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Abstract

Area morphology filters are capable of removing objects
in an image based solely on the object area. These oper-
ators can be effectively used for content based image re-
trieval. However, the traditional level set based implemen-
tations of these operators are impractical because of their
time complexities. Here we present a fast implementation
of area morphology based on bitplane decomposition of the
image. Our experiments indicate that the results of image
segmentation are comparable to the original level set based
approach and better than the existing fast area morphologi-
cal techniques. The bitplane based area morphological seg-
mentation technique is then applied for CBIR. Results on its
use in CBIR are presented.

1. Introduction

Successful retrieval of relevant images from large-scale
image collections is one of the current problems in the field
of data management. Early image retrieval methods locate
the desired images by matching keywords that are assigned
to each image manually. However, manual processing has
become impractical as a result of large numbers of images in
collections today. Content based image retrieval (CBIR) has
become a useful tool for management of digital image col-
lections. CBIR, which is based on automatically extracted
primitive features such as colour, shape, texture and even
the spatial relationships among objects, has been employed
since early 1990s. In the last decade, a great deal of re-
search work in image processing has concentrated on CBIR
technologies.

Area morphology is found to be useful for content based
image retrieval. But the high computational costs associated
with it make it infeasible for CBIR where we have to apply
the technique to a large number of images. Fast algorithms
were proposed in the past[1, 7, 9]. Although they decrease
the processing times, the quality of results is not compara-

ble to the original, slow implementations. In this paper, we
propose a fast implementation of area morphology in bit-
planes which speeds up the process while producing results
comparable to the original implementation. The method is
also applied to content based image retrieval.

The remainder of the paper is organised as follows. In
Section 2, we discuss the existing area morphology imple-
mentations and their limitations. Section 3 describes our
fast implementation and its application to image segmen-
tation. Section 4 deals with application of bitplane based
area morphology segmentation to CBIR. We conclude with
a brief description of results in Section 5.

2. Area Morphology

Area morphology, proposed originally by Serra[8] and
later extensively studied by Salembier, Crespo and Serra[4,
5, 7], is based on two algebraic operations: area opening
(AO) and area closing (AC). In contrast to the traditional
morphological filters, area open and area close filters do not
utilise any structuring element. These operations are amor-
phous, i.e., independent of shape or shapeless. We may con-
sider area open operation as the process of removing bright
objects that do not meet a specified minimum area. Like-
wise, the area close operator removes dark objects of insuf-
ficient area. The objects are connected components within
the level sets of he image. A level set is a binary image ob-
tained by thresholding the image at a particular level. For
an image I with discrete domain D and image location p

we define a level set Sl at level l ∈ [0, L − 1] as

Sl(p) =

{

1 if I(p) ≥ l

0 otherwise
(1)

In a level set Sl, the connected component Csl
(p) at p is

given by
Csl

(p) = {q : ∃PI≥l(p, q)} (2)

where PI≥l(p, q) is an unbroken path between image loca-
tions p and q for which each element obeys Sl(·) = 1 (hence



I(·) ≥ l). The neighbouring elements in such a path can be
defined by 4- or 8-connectivity.

For level set Sl, the area open operation is given by

Sl ◦ (a) = {p : ∃|Csl
(p)| ≥ a} (3)

where a is the minimum area (in terms of the number of
pixels). Csl

(p) is the connected component at p. The area
of the connected component at p is |Csl

(p)|. Area close is
similarly defined using the boolean complement of Sl.

For grayscale images, we can define area open and area
close by stacking the processed level sets. The recon-
structed area-opened image at scale a is given by

I ◦ (a) =

L−1
∑

l=1

Sl ◦ (a) (4)

and the area closed image is given by

I • (a) =
L−1
∑

l=1

Sl • (a) (5)

Sequential application of area open and area closed opera-
tions results in useful multiscale operators. Area open-close
(AOC) and area close-open (ACO) operations remove con-
nected components with area less than a from a level set and
its complement respectively. Figure 1 shows the “camera-
man” image and Figure 2 shows the result after using AOC
filter.

Acton’s original implementation[3] of the AOC opera-
tion is time consuming as connected components have to be
computed for all L level sets. It is not practical to apply this
implementation to content based image retrieval. Some fast
algorithms for area morphology were proposed in [1, 7, 9]
but none of them are equivalent of the level set based im-
plementation. The algorithm proposed by Vincent[9] uses
standard morphological open operation in preliminary step
to create a marker image M from the original image I .
The partial connected components within the level sets of
marker image M are fully reconstructed to yield the final
reconstruction R.

The pyramidal algorithm proposed by Acton[1] is based
on the notion that we can successively eliminate small re-
gions in the image by creating coarser pyramid levels. Then,
the surviving regions of insufficient area can be recon-
structed in a coarse-to-fine manner. To create a marker im-
age for an area open with area a = 4m, we first create the
m + 1 level erosion pyramid. The marker creation operates
in two steps as described below.

• Analysis Step: Let P0 = I . For level m > 0

Pm = (Pm−1 	 F0) ↓

Figure 1. Original Cameraman Image (128×128
pixels with 256 grayscales)

Figure 2. Result of AOC filter operation on
Figure 1 using level set implementation

where F0 is the 2× 2 structuring element with the ori-
gin in the upper-left. The downsampling operation, de-
noted by ↓, is the injection operator, where the upper-
left value of each 2 × 2 image subsection is sampled
to create an image that is half as wide and half as high
as that of the previous pyramid level. It is important to
note that at level m, the value of the pixels will repre-
sent the highest level set for which a connected com-
ponent of size 2m × 2m(area a) exists in the original
image.

• Synthesis Step: We use the following relationship,
starting at level m + 1, to recreate the connected com-
ponents

Pm = [(Pm+1) ↑] ⊕ F0

where the upsampling operator ↑ simply injects the
pyramid values in a matrix of zeros that is twice as
wide and high. The dilation step serves as prolonga-
tion operation.

The image P0 is used as the marker M after synthesis.

The partial connected components in the marker image
M are reconstructed fully based on the intensities in the
input image I . The components are reconstructed by selec-
tively dilating these components (one pixel at a time) using



a 3 × 3 cross-shaped structuring element with the origin at
the centre of the cross. The result of applying pyramidal
algorithm with area a = 4 on Figure 1 is shown in Figure
3. This method was found to give provably superior results
among the existing fast algorithms for area morphology in
terms of computational complexity[2].

Figure 3. Result of AOC operation using the
fast pyramid algorithm on Figure 1

Although the fast algorithms improve substantially upon
the computational cost, the results are not equivalent to the
original level set based implementation of area open op-
eration. The impact of the 3 × 3 cross-shaped structur-
ing element is clearly visible as blockiness in the results
of area open and area close operations. More importantly,
the primary motivation for area morphology (i.e., removal
of structuring element and its impact) is virtually ignored in
these fast implementations.

3. Bitplane Based Area Morphological Seg-
mentation

In this paper, we propose a novel fast algorithm that does
not make use of any structuring element by decomposing
the input image into bitplanes and then reconstructing the
same from the bitplanes. Our approach, we argue, is truer
to the philosophy of area morphology and show that it is
about 30 times faster than the level set implementation for
a 256 graylevel image. Our results are also more similar to
the original implementation than those of [1, 2].

3.1. Area Operators

Here we use the concept of decomposing the image into
bitplanes. Bitplane decomposition results in splitting a
multilevel (monochrome or colour) image into a series of
m = log2 L binary images. The graylevels of an m−bit
grayscale image can be represented in the form of a base-2
polynomial

am−12
m−1 + am−22

m−2 + . . . + a12
1 + a02

0 (6)

A simple method of decomposing an image into a collec-
tion of binary images is to separate the m coefficients of the
above polynomial. The 0th-order bitplane is generated by
collecting the a0 bits of each pixel, while the (m − 1)st-
order bitplane consists of the am−1 bits or coefficients. In
general, each bitplane is numbered from 0 to m − 1 and is
constructed by setting its pixels equal to the values of the
appropriate bits or polynomial coefficients from each pixel
in the original image.

Given the bitplane definitions, we can define area open
and area close operations using the bitplanes. First, we de-
fine the operations on individual bitplanes and then for a
grayscale image.

For a bitplane Bl, area open can be defined as

Bl ◦ (a) = {p : ∃|CBl
(p)| ≥ a} (7)

where a is the minimum area in terms of the number of pix-
els. The area of the connected component at p is |CBl

(p)|
and this area may be 0. An area opened bitplane does not
contain connected components with areas smaller than the
minimum area a.

Similarly, an area close operation on a bitplane is given
by

Bl • (a) = {p : ∃|C
Bl

(p)| ≥ a} (8)

where the cardinality of the connected component is defined
on the complement of bitplane Bl, i.e., where Bl(p) = 0.
The area closed bitplane, thus, does not contain any con-
nected components of 0s that are smaller in area than the
minimum area a.

For grayscale images, we can define area open and area
close by reconstructing the processed bitplanes. The recon-
structed area-opened image at scale a is given by

I ◦ (a) =

m−1
∑

k=0

[Bk ◦ (a)]2k (9)

The area-closed image is given by

I • (a) =

m−1
∑

k=0

[Bk • (a)]2k (10)

The result of applying bitplane based AOC operation on
Figure 1 is shown in Figure 4. Table 1 lists the time com-
plexities and the actual average running times (in s) on a
set of 128 × 128 pixel 256 grayscale test images. The bit-
plane based implementation is significantly faster than the
original level set implementation but slower than the pyra-
mid algorithm proposed in [1]. However, the resulting im-
age is “cleaner” and does not show the blockiness evident
in Figure 3. The same is substantiated by comparing the
mean-square error between the level set implementation,



Level set
based
imple-
mentation

Pyramidal
algorithm

Bitplane
based
imple-
mentation

Time com-
plexity

O(LN) O(N) O(N log2 L)

Time (in s) for
128×128 im-
age

98s 0.5s 6s

Table 1. Timings and complexities of area
open operations using different algorithms.
L is the number of grayscales in the image.

and pyramid and bitplane algorithms respectively. For ex-
ample, on the “cameraman” image in Figure 1, the mean-
square error for the pyramid algorithm is 7630 while it is
153 for the bitplane algorithm. We found that the mean
square errors are a factor of 30–50 times lower for the bit-
plane algorithm in our testing.

Figure 4. Result of AOC operation using our
bitplane based algorithm on Figure 1

3.2. Scale-Space Creation

As with the case of level set implementation. we can cre-
ate a scale space by sequential application of the area open
and area close operations resulting in useful bias-reduced
multiscale operators. Area open close (AOC) and area close
open (ACO) are written I ◦ (•(a)) and I • (◦(a)) respec-
tively. Both operations together remove bright and dark ob-
jects with area less than a. AOC and ACO produce image
sacale spaces as the area parameter a is increased. AOC
and ACO scale-spaces were found to have the following
properties[3].

• Fidelity: This property ensures that the finest scale of
scale-space contains the original input signal. Here

I0 = I as the initial condition while creating the sub-
space will guarantee this property.

• Euclidean Invariance: This property ensures that the
method of scale-space creation is invariant to transla-
tion and rotation of the image.

• Causality: It infers that a coarse scale representation
can be recreated from any finer scale representation.
Scale space produced by bitplane method is causal as
Is depends only on Ir for s ≥ r, r ≥ 0 where r, s are
different scales in scale-space.

3.3. k-Means Clustering

The pixels within the scale-space corresponding to the
same image locations form a scale-space vector. A scale-
space vector therefore contains the intensity of a particular
pixel for a given set of scales. The objective of scale-space
classification is to group the scale-space vectors based on
some similarity measure. The k-means clustering algorithm
is a hard classifier which classifies the vectors based on the
distance from the vector to the mean vector. It tries to min-
imise the squared error function

e2 =
∑

s

k
∑

i=1

||di(x, y)||2 (11)

where s represents the number of scales in scale-space and
k represents the number of clusters.

An initial seed vector representing cluster centres is arbi-
trarily specified for each class. The scale-space vectors are
classified based on the minimum Euclidean distance from
the cluster centres. A new set of cluster centres is then cal-
culated from this reassignment. The iterative process con-
tinues until the net migration of cluster centres is insignifi-
cant.

The segmented images obtained with 3 clusters (k = 3)
by the level set implementation as well as bitpane based
implementation are shown in Figures 5 and 6 respectively.
It may be seen that the bitplane based method introduces
spurious segments in some, especially uniform, areas of the
image. This over-segmentation is a result of reducing the
number of level sets and thus losing the dynamic resolu-
tion. However, we found that the segmentation is of a better
quality than that obtained when using the pyramid approxi-
mation.

4. Content-Based Image Retrieval

The segmented image obtained by bitplane based area
morphology is used to extract and match image features in



Figure 5. Segmentation of Figure 1 with k = 3
using the level set AOC implementation

Figure 6. Segmentation of Figure 1 with k = 3
using our bitplane AOC implementation

a CBIR application on a Brodatz texture database of more
than 3000 images. We are in the process of testing the same
features on another database containing 10,000 images.

4.1. Feature Extraction

The segmentation obtained from clustering the scale-
space vectors is used for the purpose of extracting local fea-
tures at a segment level. These features are primarily for
texture and include the mean, variance, uniformity, skew-
ness and entropy defined below. In the following equations
z is a random variable that represents the gray levels and
p(zi) is the corresponding histogram.

• Mean, µ =

L−1
∑

i=0

zip(zi)

• Variance, σ2 =

L−1
∑

i=0

(zi − µ)2p(zi)

• Skewness, µ3 =

L−1
∑

i=0

(zi − µ)3p(zi)

• Uniformity, U =

L−1
∑

i=0

p2
i
(zi)

• Entropy, E = −

L−1
∑

i=0

p(zi) log(p(zi))

4.2. Matching

Integrated Region Matching (IRM)[6] is a novel simi-
larity measure of images based on region segmentation and
segment-level properties. We represent the image by a set
of regions, roughly corresponding to the objects in the im-
age, and a set of colour, texture, shape and location fea-
tures are computed for each such region. The IRM mea-
sure for evaluating the overall similarity between images
incorporates properties of all the regions in the images by
a region-matching scheme. Compared with retrieval based
on individual regions, the overall similarity approach re-
duces the influence of incaccurate segmentation and helps
to clarify the sematics of a particular region. Each region is
assigned a significance measure, indicating its importance
in the matching for deciding the overall similarity between
images.

In our experiments, we chose the texture features listed
above as region features, and the area percentage (i.e., the
fraction of the area of the entire image that is occupied by a
particular region) as the significance measure. The intuition
is that important or perceptually significant areas generally
occupy large areas in an image.

5. Results

We implemented the level set based, pyramid and our
bitplane based area morphological operations as well as the
k-means clustering algorithm in C language using gcc com-
piler on a computer with a Pentium 4 processor at 1.6 GHz
and 128 MB RAM. Segmenting the 128×128 pixel camera-
man image shown in Figure 1 took nearly 40 minutes using
the level set based implementation. It took only 2 minutes
using our bitplane approach and about 12 seconds using the
pyramid algorithm.

A Brodatz database containing more than 3000 images
is used for testing our area morphological operation on a
CBIR application. The database contains about 15 variants
for each of the major texture classes. In CBIR, it is expected
that these 15 images be retrieved when queried with an im-
age from the database.

Initially, a database of all the images is created by run-
ning the AOC operation followed by k-means clustering to
create a segmented image from which texture features (Sec-
tion 4.1) were computed. Query processing and similarity



measure are computed online and the best 10 database im-
ages are retrieved.

An example query and results are shown in Figure 7.
The query image is shown in Figure 7(a). The image is
already present in the database and therefore the best image
retrieved from the database is the query image itself (Figure
7(b)). The other images retrieved, in the order of decreasing
similarity measure, are shown in Figure 7(c)–(f). Of the 5
images shown in the Figure, four belong to the same cate-
gory as the query image and should be regarded as correct.
The other image (Figure 7(d)) is from a different category
and may be construed as incorrect. In general, our experi-
ments indicate that the retrieval accuracy is about 80% for
the Brodatz database.

(a) (b)

(c) (d)

(e) (f)

Figure 7. Example query and results. (a)
Query image, (b)–(f) Top 5 matches

6. Conclusions

This paper described a novel bitplane based approach to
area morphology. Our new implementation of the AOC and
ACO algorithms run about 20 times faster than the original
level set implementations. We found that the quality of re-
sults obtained by our approach is superior to that of existing
fast algorithms as seen in a mean squared error that is lower
by a factor of almost 30–50. The bitplane AOC and ACO
operators do not introduce any spurious edges across mul-

tiple scales when used in creating scale-spaces. They also
satisfy the three properties of scale-spaces (Section 3.2) that
the original level set implementations do.

We used the new algorithms in a multiscale segmentation
algorithm and showed that they result in small amounts of
over-segmentation primarily due to reduced grayscale reso-
lution. However, this result improves the quality obtained
from the existing pyramid algorithm. The segmentation
technique used is rotation invariant (due to the properties
of area morphological operations).

The increased speed and higher degree of fidelity made
it feasible to apply the bitplane area morphological opera-
tions in a CBIR application. Combined with IRM similarity
measure, the results show that the performance is good and
comparable to that of other CBIR approaches.
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