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ABSTRACT
Segmentation of multiple objects in a scene from the single
initialization of an active membrane is always advantageous
compared to separate initialization of active contour for seg-
menting each of the multiple objects. This proposal, how-
ever, is not robust in segmenting poorly-contrasted touching
objects especially when pixel groups belonging to a single ob-
ject can have spectral signatures similar to the background
pixels. In this paper we have used fuzzy rule based learn-
ing scheme to record the spectral signature of the objects
and background and spatial information of the topology of
an active membrane segmenting the objects. The learning
scheme helps in splitting the active membrane for segment-
ing multiple objects and integrates the topology adaptive
property of the active membrane with its architecture and
evolution. The evolution of this membrane is tested in a
challenging application domain of estimation of sizes of oil
sand.

Keywords: Active membrane, topology adaptive para-
metric model, fuzzy-rule base.

1. INTRODUCTION
The topology adaptive active membrane [3] segments im-

ages of multiple objects from the single initialization of the
membrane placed on top of the image intensity surface. This
is superior to topology adaptive active contour [4] because
segmentation using active membrane is independent of ini-
tialization. Also, since the active membrane evolution is
effected in both image plane and also along image intensity
plane, it can segment images of touching objects which is
not possible through [4] or through straightforward imple-
mentation of level sets [1] [2].

However, the active membrane evolution fails to segment
images of multiple objects when objects and background
have similar spectral characteristics due to uneven surface of
the objects or non-uniform lighting condition. Therefore, a
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need exists to learn or correlate the spectral characteristics
of objects and background in a scene with their spatial posi-
tions or class label. The objective of this paper is to design
a classifier framework to label object and background class
in a scene and integrate this classifier output with the active
membrane evolution.

The active membrane is modeled using finite elements and
contains a set of vertices and links (joining two consecu-
tive vertices). Once the membrane is placed on top of an
image intensity surface, the links of the membrane can lie
completely within a cluster representing object(s) or within
background. In addition the links may lie at the boundary
between the object and background clusters. The PDE gov-
erning the active membrane evolution should iteratively tear
the links lying at the boundary of object and background
clusters and should gradually delete the links contained in
the background pixel clusters. Finally, after convergence,
the remaining links should represent the object(s). The out-
put of the classifier should help in identifying the position of
the link with respect to object, background or their bound-
ary pixel clusters.

The classifier is designed in the form of a set of fuzzy
rules [5] which get its initial training from a known set of
images and their ground truths. The fuzzy rules are derived
in the form of a set of features of a link of the active mem-
brane and the corresponding spatial locations of the link, ei-
ther within the objects or background or at their borders in
the training image. Each of the class labels representing ob-
jects, background or their boundary, is represented using a
Gaussian function. The advantage of the proposed approach
is that the parameters of these three Gaussian functions are
updated simultaneously using PDE considering membership
of each of the link to all the classes rather than taking a hard
decision of accepting a particular link to a specific class. This
also conforms to the basic premise that the spectral char-
acteristics of these three classes overlap to a great extent,
segmentation of which is otherwise almost impossible.

In the next section, we present the basic design of the ac-
tive membrane, followed by the basic architecture of fuzzy
rule based training approach in Section 3. The result of
the proposed approach including comparison to competing
methods are presented in Section 4 followed by the conclu-
sions.

2. DESIGN OF THE ACTIVE MEMBRANE
An image I(x, y) : < × < → < is considered as a 3D sur-

face where an image pixel value is the height of the surface



along z-axis at an image location (x, y). The tool for seg-
mentation is a flexible active membrane. This membrane
is guided by the internal energy that controls the stiffness
of the membrane and an external energy that guides the
membrane towards objects seen in the image. The mem-
brane can be defined as a geometric mapping from material
(parametric) co-ordinate domain to 3D Euclidean space <3

at a particular time instance t ∈ [0,∞): M : (r, s, t) →
V (r, s, t) = (X(r, s, t), Y (r, s, t)). The bivariate material co-
ordinates are (r, s) ∈ [0, 1] and V (r, s, t) represents mem-
brane at time t.

Evolution and tearing of membrane need discrete repre-
sentation of membrane. We assume that there exists an
imaginary grid over the membrane. The grid tessellates the
membrane into a mesh of small rectangular elements. The
grid points over the membrane are represented in a matrix
referred as grid matrix. If the membrane is tessellated into
a mesh of m × n rectangular elements, then there exists
(m + 1) rows and (n + 1) columns in the grid matrix. The
discrete vertices of the elements are represented by V =
(V1,1, V2,1, · · · , Vi,j , · · · , Vm+1,n+1) where Vi,j = (Xi,j , Yi,j)
denotes the co-ordinate of the (i, j)th vertex. The connec-
tion between two neighbouring vertices is defined as link. We
first place the membrane covering the entire image. Then we
design a mechanism to delete the part of the membrane that
belongs to background region of the image and tears those
links at the junction of two objects or object and boundary.
As noted earlier this deleting and tearing is effected using a
classifier which is described next.

2.1 Design and training of classifier
Given a set of training images and their corresponding

ground truths including the active membrane grid matrix
defined on the ground truths, we label the active membrane
links as 0, 1 and 2 corresponding to locations of these links
within object, background and their boundaries respectively.
Given a link, we specify two image intensity based features
across horizontal and vertical directions starting from the
middle of the link. Let us describe these features using an
example.

Fig. 1(a) is a 6-element, 12-vertices active membrane with
8 horizontal and 9 vertical links. Consider the link AB of
Fig. 1(a) and consider the horizontal and vertical directions
HH ′ and V V ′ starting middle point D of AB. A set of
equi-spaced points are sampled along HH ′ and V V ′ for the
entire span of the active membrane. These sampled points
are shown using crossed square boxes in Fig. 1(a). For a set
of points S0, S1, S2 etc. as shown in Fig. 1(a), we check
for the intensity distribution patterns. Average of pixel in-
tensities between S0 and S1 is assigned to S1, S1 and S2

is assigned to S2 and so on. In case of monotonically in-
creasing S0 < S1 < S2..., the difference between initial and
final sampled point is a candidate feature in between DH ′.
In case the intensities of sampled points are not monotoni-
cally increasing, the candidate feature value is taken as zero.
Note that for every link centre point like D, we can get four
such candidate feature values testing increasing intensities
along DH, DH ′, DV and DV ′. The maximum of these
four feature values is taken as one of the features of the link.
This feature is an indication of local minima of an image
point and averaging the pixel values in between the sampled
points averages the noise to certain extent.

For the next feature, we calculate the maximum range of

monotonically increasing or decreasing intensity along the
sampled points S1, S1 and S2 etc. The minimum of these
ranges along four directions DH, DH ′, DV and DV ′ is the
second feature of the corresponding link, in this case AB.
This feature is an indicator of the thickness of a probable
edge when a link is in between the object and the back-
ground pixel clusters.

Therefore, the training module consists of a feature set
(f1, f2) of each link as noted above and for every pair of fea-
tures (f1, f2), there exists a label to the link 0, 1 or 2 depend-
ing on the location of the link within object, background
or their boundaries respectively. In order to estimate the
cluster parameters corresponding to clusters of links within
object, background or their boundaries, we apply 3-clusters
fuzzy c-means clustering on N × 3 training data set for N
number of links and 3 columns corresponding to two features
and class label column for each link. On convergence, the
fuzzy c-means clustering provides a partitioned vector U ∈
[0, 1] of size 3×N where rth column of U provides the fuzzy
indices of rth link to the three possible clusters. The cluster
centers are defined as, C = {Ce,p, e = 1, 2, 3 and p = 1, 2, 3}
where Ce,p represents pth co-ordinate of eth cluster center
in 3D space. The closeness of the pth feature of rth link fr,p

with respect to the pth co-ordinate of eth cluster is defined
by Gaussian function,

G(fr,p, Ce,p, σe,p) = e

−(fr,p−Ce,p)2

(σe,p)2, (1)

where σe,p = 1
Ne

∑Ne
r=1(fr,p − Ce,p)2. The closeness of fea-

tures of rth link with respect to eth cluster center is defined
by,

ψr,e = ΠP
p=1G(fr,e, Ce,p, σe,p). (2)

Now if features of rth link belong to eth cluster then output
label φ for eth cluster is found from the linear regression of
input features fr,p, p = 1, ..., P ,

φr,e = We,0 +
P∑

p=1

We,pfr,p, (3)

where W is the regression coefficient of eth cluster. Since,
a particular rth link has membership to each of the three
clusters, the final label of that particular link is given by
weighting the label of the link with its membership value.

N̄(r) =
K∑

e=1

φr,eψr,e. (4)

In case of training, the value of N̄(r) calculated from (4)
may not be identical with N(r) obtained from the training
images. Therefore, the total error for all the link can be
defined as,

E =
N∑

r=1

‖N̄(r)−N(r)‖2 (5)

The Gaussian parameters Ce,p, σe,p and regression coeffi-
cients We,p for eth cluster are tuned by minimizing the error
of (5) iteratively with the help of gradient decent method,

Ce,p(t + 1) = Ce,p(t) + ηC
∂E

∂Ce,p

∣∣∣Ce,p=Ce,p(t) (6)

σe,p(t + 1) = σe,p(t) + ησ
∂E

∂σe,p

∣∣∣σe,p=σe,p(t) (7)

We,p(t + 1) = We,p(t)− ηW
∂E

∂We,p

∣∣∣We,p=We,p(t) (8)

where t denotes the iteration number and ηC , ησ and ηW

are the learning parameters. We stop the iteration when (5)
is less than a small preset number ε. The overall training
algorithm is given as follows,



(a) (b)
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Figure 1: (a): Sampled points for a vertical link.
(b)-(d): Link deletion between two conjoint objects.

1 Input: f , We,l,p randomly chosen;
2 Compute C = Ce,p, for given K;
3 do{
4 for r = 1 to N{
5 for e = 1 to K{
6 for p = 1 to P{
7 Compute σe,p, G(fr,p, Ce,p, σe,p), ψr,e;

}/* end: for r = 1 to N */
8 Compute φr,e, N̄(r);

}/* end: for e = 1 to K */
9 Compute E, ∂E

∂Ce,p
, ∂E

∂σe,p
, ∂E

∂We,l,p
;

}/* end: for p = 1 to P */
10 Tune Ce,p, σe,p, We,l,p with (6)-(8);
11 while(E < ε).

In the next section we present the scheme for evolution of
the membrane and how the learning using classifier helps in
image segmentation.

2.2 Membrane evolution and link deletion
The active membrane evolves minimizing the energy [3],

E(V ) =

∫ 1

0

∫ 1

0

[
α

(∥∥∥∥
∂V

∂r

∥∥∥∥
2

+

∥∥∥∥
∂V

∂s

∥∥∥∥
2
)

+ βP (V )

]
drds. (9)

The first two terms in the right hand side are the internal
energy terms dependent on the amount of deformation of
the membrane. The last term is the external energy term
dependent on the image characteristics. The weights α and
β depend on the local image intensity. The external energy
P (V ) depends on the image gradient and also on the dif-
ference of the height of the local membrane and the image
intensity surface. Minimization of E(V ) is done by

∂V

∂t
+

∂E(V )

∂V
= 0, (10)

and with the help of Finite Element Method (FEM) we
get [3],

α
(
I

(
Xt−1

i,j , Y t−1
i,j

)) (
4Xt

i,j −Xt
i−1,j −Xt

i+1,j −Xt
i,j−1

−Xt
i,j+1

)
= β

(
I

(
Xt−1

i,j , Y t−1
i,j

))
∂P
∂X

, and

α
(
I

(
Xt−1

i,j , Y t−1
i,j

)) (
4Y t

i,j − Y t
i−1,j − Y t

i+1,j − Y t
i,j−1

−Y t
i,j+1)

)
= β

(
I

(
Xt−1

i,j , Y t−1
i,j

))
∂P
∂Y

.

(11)

The FEM vertices are indexed using (i, j) and the corre-
sponding image pixel value at time t is given by I(Xt

i,j , Y
t

i,j).
The external energy components along different axes are de-
fined as,

∂P (Vi,j)/∂Xi,j = −∑
η

∑q
k=0 N(k)∇x |∇I| , and

∂P (Vi,j)/∂Yi,j = −∑
η

∑q
k=0 N(k)∇y |∇I| . (12)

In (12) the gradient of the Gaussian convolved image is |∇I|.
Instead of taking straightforward image gradient, we have
utilized the gradient vector flow [7] of Gaussian convolved
image gradients GV F (|∇I|) for the external forces in x and
y directions. The external energy at one particular vertex is
calculated after summing external energies of its 4N vertices
specified by domain η. The weight of the external energy at
the kth point out of total q number of discrete points in the
inter-vertex distance is N(k).

The weights α(I) (and similarly β(I) ) are taken as linear
function,

α(I(X, Y )) =
I(X, Y )

Range(I)
× αhigh, and (13)

β(I(X, Y )) =
Range(I)− I(X, Y )

Range(I)
× βhigh, (14)

where (αhigh, βhigh) are set experimentally and Range(I) is
the range of intensity of image I. Rewriting (11) and simpli-
fying the notation, we ultimately get the active membrane
evolution equation [3],

V t−V t−1

4t
+ α · ∗AV t = β · ∗Fv ⇒

(I +4t× α · ∗A)V t = V t−1 +4t× β · ∗Fv,
(15)

where A is a tv × tv square stiffness matrix. The total
number of FEM vertices in the membrane is tv which is
equal to (m + 1)(n + 1). V is tv × 2 position matrix. The
elements of each row of V give the position vector of a FEM
vertex of the membrane. Fv is the tv × 2 force matrix at
the membrane vertices. The elements of each row of Fv
give the force vector of a FEM vertex of the membrane.
The operation ’·∗’ denotes element wise multiplication. We
assume that we have a priori estimation V t−1 at iteration
(t − 1) for the current iteration t. I and 4t in (15) denote
identity matrix and time step respectively.

In [3] for each iteration we compare the inter-vertex Eu-
clidean distance between a pair of neighbouring vertices (i, j)

and (k, l) with the Dk,l
i,j given as,

Dk,l
i,j = gD +

I(Xi,j , Yi,j) + I(Xk,l, Yk,l)

2×Range(I)
× (Dhigh − gD), (16)

where, gD is the initial inter-vertex distance of the mem-
brane and Dhigh are application dependent preset constants.
Due to membrane evolution if distance between vertices (i, j)th

and (k, l) becomes greater than Dk,l
i,j , then we delete the link

between the vertices (i, j) and (k, l). As a result each of the
two diagonal elements of A due to Ai,j and Ak,l rows are
reduced by one and A[Ai,j , Ak,l] and A[Ak,l, Ai,j ] elements
are changed to zero. In deletion process, if (i, j)th vertex
of the grid matrix is deleted then the row and column cor-
responding to Ai,j is deleted and A is reduced in size by
one both in row and column directions. Deletion of a link
deletes the two elements sharing the link. Also, deletion
of two elements on the two sides of a link deletes the link.
As A is a symmetric matrix the value of A[Ai,j , Ak,l] and
A[Ak,l, Ai,j ] are always identical and changing it to 0 we
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Figure 2: (a): Initial membrane on synthetic ob-
jects. (b): Intermediate stages of membrane evo-
lution after 20 iterations. (c): Final segmentation
using topology adaptive membrane after 150 itera-
tions. (d): Multiple white blood cells with initial
active membrane. (e): After 15 iterations of the
membrane. (f): After segmentation using 180 iter-
ations.

can delete the link or connectivity between vertices (i, j) and
(k, l). We stop the evolution of membrane when for same
number of membrane vertices in previous and current iter-
ation

∥∥V t − V t−1
∥∥ < ε where ε is a very small preset num-

ber. So once the membrane evolution stops, we get different
membrane pieces representing deformable objects present in
the scene. An example of such membrane evolution is shown
in Fig. 2,where we take Dhigh = 3gd, gd = 3, αhigh = 0.03,
and βhigh = 0.01.

However, in the proposed method given an image frame,
first features (f1, f2) are evaluated as described in section 2.1.
Then using (3) and (4), labels of each of the links of the
membrane is evaluated either as object link, background link
or a boundary link. Next, the background links are deleted
from the membrane following the links and element deletion
procedure described in the previous paragraph. Next the ac-
tive membrane is evolved following (15) with the hard con-
straint in the stiffness matrix as object links do not change
its shape while boundary links are deformed based on gradi-
ent vector flow in order to capture the shape of the objects.

The proposal however faces problem when the images of
objects to be segmented are touching each other. In that
case a set of boundary links exists between two sets of ob-
ject links unlike the normal situation where background links
also exist between sets of boundary links encompassing one
or more objects. We discuss such situation in the next sec-
tion.

2.3 Boundary Link Deletion
For touching object segmentation, we take the help of dif-

fusion mechanism where vertex labels of objects are propa-
gated in the neighbourhood to determine boundary of touch-
ing objects. We can explain this with the help of an example.

Let us mark both vertices of all boundary links with tag
0 and mark vertices of background links with a large num-
ber, say L. All vertices of object links are marked with an
unique tag representing the connected component to which
this particular object link belongs. That is, say, if there
are two objects or connected components, vertices of these

connected components (which are also the vertices of object
links) may be marked with tags 1 and 2 respectively. For the
current problem, only tag 0 vertices exist between tag 1 and
tag 2 vertices but no tag L vertices exist between tag 1 and
tag 2 vertices. We need to find out those tag 0 vertices along
which the membrane could be split to identify the boundary
between two touching objects. This could have been easier
in case there exists tag L vertices between tag 1 and tag 2
vertices. In that case deleting tag L vertices straightaway
separates membrane for each of the connected component.

The proposed diffusion algorithm is explained with the
help of Figs. 1(b)-(d). In the figure, a set of boundary links
(L2, L3, L4) are connected to two object links (L1 of ob-
ject 1 and L5 of object 2). Therefore, vertices v1 and v4
of Fig. 1(b) are tagged 1 and 2 respectively as shown in
Fig. 1(c). By design vertices v2 and v3 are vertices of bound-
ary links. Now we update each tag 0 vertex with tag of its
nonzero-tagged neighbourhood vertices iteratively. So v2 is
changed to 1 and v3 is changed to 2 as shown in Fig. 1(d).
This process continues till there is no further change in the
tag value. While updating the tag value of a vertex its 4N
neighbours are searched in anti-clockwise direction. At a
particular iteration, if a tag 0 vertex is surrounded by tag
0 vertices in 4N, its tag is not changed in that particular
iteration. This entire process can be given an algorithmic
form.
v t: tag value of a vertex.
adj graph: Graph storing 4N vertices of each vertex of an
element.

1 pre sum=Sum(v t); /* Evaluate sum of all v t */
2 do{
3 sum = 0;
4 for count=1 to total vertex{
5 ifv t(count,1)==0{
6 for count1=1 to 4{
7 temp=adj graph(count,count1);
8 if v t(temp,1)6=(0 or L){
9 v t(count,1)=v t(temp,1);
10 sum=sum+v t;
11 break;}

} /* end: for count1=1 to 4 */
} /* end: if v t(count,1)==0 */

} /* end: for count=1 to total vertex */
12 }while(sum 6= pre sum)

Once the above diffusion algorithm changes the tag of all
vertices, all links having different tags at their vertices, are
deleted to segment the connected component approximating
each of the objects. The segmented connected components
are then evolved using (15) for accurate segmentation and
extraction of multiple objects in the scene.

In the next section we present the segmentation result of
our proposed methodology.

3. RESULTS
We have implemented the proposed methodology to de-

tect oil sand rock pieces seen on a dirt-filled conveyer belt.
These rock pieces are crushed for extracting crude oil and
estimation of sizes of the rock pieces is important indicator
for estimation of the crude oil production. Clearly, the con-



Table 1: Calculated Ce,p and σe,p from (6) and (7)
respectively.

Ce,p σe,p

e=1 e=2 e=3 e=1 e=2 e=3

p=1 5.6 6.1 104.7 25.4 27.1 16.6
p=2 1.5 72.1 77.6 12.2 15.4 17.2

Table 2: Calculated We,p from (8)
p=0 p=1 p=2

e=1 0.667 -0.067 -0.278
e=2 0.667 0.111 .0093
e=3 0.333 0.0032 0.0043

trasts of these images make it a difficult candidate for image
segmentation.

We first take 5 oil sand rock piece images along with their
ground truths as training images sampled randomly from a
set of 100 oil sand rock piece images. Two typical ground
truth images of Figs. 3(a) and 4(a) are shown in Figs. 3(b)
and 4(b), respectively. We place active membranes on the
images, calculate features f1, f2 and label the links of the
membrane as defined in Section 2.1. For the current set
of images, the training algorithm described in Section 2.1
calculates Ce,p, σe,p and We,p taking ε, ηC , ησ, ηW equal to
0.001 as given in Tables 1 and 2, respectively. We use the
leave-one-out cross validation to compute the parameters in
Tables 1 and 2.

A set of test images having two, three and four rock pieces
are shown in Figs. 3(a), (g) and (l), respectively. We first
initialize active membrane as shown in Figs. 3(c), (h) and
(m). The results of the use of trained parameters of Tables 1,
and 2 on the links of Figs. 3(c), (h) and (m) are shown in
Figs. 3(d), (i) and (n), respectively. In Figs. 3(d), (i) and
(n) the red links denote background links, while the green
links denote boundary and object links. We take label value
less than 0.5 as 0, greater than 1.5 as 2 and take label value
between 0.5 to 1.5 as 1 for marking background, boundary
and object links. After deleting all the background links
(marked red) the membrane is split into different segments
as shown in Figs. 3(e), (j) and (o). Finally, the segments of
Figs. 3(e), (j) and (o) are evolved following (15) to accurately
identify objects as shown in the Figs. 3(f), (k) and (p).

In Fig. 4(a), we have taken a test image having two con-
joint rock pieces. Initialization of active membrane is shown
in Fig. 4(c). The result of the use of trained parameters of
Tables 1 and 2 on the links of Fig. 4(c) is shown in Fig. 4(d).
Here, the blue, green and red links are background, bound-
ary and object links respectively. The magenta links of
Fig. 4(e) are the result of vertex tag propagation algorithm
of Section 2.3. These links have different vertex tags for
their end vertices. After deleting all the background links
(marked blue) and magenta coloured links, the membrane
is split into two segments as shown in Fig. 4(f). Finally, the
segments of Fig. 4(g) are evolved following (15) to accurately
identify the objects as shown in the Fig. 4(f). The test result
for another conjoint rock pieces is shown in Figs. 4(h)-(i).

In all the above examples, we take αhigh = 0.03, and
βhigh = 0.01. The entire approach was implemented in Mat-

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p)

Figure 3: (a), (g), (l): Rock images, (b): Ground
truth image of conjoint rock pieces of Fig. 3(a), (c),
(h), (m): Initial Active membrane, (d), (i), (n): Link
type identification by trained Fuzzy classifier, (e),
(j), (o): Rough estimated objects after deletion of
the boundary links, (f), (k), (p): Final results after
membrane evolution (50 iterations).



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: (a): Two conjoint rock pieces, (b):
Ground truth image of conjoint rock pieces of
Fig. 4(a), (c): Initial Active membrane, (d): Link
type identification by trained Fuzzy classifier, (e):
Boundary links detection by diffusion mechanism,
(f): Rough estimated objects after deletion of the
boundary links, (g): Final results after membrane
evolution (70 iterations). (h): Two conjoint rock
pieces, (i): Final results after membrane evolution
(70 iterations).

lab 7 in Pentium 4, 2.1 GHz PC. In the next section we
compare our method with straightforward implementation
of level sets [1], topology adaptive snake [4] and topology
adaptive active membrane [3].

3.1 Comparison
As stated in introduction, the object in Figs. 4(a) is an

image of multiple conjoint objects where objects and back-
ground have similar spectral characteristics. So, the active
membrane implementation without training [3] completely
fails to segment these objects as shown in Figs. 5(a)-(b).
The level set implementation [1] [2] or topology adaptive
active contour [4] cannot identify them correctly as shown
in Fig. 5(c)-(j). In these cases either the spectral character-
istics confuses the evolved curve or the outer edge cannot
see the edges internal to the outer contour.

In order to establish the segmentation accuracy, we have
taken the help of segmentation score metric reported in [6].
This score metric is a form of local intersection-over-union of
pixel areas whereby both errors at the pixel level and object
level are penalized. The score metric is defined as,

ψ(A, B) =

m∑
j

[

n∑
i

(
|Aj

⋂
Bi|

|Aj

⋃
Bi|

Bi⋃
|Aj

⋂
Bi|6=0 Bi

)
Aj⋃
j Aj

] (17)

where Aj is a connected component in image A and Bi

is a connected component in image B. Since, ψ(A, B) 6=
ψ(B, A), min(ψ(A, B), ψ(B, A)) is taken as the conservative
measure of the score metric.

In Table 3 we show the segmentation score metric and

Table 3: Segmentation score metric and number
of detected object by proposed and its competitive
methods.

Score Object
metric detected

Proposed method 88.1 2
Active membrane [3] 60.7 1
Active contour [4] 45.3 1

Level set [1] 41.2 1
Multiphase level set [2] 39.8 5

number of detected object by the proposed and its compet-
itive methods. Table 3 shows, as expected, the proposed
approach performs much better than the topology adaptive
active membrane [3], level set implementation [1] [2], and
topology Adaptive Active Contour [4].

4. CONCLUSIONS
We have developed a fuzzy-rule base training scheme for

active membrane evolution. With appropriate train, it can
identify portions of active membrane describing separate ob-
jects in a scene, especially when the objects are touching
each other. Our goal is to use this technique in a video
where we can track low contrast moving objects, that often
touches or occludes each other.
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Figure 5: (a): Initial Active membrane [3] on con-
joint objects (of Fig. 4(a)), (b): Segmentation of two
conjoint rock pieces by [3]. (c): Initial Level set [1]
on conjoint objects (of Fig. 4(a)), (d): Segmentation
of two conjoint rock pieces by [1]. (e), (g): Initial
Active contour [4] conjoint objects (of Fig. 4(a)),
(f), (h): Segmentation of two conjoint rock pieces
by [4], (i): Initial Level set [2] on conjoint objects
(of Fig. 4(a)), (j): Segmentation of two conjoint rock
pieces by [2].


