

A Proposed Glass-Painting Filter

Priti Sehgal P. S. Grover
 Keshav Mahavidyalaya, Department of Computer Science,

University of Delhi, University of Delhi,
Delhi – 35 Delhi – 7

 psehgal25@rediffmail.com groverps@hotmail.com

Abstract

In this paper we present an algorithm for a glass-painting
filter. The filter inputs any arbitrary 2D image and
converts it into its equivalent glass painted form. The
initial image is processed through various non-
photorealistic rendering stages. The major steps involved
in the process include – edge detection and refinement,
conversion of image into painted form, changing the
appearance of the paints into glass paints and enhancing
the image with black colored outlines and crushed silver
foil background. The specular effect is also achieved by
reflection mapping on per-pixel basis.

Keywords : non-photorealistic rendering, filter, glass
painting, edge detection, Perlin noise, reflection mapping,
OpenGL lighting and blending functions.

1. Introduction

Non-photorealism is a technique and abstraction of some
visual outcome, content or style. Various non-
photorealistic styles using pen and ink [1], graphite pencils
[2], watercolors [3], pastel colors [4] etc have been studied
and automated by many researchers. In recent years there
has been considerable attention put on mosaics [5] and
stained glass windows [6]. The "stained glass" is a colored
and/or painted glass used in a decorative or architectural
setting. The paint used is mixed with certain chemicals.
These glasses come in variety of textures such as smooth,
rough, wavy etc. Traditional artists, to create windows
known as stained glass windows, used these glass pieces.
The pieces are fused with the help of lead cames, or
copper foils. The glass pieces are cut, by following a plan
called a "cartoon", the lead cames are cut to size and the
glass slotted in to create windows. The small glass pieces
are known as tiles and the arrangement of tiles is referred
to as cartoon. The art of glass painting is a unique and
pleasing form of art. It is a method of decorating the
surface of plain glass objects without cutting and piecing
dines with stained glass. Decorative glass painting is a
great way to create a beautiful look on stained glass
windows and doors. Stained glass creations are difficult
and fairly expensive to produce. One can imitate the same
aesthetic quality as other stained products with

considerable less cost. Nowadays Glass Paintings are
widely used for decoration purposes in the form of wall
hangings. In a glass painting, an image is painted with
bright, shiny and transparent colors and is outlined with
black color.
Mould [6] presented an automated method for
transforming any arbitrary image into its stained glass
version. The key issues used by him in designing were the
tile boundaries and the tile colors. He gave an algorithm
for constructing a cartoon from initial segmentation and
suggested a palette close to the limited palette available in
medieval times. The images produced by him gave very
good results of stained glass windows. But these images
could not be used for glass paintings due to several
reasons. Firstly, the segmentation carried out does not
produce natural looking boundaries required in glass
paintings. Secondly, the glass paints are not that bright and
shiny as desired in glass paintings. We had simulated a
glass painting using a multi-pass non-photorealistic
rendering technique [7]. The simulation involved the
creation of wrinkled aluminium foil texture as background,
simulation of glass surface, creation of procedural textures
for generating glass colors and creation of raised, thick
black outlines. The above-mentioned algorithm was an
interactive method to generate a glass painting. The
algorithm suffered from certain drawbacks. It was limited
to geometrical images only. Also large amount of memory
was required to store the glass color palette. We have
proposed a new algorithm to transform any arbitrary image
into its glass paint version in this paper.

2. Overview of the Algorithm

In constructing a glass painted image, we process the
initial image through various stages. Firstly, we find out
the outlines of the image using the most optimal algorithm.
Then we convert the image into its painted form. This
painted image is then rendered non-photorealistically so as
to change the appearance of the paints into glass paints,
which are thin, bright and shiny. The painted image is then
mapped on the surface of glass; outlines are created in
black color. The transparency in the image is achieved
through the transparency in glass. To enhance the look of
the painting, the painting is framed with a crushed silver
foil background. Also, in the end the painting is specular

reflection mapped to get the desired effect through silver
foil background. The steps followed in the algorithm are
described in the following sections.

2.1. Remove Noise from the image

Noise is the data without meaning. This data does not
transmit any signal and is produced as a by-product of
some activities. For example, in images taken from digital
cameras or film cameras may pick up noise from variety
of sources. Since this as an unwanted noise, it may affect
the image processing operations. Hence the noise must be
removed fully or partially from the image for aesthetic
purposes. We have implemented median filter to remove
noise from the input image. This filter is very good at
preserving image detail. It removes the salt and pepper
noise from the image very nicely and causes very slight
blurring of the edge hence it is often used for computer
vision applications. The pseudocode for this filter is:

//pseudocode
begin
 for every pixel in the image
 sort the neighbouring pixels (8-connectivity) in

increasing order of intensity
 Replace the value of the intensity of the pixel with

the intensity of the median pixel from the list
End.

Figure 1 (a) shows the original image. Figure 1 (b) shows
the noise-removed image. This noise filter reduces the
image sharpness, which in turn helps to remove unwanted
edges in edge detection process (Section 2.2).

Figure 1(a):Original image Figure 1(b): Filtered Image

Figure 1: Removing noise from image

2.2. Detect Edges

Edge detection is one of the most commonly used
operations in image analysis. Although there are several
edge detectors, we have tried to implement only those that
would result in strong and connected edges in optimal
time.
Marc et al. [8] had proposed an algorithm for enhancing of
real-time non-photorealistic renderings. It was based on

the edge map, a 2D texture that encoded visually important
edges of 3D scene objects, and includes silhouette edges,
border edges, and crease edges. The multi-pass rendering
algorithm extracted geometrical properties of 3D scene
objects to generate image-space data similar to G-buffers.
If the input image to a glass-painting filter is a 3D image,
then this edge detection technique proves to be quite
efficient by using accelerated graphics hardware. But, if
the input image is a 2D image as in our implementation,
then we are able to get edges extracted from the buffer of
normals but the edges due to varying depths are difficult to
achieve. This is because of the non-availability of the
depth of image. Although there are various algorithms,
with the help of which we can get the depth of 2D image
but all those require the sequence of images as an input,
also it involves a lot of overhead time to calculate the
depth image. Hence we have tried but not used this
algorithm for edge detection in our implementation.
We had also tried to use the concept of watersheds to
detect edges [9]. The advantage of using this concept for
edge detection is that it yields continuous edges of single
pixel width. In a watershed approach an image is divided
into catchment basins separated by counters. Wright et al.
[9] had adopted a watershed pyramid algorithm to create
an edge detector. We had implemented the watershed
algorithm on a Fendi image [Figure 2 (a)] and the result
was an over segmented edge map [Figure 2(b)]. The image
then needs to be post processed by several methods to
merge the resulting segments. Although Wright’s
algorithm achieves good results but we have not adopted
this approach since it is a very time consuming process
and in a glass-painting filter, edge detection is an essential
part of the algorithm. The speed of our algorithm very
much depends on the edge detection part. Hence we have
compensated for the speed at the cost of look to some
extent.
In our implementation we have used Roberts filter on
noise-removed image to detect edges since it is much
faster than the other edge detection filters and it helps to
produce significant results. If we apply Roberts filter on
Figure 2 (a) after removing noise, we get the image as
shown in Figure 2 (c). It is clearly visible that the intensity
of the pixels is more at the edges of an image. We have
converted this RGB image into binary image by
comparing the intensity of each pixel with the threshold
intensity of an image. The resultant binary image is shown
in Figure 2 (d). Although this filter is designed for
grayscale images but works fine for RGB images as well
in our algorithm. The edge map resulting in Figure 2(d)
shows some unwanted pixels in the image. These pixels
are marked with red circles [Figure 2(d)]. To remove these
unwanted pixels, we have used the operator similar to
erosion and dilation morphological operators. While using
an erosion operator, for every foreground pixel we check
the every pixel corresponding to the structural element in

Figure 2(a):Original Fendi Figure 2(b):Over-segmented
Image image obtained through
 watershed algorithm

 Figure 2 (c) : Image obtained after
 applying Roberts Operator

Figure 2(d) : Images obtained after thresholding

Figure 2(e) :Images obtained after eroding white pixels

Figure 2 : Edge Maps

the image, if any of these is black then we set the pixel to
black.
In our implementation we have slightly modified the
erosion operator; we check for every foreground pixel, if
every pixel corresponding to the structural element in the
image is black, then we set the pixel to black. We applied
this operator on Figure 2 (d). The resulting image is shown
in Figure 2 (e). The unwanted pixels encircled in Figure
2(d) are reduced in Figure 2(e). The most important aspect
in this operator is the choice of structural element; a wrong
choice may lead to blank image. In our implementation,
we have considered the following structural element.

0 1 0

1 x 1

0 1 0
Structural Element

The pixel placed under x is checked with the pixels placed
at locations marked 1. Basically this is a cross shaped
structural element and gives sufficiently good results.

2.3. Convert the image into hand-painted image

The digitized RGB image can contain all color shades.
There is a smooth distribution of colors in an image. While
when we look at a hand painted image, the appearance of
colors is solid rather than smooth. There has been a lot of
research in painterly rendering techniques. Many
algorithms have been devised by the researchers to create a
hand-painted image or to convert any arbitrary image into
the hand-painted one [10,11,12,13]. According to these
researchers, an image can be painted by approximating the
brush strokes or by applying textured paints. Another
method to convert any arbitrary image into hand-painted
image is passing it through a filter. Waltmann [14] has
developed several image filters such as: point filters, area
filters, geometric filters and artistic filters. Artistic filters
are those, which filter an image to convert it in some
artistic form. Some of the filters that come under this
category are - Oil Paint, Frosted Glass, Random Blur,
Raindrops. An oil paint filter converts an image into
corresponding oil painted image. We have implemented a
filter similar to oil paint filter and then post processed the
image generated from it to make it resemble to a image
painted with glass paints. In an oil paint filter, the intensity
that appears most frequently around the pixel replaces the
intensity of that pixel.
The proposed algorithm is summarized in the pseudocode
below:
// pseudocode

Begin
 for every pixel (i, j) in the noise removed image
 { Let r be the radius that defines the number of pixels to

be checked in the neighborhood.
 Let I be the number of intensities to be considered.
 Let avgr be an array with I number of elements to

hold R components, avgg be an array with I number
of elements to hold G components and avgb be an
array to with I number of elements to hold B
components.

 for every pixel (x,y) in the radius r of pixel(i, j)
 {
 Also keep a count of distinct intensity of every

RGB pixel.
 Calculate the intensity (p) of a pixel (x,y).
 Increment the particular intensity count (pth intensity

count) .
 Add the value of R,G,and B components of pixel

(x,y) to pth element of respective arrays (avgr, avgg,
avgb).

 }
 Find the maximum intensity count (maxi) and the

value of intensity appearing most (mi).
 Replace the value of RGB components of pixel (i, j)

with the RGB components of the pixel appearing most
(mith element) of avgr, avgg and avgb arrays
respectively divided by maxi.

 }
End;

We have implemented the above algorithm with various
parameters using Figure 1 (a) as the input. The resulting
images are shown in Figure 3 (a-c). The radius is 2 and
number of intensities is 10 in Figure 3 (a). The radius is 4
and number of intensities is 10 in Figure 3 (b) and the
radius is 2 and number of intensities is 100 in Figure 3(c).
It can be seen that Figure 3 (a) is most appropriate as
increasing the radius gives the image a more distorted look
[Figure 3 (b)] and increasing the number of intensities
smoothens the image hence loosing the hand painted
appearance [Figure 3 (c)]. Thus the choice of parameters
(radius and intensities) is very crucial in getting an
appropriate hand-painted image.

2.4. Converting the hand-painted image into

glass-paint colored image

The colors used for glass paintings are bright, shiny,
watery and emissive. The image produced in Section 2.3
[Figure 3] gives a hand-painted appearance but the
medium of colors used does not reflect glass colors. The
paint seems to be thick in Figure 3. To convert the image
into an image painted with thin watery colors, the image
needs to be post processed. We have tried to achieve the
effect of required image by applying a coat of water on the

hand painted image in such a manner that water mixes
with the paint. We had created a color palette of glass
colors using Perlin Noise function [7]. There we had
created textures of colors using Perlin function by
considering the light and dark shade of the color to be
produced as background and noise colors. We have used
the same concept in this algorithm with the difference that
the background color is the same as that of the hand-
painted image and the noise color is considered to be that
of water approximately light blue color. The result of
applying Perlin function with the above-mentioned colors
on Figure 3 (a) is shown in Figure 4 (a).
The result of Figure 4 (a) satisfies the requirement of thin
paints but as we have already said, glass paints are shiny,
emissive and bright. These properties are missing in
Figure 4 (a). To make the image in Figure 4 (a) bright and
shiny, we have used OpenGL lighting and blending
functions. The image is captured in a texture map and the
texture map is blended with the specular highlight map
[15]. Using OpenGL, proves to be the most convenient
way to convert an image into its shiny counterpart without
any need to physically change the pixel values. The result
is shown in Figure 4 (b). The outlined Fendi image using
the edge map created in Section 2.2 is shown in Figure 5.

2.5. Map the resulting image on glass

The images created in the last section exhibit the
properties of bright shiny colors and the outlines, but fail
to show the transparency effect. The transparency effect is
achieved by mapping the image on the glass surface.
Drawing a surface of glass color with an alpha value (A in
RGBA) less than 1 simulates the glass being transparent.
The value of alpha affects the transparency of glass
surface. As the alpha value increases, the surface becomes
less transparent. The glass surface is also mapped with the
specular highlight map to achieve the desired appearance
of glass.

2.6. Enhancing the image with silver foil

background

Framing the painting with a shiny background enhances
the glass paintings and they can be used as wall hangings.
Generally this shiny background is either crushed
aluminium or gold colored foil. We have enhanced
our paintings by framing with crushed aluminium foil
background. The wrinkled aluminium foil is simulated
using bump-mapping technique [7,16]. Again the foil
generated is not bright and shiny, hence we have converted
it into a shiny background using OpenGL lighting and
blending functions [15].The similar concept of mapping
the foil texture with specular highlight map is used, as
used while simulating glass [7]. The effect of the glass
painting with wrinkled aluminium foil is shown in

Figure 3(a):Painted image Figure 3(b) : Painted image
with radius=2 and I = 10 with radius=4 and I = 10

Figure 3 (c) : Painted image with radius=2 and I = 100

Figure 3: Images passed through Paint-Filter
(Section 2.3)

Figure 4 (a):Hand Painted Figure 4(b): Image painted
image passed through with bright shiny colors
Perlin Function

Figure 4 : Hand-Painted Image converted into painting

with glass colors

Figure 5 : Outlined Fendi Image

Figure 6 (a).
The background is visible through the glass [Figure 6(a)],
but the shine of the aluminium foil that is often reflected
through the glass is missing. To incorporate the same, we
have performed reflection mapping [7]. For every point on
the glass surface (where the image is mapped), reflected
vector is calculated by using the Eqn 1.

 r = a – 2*m (1)
Here, r is the reflected vector,
 a is the incident vector and
 m is in the direction of the normal
For this purpose, the normal at any point on the surface is
obtained by parameterizing the surface using the function
O(u, v) [Eqn 2]. Then the normal is given by:

 n = Ou x Ov (2)
Here Ou and Ov are partial derivatives of the surface at
point p and are obtained by central difference method. The
dot product of the reflected vector is then calculated with
the vector between the surface point and the light source.
The value thus obtained is added to the RGBA values of
the image on the glass surface. The result is shown in
Figure 6(b).

3. Results and Conclusions

This paper proposes a filtering technique that gives the
freedom to the user to convert any arbitrary image into a
glass painted version. In our implementation, we have
used SGI’s .RGB image format but we can easily use the
images in any other format provided we know how to load
it and read it. The resulting images are shown in Figure 6
(b-d). Figure 6(c) shows a Fendi image with reflection
mapping and Figure 6 (d) shows a glass painted version
of a leaf. The image generated by our algorithm is
lacking bumped outlines. This feature can be easily
incorporated to further enhance the image. The algorithm
to bump the outlines is provided in our previous work [7].
It takes approximately 2800 millisecs to generate the glass
painted images shown in Figure 6. This algorithm proves
to be optimal since the time taken to generate only the
outlines using watershed algorithm as shown in Figure is
approximately 2500 millisecs. The work presented in this
paper provides a fast, efficient and simple technique to
produce beautiful art work.

4. Bibliography

[1] G. Winkenbach and D. H. Salesin, “Computer-
Generated Pen and Ink Illustration”, In Proceedings of
ACM SIGGRAPH ’94, pp-91-100, 1994.
[2] C. M. Sousa And J. W. Buchanan, “Observational
models of graphite Pencil materials”, proceedings of
Eurographics 1999.

Figure 6 (a) : Glass painting with crushed aluminium foil

background

Figure 6 (b) : Result of glass painting after reflection

mapping

Figure 6(c): Glass Painted Fendi image with reflection

mapping

Figure 6(d): Glass Painted Leaf image with reflection

mapping

Figure 6(e): Glass Painted brick pattern with reflection

mapping

Figure 6: Examples of Glass Paintings

 [3] C. J. Curtis, S. E. Anderson, J. E. Seims, K. W.
Fleischer and D. Salesin, “Computer-generated
Watercolor”, In SIGGRAPH ’97 Conference Proceedings,
pages 421-430, August 1997.
[4] K. Murakami, and R. Tsuruno, 2002 “Pastel-Like
Rendering Considering the Properties of Pigments and the
Support Medium” In SIGGRAPH 02
pages.cpsc.ucalgary.ca/~mario/npr/bib/refs/00s/2002/mura
kami-02.pdf
[5] G. Elber, and G. Wolberg, “Rendering traditional
mosaics”, The Visual Computer 19, 1 (2003), 67ñ78.
[6] D. Mould, ” A stained glass image filter”. Proceedings
of the Eurographics Symposium on Rendering 2003,
16(1):20–25,June 2003.
[7] P. Sehgal and P.S. Grover “Simulation of 2D glass
Painting using multi-pass non-photorealistic rendering
technique”, In the proceedings of The International
Conference on imaging science, systems and
technology’04(CISST’04), pages 279-285.
[8] Marc Nienhaus and Jürgen Döllner. Edge-
Enhancement - An Algorithm or Real-Time Non-
Photorealistic Rendering. Journal of WSCG, 11(2):346-
353, 2003.
[9] A. Wright and S. Acton, Watershed Pyramids for Edge
Detection, Proceedings of IEEE ICIP’97,
2(1997) 578-581.
[10] P. Haeberli. “Paint by numbers: abstract image
representations”, In ACM Siggraph, pages 207--214, 1990.
[11] A. Hertzmann, “Painterly Rendering with Curved
Brush Strokes of Multiple Sizes”, SIGGRAPH ’98
Conference Proceedings, pages 453-460, July 1998.
[12] Michio Shiraishi and Yasushi Yamaguchi. “An
algorithm for automatic painterly rendering based on local
source image approximation.” Non-Photorealistic
Animation and Rendering, 53-58, June 2000.
[13] D. Robert, Kalnins, Lee Markosian, J. Barbara Meier,
Michael A. Kowalski, Joseph C. Lee, Philip L. Davidson,
Matthew Webb, John F. Hughes and Adam Finkelstein.
“WYSIWYG NPR: Drawing strokes directly on 3d

models.” In Computer Graphics (SIGGRAPH 2002. pp.
755-762.
[14] J. Waltman, “Blurring the Line : algorithms and
aesthetics of image filtering”, April 2001.
www.jasonwaltman.com
[15] D Blythe, B Grantham, S Nelson, and T McReynolds.
“Advanced Graphics Programming Techniques using
OpenGL.”
http://www.sgi.com/Technology/OpenGL/advanced_sig98
.html
[16] J Blinn, "Simulation of Wrinkled Surfaces",
Computer Graphics, (Proc. Siggraph), Vol. 12, No. 3,
August 1978, pp. 286-292.

