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ABSTRACT
Temporal segmentation of a video into its constituent shots is the
basic step towards the exploration about the organization of digital
video for all higher level analysis. Video shot detection methods
in the literature mostly involve heuristics and fail to perform sat-
isfactorily under varied shot detection scenarios. Though model
based shot recognition methods are popular, they are inadequate
when a given test video sequence contains transitions. Not much
work has been reported which deal with the changes in activities in
areas where we have to recognize the activities over a long video
sequence. We formulate this as a novel N-class, model based shot
detection problem and present a stochastic, asymptotically optimal
procedure as a solution to such a scenario, so that neither changes
in content nor the types of shot transition hinder the decision mak-
ing process. A hidden Markov model (HMM), trained using a few
relevant features from the different classes of frame sequences is
employed to achieve this goal. We present extensive experimental
results to demonstrate the effectiveness of our method.

Keywords
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1. INTRODUCTION
Video is so powerful for knowledge sharing due to its inherent

ability to carry and transmit rich information through its constituent
media. The increased use of digital video necessitates its auto-
matic content analysis for its easy access and fast browsing. All
such analysis techniques require a prior knowledge about the scene
breaks present in the video. Hence the detection of scene or shot
transition is the first and fundamental step of all higher level video
analysis. The commonly found transitions are (a) hard cuts, (b)
fades, (c) dissolves and (d) wipes. Examples of scene dissolve are
shown in figure 1. Hence one has to cope with the change in video
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1: Thumbnail examples of a dissolve shot transition. (a) between
writing hand and talking head and (b) between talking head and
slide show.

activity between two temporal segments and also with the type of
transition in-between. Since the performance of scene change de-
tection has a direct impact on the subsequent higher level video
analysis, a reliable method should be adopted for temporal seg-
mentation [4].

The existing shot detection techniques can be classified into two
categories : (a) threshold based methods and (b) machine learning
based methods, where the former usually uses some function of
frame difference for pixels, blocks or histograms [13], which relies
on a suitable threshold and the latter employs machine learning ap-
proaches[1, 14], which avoids the difficulties involved in threshold
selection. These methods exploit the statistical characteristics of
the test data and uses an HMM model for classification. Authors in
[1] use the differences in signal in both audio and video channels
to train the HMM and hence the method does not work well when
the scene cuts are not hard enough. Authors in [14] try to train the
HMM using features derived during the transition phases. Hence
they cannot handle all types of scene changes equally efficiently.

Authors in [2] use the combination of a Bayesian model for each
type of transition and a filtered frame difference called structural



information for video shot detection. In [5] authors employ HMM
for parsing news video for simultaneous segmentation and char-
acterization. However, it considers both audio and visual features
unlike in our work. In [3] the authors formulate a statistical model
for shot detection, by using a robust metric for visual content dis-
continuities and by considering the shot length distribution at shot
boundaries. However our method is very different in approach and
always yields scene cuts with the minimum delay performance.
Although we use HMM for shot detection, the proposed method
learns the activities in a given scene and makes no attempt to learn
the statistics during transition, making it equally amenable to deal
with all types of shot changes. The key concept is that whenever
the activity in a scene changes, the data statistics changes and we
capture the change point optimally (with respect to detection delay)
using the Shiryaev-Robert statistical test [10].

Since the proposed method is based on detecting changes in ac-
tivities in the scene rather than intensity variation across consecu-
tive frames, it can handle different types of shot changes like wipe,
dissolve, etc, but the activities in the scene must be learnt before ap-
plication. Hence the method is suitable for scenes that can be mod-
eled by appropriate HMMs, like commercials, news video, sports
video, instructional (educational) video, etc. In particular, we ex-
plain the proposed technique with respect to analysis of educational
video due to its widespread current application in distance educa-
tion. As a matter of fact, in [6], the authors make use of the tran-
scribed speech text extracted from the audio track of video to seg-
ment lecture videos. However, this is not a reliable method as any
lecture video may have different types of (audio) pauses, introduc-
ing unnecessary cuts. Development of an appropriate shot detection
algorithm is badly required to analyze instructional video.

We started this paper by placing our work in the context of exist-
ing literature. In the next section we describe the method of feature
selection along with our model. In section 3 we describe the theo-
retical background of change detection procedure and extend it to
N -class transition detection which is subsequently followed by a
description of the proposed algorithm in section 4. In section 5 we
show detailed experiments and analyze the results and in section 6
we have the concluding remarks.

2. CHOICE OF FEATURES AND MODEL
Our objective is to classify shots and to detect the change point

in between. A wide variety of videos are available in digital world
and their scene compositions also show this diversity. For eg., the
classes of scenes found in sports video are entirely different from
those found in educational videos. These constituent shots actu-
ally evolve from the activity that is being carried out in the live
scene. Typically a tennis video may contain scenes like serve, close
up, crowd etc., while an instructional vieo may have instructional
scenes like talking instructor, writing hand, slide show, discussion
etc. Hence a general methodology of scene change detection can
be evaluated only with finite classes of example videos. Since ours
is a hidden Markov model based one, its training determines the
class of video it can cope with. In this paper, we demonstrate the
performance of our algorithm on analysing instructional videos.

Since an instructional video is produced at a live class-room en-
vironment, the activities captured by the camera are limited and
can be classified into a finite number. Generally it contains a talk-
ing head, several slide transitions, hand-written portions on black
board or slide and/or discussion sessions. Here we define three
classes of activities: (1) Talking Head, (2) Writing Hand and (3)
Slide Show, depicted in figure 2.

As one can expect, feature selection is the first task to be carried
out and for that we have to compare the example frames from these
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2: Illustration of different types of scenes in lecture video. (a)
Talking Head, (b) & (c) Writing Hand and (d) Slide Show.

classes. Motion in the first class is more, compared to that in the
second which in turn, is greater than that in the third. Hence the
energy of the temporal derivative in intensity space can be used as
a relevant feature, which is given by

z1(t) =

M∑
m=1

N∑
n=1

(Ft(m,n)− Ft−1(m,n))2 (1)

where Ft is the pixel intensity values of the current frame and Ft−1

is those of the previous frame, M is the number of rows and N is
the number of columns in the video frame.

The gray-level histogram ht(i) gives the distribution of image
pixels over different intensity values. The histogram will be very
sparse for the slide show class and moderately sparse for the writ-
ing hand and dense for talking head. Hence the entropy of the his-
togram [7] can be treated as another good feature for the detection
of these activities, which is given by

z2(t) = −
255∑
i=0

ht(i)log(ht(i)). (2)

Since the slide show and writing hand frames contain certain
templates or white pages as background, the gray-level, correspond-
ing to the background will be emphasized in the histogram ar-
ray. Hence the mode of the histogram is chosen as the third fea-
ture, z3(t) and we use a three dimensioanl feature space, Zi =
{z1(i), z2(i), z3(i)} for the HMM based classification. Note that
the features discussed here correspond to the analysis of lecture
videos. For other types of video, appropriate features which are
relevant to the scenes present, should be chosen.

Hidden Markov models are stochastic state transit models which
make it possible to deal with time-scale variability in sequential
data [9]. The basic characteristic of HHM is their learning ability
which automatically optimizes the parameters of the model when
presented with a time sequential data. HMM consists of a fixed,
known number of states. Each of these states are assigned proba-
bility of transition from that particular state to any other state in-
cluding itself. At every instant of time, transition from one state
to another occur stochastically and similar to Markov models, state



at a point in time depends only on the state at the preceding time.
Each state yields a symbol according to the probability distribu-
tion assigned to the state. The present state or the sequence of
states are not directly observable, hence the name hidden Markov
model. These states can be inferred through the sequence of the
observed symbols. Rabiner [9] formulated the observations in each
state as weighted mixtures of any log-concave or elliptically sym-
metric probability density function with mean vector µjm, and co-
variance matrix Ujm, for the mth mixture component in state j.
Gaussian mixtures were used to model the probability distribution
of the observations. The weights in Gaussian mixture should sum
up to one.

2.1 Learning the Activities
To apply HMMs to time-sequential data from the images I =
{I1, I2, . . . , IT }, the images must be transformed into observa-
tion sequences Z = {Z1, Z2, . . . , ZT } in the learning and recog-
nition phases where Zn = {z1,n, z2,n, . . . , zJ,n} and J is the di-
mensionality of the features. For the given example, J = 3. In the
learning phase, for every class of activity, from each frame Ii of an
image sequence, a feature vector fi ∈ Rn , is extracted, and pdfs
are constructed. Training an HMM means estimating the model
parameters λ = (A, B, π) for a given activity by maximizing the
probability of the observation sequence Pr(Z|λ), where A is the
transition matrix containing the probabilities of transition from one
state to another, B is the observation matrix, consisting the proba-
bility of observing a particular symbol in any given state and π is
the initial state probability[9]. The Baum-Welch algorithm is used
for estimating these parameters[9]. For each and every activity we
calculate the features from the sequence of images. These features
of m = 1, 2, . . . , M datasets of a single type of activity are then
stacked together to get a three dimensional data matrix, Zjtm, with
other two dimensions being the time n and feature dimension j.
This is then fed into Baum-Welch algorithm to get the optimized
set of parameters λ for every activity.

2.2 Recognizing the Activities
In the recognition phase, from each frame of the image sequence

of the test data, feature vectors are extracted in a similar manner.
These vectors are compared against the models for each class of ac-
tivity . For a classifier of C categories, we choose the model which
best matches the observations from C HMMs λi = {Ai, Bi, πi},
i = 1, . . . , C. This means that when a sequence from an unknown
category is given, we calculate the probability that this particular
observation was from any of the category i for each HMM and se-
lect λc∗ , where c∗ is the category with the best match. The class
that gives the highest likelihood score calculated using the forward
algorithm is declared as the winner [9]. Although the HMM is a
well appreciated method for activity recognition, we have used a
unique feature vector. Since we are able to select the relevant fea-
tures associated with the visual variation in the constituent scenes
in the video, we achieve an excellent recognition accuracy.

3. OPTIMAL TRANSITION DETECTION
Hidden Markov model can be used to identify isolated activi-

ties as discussed in section 2. The test sequences that are fed into
the model are required to be of a single temporal segment. If the
sequence consists of more than a single scene, one followed by
another, the recognition process will not give the correct result.
Hence, we need some method to detect these scene changes au-
tomatically and continuously with the minimum possible delay and
then segment the test sequence at the transition point. Thus, these

temporally segmented sequences can then be fed into HMM indi-
vidually so as to recognize that particular scene.

Consider the interesting formulation of the change point detec-
tion problem. There is a sequence of observations whose distri-
bution changes at some unknown point in time and the goal is to
detect this change as soon as possible, subject to certain false alarm
constraints [10]. Let the unknown point of time at which the change
occurs be ζ. At ζ, all or most of the components of the observa-
tion vector change their distribution. Let us consider that there are
only two classes, c0 and c1 and the change takes place from class
c0 to c1. If the change point occurs at ζ = k, then the jth com-
ponent of the feature vector Zj,1, . . . , Zj,k−1 follow the distribu-
tion whose conditional density is f (j)

c0,i
(zj,i|zj,1, . . . , z,i−1), i =

1, . . . , k− 1, while the data zj,k, zj,k+1, . . . have the conditional
densities f (j)

c1,i
(zj,i|zj,1, . . . , zj,i−1), ∀ i ≥ k.

Veeravalli [12] proposed the centralized sequential change point
detection procedure with a stopping time τ for an observed se-
quence {Zn}n≥1, where Zn = {Zn1 , . . . , ZnI } and
Zni = {zj,1, . . . , zj,n}. Thus Zn is the accumulated history of all
features upto the given time instant. A false alarm is raised when-
ever the detection is declared before the change occurs, i.e. when
τ < ζ, where τ is the computed detection time. A good change
point detection procedure should give stochastically, a small detec-
tion delay (τ − ζ) provided there are no or very few false alarms.
The change point ζ is assumed to be a random variable with some
prior probability distribution pk = P (ζ = k), k = 1, 2, . . .. It
follows from the work of Shiryaev in [11] that if the distribution of
the change point is geometric, then the optimal detection procedure
is the one that raises an alarm at the first time such that the posterior
probability pn of occurrence of change point exceeds some thresh-
old θ, where the threshold θ is chosen in such a way that probability
of false alarm (PFA) does not exceed a predefined value α.

The exact match of the false alarm probability is related to the
estimation of the overshoot in the stopping rule. Putting θ ≤ 1 −
α gives an optimal solution to this problem. Now, let us assume
that the prior distribution of the change point is geometric with the
parameter ρ, 0 < ρ < 1, i.e.

pk = P (ζ = k) = ρ(1− p)(k−1) for k = 1, 2, . . . (3)

Shiryaev [10] defined the following two statistics for k ≤ n. Let

Λkn =

n∏
t=k

J∏
j=1

f
(j)
c1,t

(zj,t|Zt−1
j )

f
(j)
c0,t

(zi,t|Zt−1
j )

. (4)

where the term on the right hand side can be interpreted as likeli-
hood ratio and

Rρ,n =

n∑
k=1

(1− ρ)(k−1−n)Λkn. (5)

Taking into account that Rρ,n = pn[(1− pn)ρ], the Shiryaev stop-
ping rule can be written in the following form

νθ′ = inf{n ≥ 1 : Rρ,n ≥ θ′}, θ′ =
θ

(1− θ)ρ . (6)

where νθ′ denotes the time instant of shot change for a specific
value of θ′. Shiryaev procedure is optimal in the iid case. How-
ever, Veeravalli in [12] showed that it is asymptotically optimal
when α approaches to zero under fairly general conditions.



3: Likelihood ratios of the instructional scenes at change point.
Each curve represents the likelihood normalized with respect to the
current activity. The symbol

∫∫
represent broken time axis.

4. OVERALL ALGORITHM
In the above sections we described various components that we

used in our work. In this section we show how we combined each of
these components so as to use it in our framework. We also show
how our framework can be used for detecting the change points
with minimum delay. Before the change occurs, the output of the
proposed algorithm would be same as that of a HMM based rec-
ognizer. Hence, we can safely assume that we know the scene be-
fore the shot change occurs. Once the change occurs, our goal is
to accurately detect the change point between the scenes with the
minimum possible delay and very low false positives.

As mentioned earlier Veeravalli [12] used the Shiryaev-Roberts
change point detection procedure [8] to solve a two class problem
in a distributed sensor network. Unfortunately, the problem of rec-
ognizing scene changes cannot be modeled as a two-class problem
as there could be several types of shots representing different activi-
ties. Hence we modify their algorithm so that it can find transitions
among N different classes, thereby making it an N-class change
point detection procedure. For each point in time, we calculate
the likelihood ratios for every category, the denominator being the
likelihood of the present scene. Hence, the highest value among all
these ratios is one at any given time instant and it corresponds to
that of the present scene. All other likelihood ratios are less than
one. The scenario remains the same until a change point occurs.
When the scene changes, the likelihood curve of the previous scene
drops down and the likelihood of another scene rises. This is illus-
trated in figure 3 where the likelihood ratios for transition shown in
figure 1 are plotted as a function of time. In the curve, change starts
at frame T1 and the transition phase gets over at frame T2 (ground
truthed manually). The detected transition frame T0 should satisfy
T1 < T0 < T2. We declare this point T0 as a valid change point
according to the Shiryaev stopping rule. Once it has been declared
that a change has occurred, the current frame is taken as first frame
and the recognition process is again initialized. This is done con-
tinuously to achieve a continuous recognition of scenes and shots.
Hence, keeping all things unchanged, equation (6) can be modified
to

νB = inf{n ≥ 1 : Rciρ,n ≥ θ′}. (7)

for any ci, where ci i = {i = 1, 2, . . . , N}s are the categories of
the scenes present in the dataset. Let c0 be the present shot already
recognized. The Shiryaev statistics gets modified to

Λkn(ci; c0) =

n∏
t=k

J∏
j=1

f
(j)
ci,t

(zj,t|Zt−1
j )

f
(j)
c0,t

(zj,t|Zt−1
j )

. (8)

and

Rciρ,n =

n∑
k=1

(1− ρ)(k−1−n)Λkn(ci; c0). (9)

Refering to figure 3 again, we explain the formulation of our al-
gorithm. The figure shows an example of successful detection of
change point. The x-axis being the time and the y-axis is the likeli-
hood ratios. The colored dashed curves shows the likelihood ratios
of different activities. The vertical lines shows the actual transition
boundaries. It is denoted by point T1 and T2 in time line. We can
see from the plot that initially when the sequence consisted of only
one activity, the blue colored dashed curve, corresponding to the
activity at that instant has the highest value. At change point, the
likelihood for that particular activity decreases and the likelihood
for the new activity increases. Hence, the likelihood ratio for the
new activity increases. As this increase in ratio crosses the thresh-
old, we initialize the value of the first frame to current frame and
again the log-likelihoods are calculated using the HMM discussed
in section 2. In figure 3 we reinitialize the likelihoods at point T0.
The new activity is shown by rise in value of another curve to one.

Having arrived at the N-class transition detection solution, we
now provide a step-by-step description of the proposed algorithm:
Step 1: Compute the feature vectors for a block of test frames and
feed it to the trained HMM models to recognize activity.
For each subsequent frame, do:
Step 2: Compute the Shiryaev’s statistics using likelihood ratios to
check whether the ratio exceeds the threshold.
Step 3: If not go to Step 2; else reinitialize current frame as first
frame and go to Step 1.

5. RESULTS AND DISCUSSIONS
We demonstrate the performance of the proposed algorithm on

several lecture videos. Our experiments were aimed at finding how
well our algorithm performs with respect to false alarm and de-
tection lag when the probability of false alarm is changed. The
videos used for the experiments consisted of typically three dif-
ferent lecture scenes, viz. talking head, writing hand and the slide-
show presentation, as shown in figure 2. The image sequences used
for training were different from the ones used for testing. Features
are calculated as explained in section 2. These features are plotted
in figure 4 for a video segment which has two transitions. Figure
4(a), (b) and (c) show the features z1(t), z2(t) and z3(t), respec-
tively.

The log-likelihood ratios for the three classes for the temporal
duration as shown in figure 4 are plotted in figure 5(a). The green
curve denotes talking head, the red one denotes slide show and the
blue one denotes writing hand. Note that at frame number 152, the
scene transits from slide show to talking head and at frame number
2823, it transits back to slideshow. For a comparative study, the
simple histogram difference for the same temporal duration is plot-
ted in figure 5(b), in which it crosses the threshold a couple of times
during both the transitions, signifying certain temporal ambiguities
as regards when exactly the transition takes place. This is because
both the transitions are dissolves with a duration of 10 - 15 frames.
For illustration, the first transition in the given temporal duration is
shown in a larger time scale in figure 6. The histogram difference
curve in figure 6(a) shows considerably high values during the dis-
solve transition and so there is an ambiguity in change detection.
But the log-likelihood curves shown in figure 6(b) do not suffer
from such problems and are able to fix the change point without
any ambiguity. Hence our method perform quite well irrespective
of the type of transition involved. This is because the algorithm
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4: Plots of the features used for shot detection in a video segment.
(a-c) are the features z1(t), z2(t) and z3(t), respectively.

(a)

(b)

5: Plots of the log-likelihood ratios of the classes and the histogram
difference for the temporal duration shown in figure 4. (a) shows
the log-likelihood curves and (b) shows the histogram difference.

(a)

(b)

6: Plots of the histogram difference and the log-likelihood ratios
of the classes in a larger time scale for the first transition as given
in figure 5. (a) shows the histogram difference and (b) shows the
log-likelihood curves.

7: Plots showing average number of false alarms and detection
delay for different values of threshold α.

automatically recognizes the activity in a video and continuously
looks for a change point thereafter.

Our dataset consisted of forty two scene transitions having all
possible combinations and different types of shot changes. The
duration of the transition varied from a minimum of two frames to
a maximum of seventeen frames. The ground truths were obtained
through subjective reviewing. The transition detection algorithm
takes the likelihoods computed by HMMs in each time frame and
computes the probability of transition in linear time.

In the testing phase, the experiments were carried out for differ-
ent values of threshold α. When α was kept as low as about 0.02,
the results showed a large number of false alarms. We increased
α in steps of 0.02. The accuracy increases as α is increased. For
α = 0.07 only two out of forty two showed false alarms. The re-
maining sequences gave correct results with no false alarm. When
the value of the threshold was further increased to 0.1, all the se-
quences were detected perfectly and no false alarm was seen in any
of the sequences. The average number of false alarms for the ex-
perimented scenes with respect to different values of α is plotted in
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(e)
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8: Example results showing thumbnail frame sequence at shot
boundaries for different videos and the obtained change points. The
arrow marks show the scene breaks.

figure 7. The gradually decreasing plot intuitively substantiates the

claim of proper working of the proposed algorithm.
On the similar lines of the above experimentations, we tested for

the variations in detection delay given by (T0 - T1 ) against different
values of threshold as shown in figure 7. With lower values of α
though there were frequent false alarms, the detection delays were
considerably small. With the increase in α, the detection delay also
increases. When α was initialized to 0.02, it gave very low values
of detection delays. There is a marginal increase in the detection
lag when the threshold is increased to 0.05. On further increase to
α = 0.1, the average delay increases to almost twice of the detection
lags at α = 0.05. Hence, if we keep the value of α low, we get very
accurate and low detection delay, but it increases the occurrence of
the false alarms. Whenα is kept high, detection accuracy improves,
but the lag increases.

Finally in figure 8 we give a few illustrative results on change
detection on different sequences at shot boundaries. Here only one
example thumbnail of boundary frame sequence for each video is
shown and the corresponding detected scene change is marked by
an arrow. Note that in figure 8(a) the scene transition is a cut while
in (b) - (f) it is dissolve which occur through eight frames in (b) -
(e) and through twelve frames in (f). Also, figures 8(a) - (d) show
transitions between talking head and writing hand while (e) - (f)
show those between talking head and slide show. Regardless of
the type of scene change, our algorithm effectively identified scene
breaks at the points marked.

6. CONCLUSIONS
We have presented a novel model based approach for recog-

nizing scene transitions continuously by monitoring the likelihood
functions. We proposed a framework that can automatically detect
the transition in scenes and thereby separate them at the transition
points so that the individual activities can be efficiently and contin-
uously recognized with a guaranteed minimum delay. Even though
the transition examples used here are taken from lecture video, our
model works equally well for other videos, but what makes it dif-
ferent is the choice of features. The feature selection differes for
various classes of videos like educational video, news video, sports
video, etc. Hence the results are quite applicable to all types of
video irrespective of its scene composition.
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