Verilog description usually hasvétch  statement 7.1 Tracks Experimental Results

that depends on a state variable that determines much of thé-or most of the designs, Tracks worked quite well across all
behavior. Track computes a series of approximate preimagesdesigns except LSC (Table 6).

Layer Number

based on a given set of variables that strongly control the behavio Visited States Explored States
of the system. With multiple tracks implicitly conjoined, it may Tracks + Tracks +
b : - : p Target Target Target Target
e possible to construct a sufficiently accurate preimage that aids )
the guided search Design Enlargement| Enlargement] Enlargement| Enlargement
_ _ _ CM (4 Slots) 197 94 83 4]
Tracks are defined formally in Equation 1. CM (6 Slots) 17,65( 1,65 6,437 644
. . CM (8 Slots) | >2,362,324 2,31B >145,498 969
Equation 1 Track Computation Inbox 38,014 2,16p 12.802 5
ol _ MC1 57,089 11,39 47,814 6
T = Prelmagels, PrOJVi (T MC2 (Small) 119,804 1,498 113,920 1p1
. . . MC2 (Big) >4,799,484 17,44  >2,278,144 4,283
whereT is one layer of one track, is the Track numbel; is the LSC 224,761 210.94 223,704 208.428

variables in Track, andk is the layer number, or number of
cycles away from the largest enlarged target.

'I'i0 is the largest enlarged target. In essence, the next layer of a

track is the preimagef the projection of the last layer onto the Figure 4 shows the score for MC2 (Small) during the search.
variables in the track. Because all the variables that are not in thd3&cause MC2 (Small) has relatively fewndeterministic inputs,
track are projected out, the resulting preimage is always a supersef Was possible to compute preimages from the assertion to the

of the true preimage. The projection also reduces the size of theStart state and plot the true distance of the explored states to the
BDD and thus enables computation of more preimages. enlarged target. This example illustrates the effectiveness of the

Our experience shows that the following guidelines are approximate preimages. As can be seen in Figure 4, the score
useful in choosing the variables in a track. produced by Tracks initially was routinely off by 10 cycles or

1. Identify the main FSMs in the design more. If all states were uniformly inaccurate, then the score still
would give the right guidance to the search. In fact, Figure 4
shows that the curve between the explored state score and the
actual distance to have similar shape.

Table 6 Tracks Experimental Results

2. ldentify the main state variables in the FSMs
3. Rank other variables that the designer deem “important”
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MC2 (Small) Score Equation 2 Guidepost Evaluation Function
40 Score = (Euideposts‘ PGuidepostl * MCycIes+ Scoreracks
5 Where  Tuideposts!S the total number of guideposts
304 PcuidepostsiS the number of guideposts that the current state
L 25 and its ancestors have past through
§ 201 Mcycesis the maximum number of cycles in all the tracks.
15 | Score,acksiS the Score from Tracks evaluation function
10+ This evaluation function biases the search towards going
51 %, through the guideposts. As the search encounters a new hint, the
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ score improves according to the number of hints that it has
0 20 40 60 80 100 120 140 160 . .
encountered in the past. Consequently, the score only improves
States Explored . . .
when the hints are found in the prescribed total order.
Explored State Score +  Minimum Next States Score . .
‘Actual Distance of Explored State to Target 8.1 GUIdepOSt EXperImental ReSU|tS

Table 7 shows the results for Guidepost. Only one guidepost was
used for each design benchmark. Many of the guideposts were
However, there was a local minimum introduced in the search dueonly to help the search to get out of a local minimum that was
to varying amount of iaccuracy occurring at exploring states 10 introduced by Tracks.
and 14. Because of this local minimum, the search explored states  In the LSC, many FSMs control the complex operations of
that had good score, but were not able to lead to the enlargechandling normal loading and storing of data from the cache,
target. At state 123, the search finally went back to the states thainanaging the store buffers and exceptions such as loading before
were found when exploring states 10 and 14. Eventually, storing. In the LSC, the condition of the guidepost was the FSM
exploring these resulted in finding states that eventually lead toin the state ready to start a cache refill operation and starting a
the target zone. counter that would indicate the completion of tteche refill.
Tracks allow the verification engineer to trade off between Wwith this simple condition, the enlarged target for the LSC can be
accuracy and size of BDDs. While a track with more state bits found in about 15% of the states needed for Target Enlargement.
offers more accuracy, the size of the BDD usually grows faster.

Figure 4 Tracks Score Compared with True Score

When the size of the BDD is too large, the verification engineer V'S'tedgt"’.‘;es - J EXploreg S.éates —
can remove some state bits and introduce several new overlappinf Target UIT:rZZSt S Target U'T:%C;St S
tracks to compensate for_ _the_ loss in_accuracy. . Cons_equently Design Enlargement| Enlargement]Enlargement] Enlargement
Trgcks enables the verlflcat_lon engineer _to_ give high-level CM (4 Siots) 9] o o] 3
gmdance_ t(_) t_he search while working within the computer [cy (6 Slots) 17.65( T.65p 6.437 641
memory limitation. CM (8 Slots) >2,362,324 2296  >1454b8 955

Unfortunately, Tracks did not work very well with the LSC [inbox 38,913 4,16p 12,802 5
design. This particular design had many very small interacting|MC1 57,089 11,398 47,814 12
FSMs. The other design usually had one large FSM that|MC2 (Small) 119,804 1,83 113,920 B9
controlled the behavior of the system. Because of the large|MC2 (Big) >4,799,484 9.60p >2278,144 289
number of FSMs, it was very difficult to pick a series of tracks LSC 224,76} 370 223,744 30,903
that were able to compute preimages with any accuracy. Table 7 Guidepost Experimental Results

Consequently, Guidepost was added to help in the search for LSC . .
duenty P P 9. Comparison of Heuristics

8. Gl_J'IdepOS'[ o . . Figure 5 shows the number of visited states as a percentage of the
In addition to more automated heuristics mentioned previously, preadth-first states. Similarly, Figure 6 shows percentages for the
designers can also provitiéntsto the guided search. The hints, explored states (Note that the vertical axes in both of these figures
called Guideposts are a series of conditions that the designer are in |ogarithmic scale). As can be seen, Target Enlargement
believe to be interesting or even required preconditions for the giways reduces the search space except CM (8 Slots) and MC2
assertion checker to be violated. . (Big), which were simply too big to find the error using Target
Guidepost encodes the number of hints that the search hagn|argement alone. Hamming distance with the large target did
gone through in the score itself. Consequently, the score for anot perform well consistently; however, Hamming distance with
child state is dependent on the score of the parentastelten the small target did show reductions in either explored or visited

properties in the child state. Equation 2 shows the evaluationstates for all designs. With Tracks and Guidepost, the error states
function for Guideposts. Just like the evaluation function for s found consistently faster.

Tracks, a lower score is deemed to be a state that is closer to the
target. In other words, the passage of more guideposts should
indicate a lower score, which is simply the number of guideposts
yet to be encountered or dfueposts — Pouideposd: The
multiplication of this term with M,cesensures that the number
past guideposts dominates over the score from Tracks. In fact, the
Track score only has an effect when the number of previous
guideposts is the same. With this kind of evaluation function, the
score is a summary of the history of the hints that the search has
encountered.
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Number of Visited States to Reach Target Zone
(Normalized to BFS)

1000.0%
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[ Breadth-first Search
EHamming Distance (Large Target) + TE
B Tracks + TE

Figure 5 States Visited as a Percentage of Breadth-first
Search

NTarget Enlargement (TE)
MHamming Distance (Small Target) + TE
A Guidepost + TE

Number of States Explored to ReachTarget Zone
(Normalized to BFS)

1000.0%

100.0%-
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@ Breadth-first Search
B Hamming Distance (Large Target) + TE
HTracks + TE

NTarget Enlargement (TE)
B Hamming Distance (Small Target) + TE
AGuidepost + TE

Figure 6 States Explored as a Percentage of Breadth-first
Search

10. Conclusion and Future Work

Several heuristics have demonstrated to be very effective in
guiding the search to find violations to assertions in realistic
designs. These heuristics can find the errors in much fewer state
than the breadth-first search that is used in model checking.

These techniques extend the capability of model checking while ™

providing a more powerful tool than conventional simulation.

Hamming distance is relatively easy to implement; however,
its effectiveness is rather inconsistent. Techniques like Tracks
and Guidepost offer more robustness. Unfortunately, they also
require more designer input. This set of heuristics offers the
verification engineer tradeoffs for manual labor and effectiveness
in the guided search.

Guidepost can be extended to allow for creation of high level
test vectors. The verification engineer only needs to specify the

critical events that a test vector needs to go through. Then, the
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heuristic can go through the design and fill in a set of inputs that
will lead the design through those critical events. Being able to
specify such a high level test vectors should improve the
productivity of verification engineers and merits further study.
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