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ABSTRACT
A novel algorithm for boundary-based shape decomposition
is proposed. The algorithm uses Farey sequence for deter-
mining several measures, such as slopes of edges and turn
types at vertices of the polygonal cover P corresponding to
the concerned shape. The fraction ranks (indices) in the
Farey sequence have been used in the related procedures
to enable computations in the integer domain while merg-
ing straight edges of P , which are almost collinear, and to
perform turn checking at the vertices of P . Such turn check-
ing aids in extracting the saddle points and constructing the
visibility graph to finally output the decomposition. Exper-
imental results demonstrate the efficiency and elegance of
the proposed algorithm.
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1. INTRODUCTION
Detection of meaningful components from a given shape

is related to many contemporary paradigms like modeling
[21], pattern recognition [13], shape analysis and retrieval
[18], etc. Hence, several works on shape decomposition have
come up over the last few decades. In [8], a technique based
on erosion model has been suggested, which first extracts
the shape contour from a silhouette image to compute an
erosional vector representing a force of erosion at each con-
cavity, and then obtains a shape-splitting boundary. Shape
decomposition methods using morphology are also there.
One such work [19] presents a recursive morphological op-
eration in order to perform efficient shape representation.
This operation uses a structuring element as a geometrical
primitive to evaluate the shape of an object. Another work
of shape decomposition based on mathematical morphology
is presented in [12], which targets for object recognition and
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binary image coding. The work in [20] reports decomposi-
tion of 3D meshes in meaningful sub-components using the
idea of “geodesic distance”.

In this paper, we present a novel algorithm to find the
critical points of a shape boundary obtained as a polygonal
cover using the Farey sequence [5]. Some of these critical
points are categorized as saddle points, and for their extrac-
tion, we have encoded the polygon boundary as a numeric
sequence representing the differential Farey indices, which
are newly introduced in this paper. A differential Farey
index, being integer and in correspondence with the angu-
lar deviation, provides an efficient measure to obtain a fast
polygonal cover of a digital contour, as shown in this paper.
In particular, the differential Farey indices aid in adopting
integer computation to find a polygonal cover, opposed to
floating-point computation and allied procedural complexi-
ties in the existing methodologies. We have shown how a
Farey sequence can be used to represent the edge slopes,
and the vertex angles thereof, to describe a polygon for its
readiness to subsequent applications. Once we get the Farey-
based descriptor of a polygon, an efficient method is applied
to detect the the saddle points, form which the components
of resultant decomposition are obtained using the visibility
graph. The major steps are as follows.

We first obtain the digitally straight edges defining the
boundary of an object, and then merge the almost collinear
edges to derive a tighter description of the object (Fig. 1b,c;
Sec. 2). We extract each straight edge by inspecting the
corresponding edge points one by one until there is a break
because of the digital straightness properties [10]. The notion
of Farey sequence [5] and the resultant Farey indices, which
are in correspondence with the edge slopes, have been used
to get the final polygonal cover (Fig. 1c). For an efficient im-
plementation, the Farey indices are stored in the augmented
Farey table (F). Each Farey index corresponds to the slope
of a line segment connecting two points with integer coordi-
nates, and is available by a single probe in F . The decision
on collinearity of two or more straight edges is taken using
addition/subtraction operations in the integer domain only.
The Farey indices, corresponding to the (slopes of) edges of
the polygonal cover, form a numeric sequence that serves as
a high-level geometric abstraction of the underlying shape.
We use this numeric sequence to obtain a turn sequence,
which is a 2-element string consisting of L (left turn) and
R (right turn) only. From this turn sequence, a sequence of
saddle points and the corresponding L-containing substrings
are obtained to form a visibility graph, which is finally used
for component detection (Fig. 1d; Sec. 3).



(a) Input shape. (b)Extracted straight
edges, using exponential
averaging and digital
straightness.

(c) Polygonal cover, using
AFT (N = 200, Tf =
5000).

(d) Final decomposition,
using saddle points and
visibility graph.

Figure 1: Basic steps of our proposed algorithm.

2. FORMING THE FAREY-BASED POLYG-
ONAL COVER

To detect the straight edges of locally maximum lengths,
we have used the properties of digital straightness [9, 10, 15]
and exponential averaging [14] of edge strengths (Prewitt
responses) [4]. A curve C is digitally straight if and only if
its chain codes have at most two values in {0, 1, 2, . . . , 7},
differing by ±1(mod 8), and for one of these, the run-length
must be unity ([9]: Property R1). Also, if s and n be the
respective singular code and non-singular code in a digital
curve C, then the runs of n can have only two lengths, which
are consecutive integers ([9]: Property R2).

To obtain the start point of a straight edge, each point
p of the input (gray-scale) image is visited (in row-major
order). If the Prewitt response at p exceeds the threshold
value, T (= 100 in our experiments), and the response is a
local maximum in the 8-neighborhood (8N) of p, then p is
the start point, ps. The next point on the edge commencing
from ps is obtained from the responses in 8N of ps. The
direction ds from ps is the chain code from ps to its neighbor
having the maximum response. In case of multiple maxima
(which indicates multiple edges incident at ps), we consider
each of them, one by one, for finding the straight edges from
ps.

To get the (straight-)edge point next to any current point
p, we need not apply the convolution at each neighbor (in
8N) of p with the Prewitt operator (in order to get their
responses, and the maximum/maxima, thereof). Instead,
in our algorithm, checking the Prewitt responses at three
neighbors corresponding to three directions suffices: d, (d +
1)(mod 8), and (d + 7)(mod 8), where d is the chain code
of p. For, from Property R1, no other neighbor can be the
next point on the current edge. We have used an effective
method of exponential averaging to estimate the strength
of an edge point using its own response and the “exponen-
tially weighted” contribution of responses at the previous
edge points. In other words, to compute the exponential av-
erage of the responses in and around a point p, we consider
the responses — which have been already computed and
stored — at the points preceding p up the straight edge. A
detailed explanation of the algorithm is given in [14].

2.1 Farey-based Integer Computation
Farey sequences are named after the British geologist,

John Farey, Sr. [Philosophical Magazine, 1816]1. Formally
defined, the Farey sequence FN of order N is the sequence
of completely reduced (i.e., simple/irreducible), proper, and
positive fractions that have denominators less than or equal
to N , and are arranged in increasing order of their val-
ues. There are several studies and related works related
with Farey sequences and their indices, some of which may
be seen in [5, 7, 11, 17]. As shown in this work, a Farey
sequence can be of interesting and practical use to decide
whether three points, sorted lexicographically by their x and
y (integer) coordinates, are collinear. It involves only addi-
tion, comparison, and memory access, but no multiplication,
to check the linearity. Thus, it helps in reducing the run-
ning time for the linearity-checking function compared to
the existing procedures.

For example, for three given points p1(i1, j1), p2(i2, j2),
and p3(i3, j3) in succession, one of the common practices is
to use the metric ∆(p1, p2, p3)/ max(|i1 − i3|, |j1 − j3|) for
computing the deviation of p2 from p1p3 [2]. However, com-
putation of the triangle area given by ∆(p1, p2, p3) involves
multiplication, and is therefore computationally expensive.
Such multiplications are avoided by us using the Farey se-
quence. When we have a huge database of images to be
processed one after another, we can compute a Farey table
of an appropriate size and use it for computational optimiza-
tion. As a result, the total time of polygonal approximation
for all images in the database would be significantly reduced.

2.2 Augmented Farey Table
A Farey sequence starts with the fraction 0

1
and ends with

the fraction 1
1
. For example, the Farey sequences of orders

1 to 5 are as follows:

F1 =
˙

0
1
, 1

1

¸
,

F2 =
˙

0
1
, 1

2
, 1

1

¸
,

F3 =
˙

0
1
, 1

3
, 1

2
, 2

3
, 1

1

¸
,

F4 =
˙

0
1
, 1

4
, 1

3
, 1

2
, 2

3
, 3

4
, 1

1

¸
,

F5 =
˙

0
1
, 1

5
, 1

4
, 1

3
, 2

5
, 1

2
, 3

5
, 2

3
, 3

4
, 4

5
, 1

1

¸
.

Interestingly, each FN can be computed from FN−1. If p
q

has neighbors a
b

and c
d

in a Farey sequence, then p
q

is the

1He guessed that each new term in a Farey sequence is the
mediant of its neighbors, but, so far as is known, he did
not prove this property [1]. Later, Cauchy gave a proof
in Exercises de mathmatique and attributed this result to
Farey.



Denominator
-4 -3 -2 -1 0 1 2 3 4

N 4 19 18 16 14 13 12 10 8 7
u 3 20 19 17 15 13 11 9 7 6
m 2 22 21 19 16 13 10 7 5 4
e 1 24 23 22 19 13 7 4 3 2
r 0 25 25 25 25 – 1 1 1 1
a -1 26 27 28 31 37 43 46 47 48
t -2 28 29 31 34 37 40 43 45 46
o -3 30 31 33 35 37 39 41 43 44
r -4 31 32 34 36 37 38 40 42 43

Figure 2: AFT F4 of order 4 containing indices of
all fractions in {a

b
: −4 ≤ a, b ≤ 4}.

mediant of a
b

and c
d
. In other words, p

q
=a+c

b+d
.. For example,

since 3
5

is the mediant of 1
2

and 2
3

in F5,
3
5

is obtained for F5

by adding the corresponding numerators and denominators
of 1

2
and 2

3
from F4.

Clearly, the original Farey sequence FN of order N con-
sists of all the simple, proper, positive fractions with de-
nominators less than or equal to N . Compound fractions
(that can be reduced to simple fractions of FN ), improper
fractions (with numerators less than or equal to N), and
negative fractions do not find any place in FN . With sim-
ple operations, we obtain an augmented Farey sequence F N

from the Farey sequence FN in order to include the above
fractions as well. The augmented sequence F N aids the lin-
earity checking procedure while merging the end points of
straight edges, which are almost collinear. For each member
a
b

of FN , we prepare a sub-list containing the equivalent com-
pound fractions with denominators less than or equal to N .

Corresponding to each a
b
, a new fraction a+a′

b+b′ is computed,

where a′
b′ is already a member of the sub-list corresponding

to a
b
, and b′ is the highest denominator in the sub-list cor-

responding to a
b
, such that (b + b′) ≤ N . This new fraction

is kept in the sub-list of F N linked to a
b
. The first member

a′
b′ = a+a

b+b
of such a sub-list is obtained by adding the nu-

merator a of a
b

with itself and the denominator b of it with
itself, provided 2b′ ≤ N .

Since F N is derived as stated above, it contains all pos-
itive fractions (simple and compound) with denominators
less than or equal to N . Now we take mirror reflection of
this list about 1

1
, such that in the reflected part each mem-

ber is the reciprocal of its counterpart. The compound frac-
tion in the sub-lists linked to the simple fractions are also
treated in the same way, i.e., numerators become denomi-
nators, and vice versa. This reflected part is appended to
the original list. Next, we again take a reflection of this
enlarged list, with the signs of all denominators in the re-
flected part changed to negative. Thus, finally we get all
the fractions with positive numerator and positive/negative
denominator. Taking their positions in the list we build the
augmented Farey table, namely FN , corresponding to F N ,
as shown in Fig. 2. For example, when compound fractions
are included in F4, it gets augmented to

F 4 =
˙

0
1

`
0
2
, 0

3
, 0

4

´
, 1

4
, 1

3
, 1

2

`
2
4

´
, 2

3
, 3

4
, 1

1

`
2
2
, 3

3
, 4

4

´¸
.

On including the improper fractions, it is further aug-
mented to

F 4 =
˙

0
1

`
0
2
, 0

3
, 0

4

´
, 1

4
, 1

3
, 1

2

`
2
4

´
, 2

3
, 3

4
, 1

1

`
2
2
, 3

3
, 4

4

´
, 4

3
, 3

2
,

2
1

`
4
2

´
, 3

1
, 4

1
, 1

0

`
2
0
, 3

0
, 4

0

´¸
.

When negative fractions (positive numerator and negative
denominator) are included, we get

F 4 =
˙

0
1

`
0
2
, 0

3
, 0

4

´
, 1

4
, 1

3
, 1

2

`
2
4

´
, 2

3
, 3

4
, 1

1
,
`

2
2
, 3

3
, 4

4

´
, 4

3
, 3

2
, 2

1

`
4
2

´
,

3
1
, 4

1
, 1

0

`
2
0
, 3

0
, 4

0

´
, 4
−1

, 3
−1

, 2
−1

“
4
−2

”
, 3
−2

, 4
−3

, 1
−1

“
2
−2

, 3
−3

, 4
−4

”
,

3
−4

, 2
−3

, 1
−2

“
2
−4

”
, 1
−3

, 1
−4

, 0
−1

“
0
−2

, 0
−3

, 0
−4

”E
.

For other two types of fractions, i.e., fractions with nega-
tive numerator and positive denominator, and fractions with
negative numerator and negative denominator, we have to
take reflection of the above list F 4 and then change the signs
of numerators and denominators accordingly. Thus, F 4 be-
comes a complete list of all possible fractions. Clearly, all
fractions a

b
, where |a| ≤ 4 and |b| ≤ 4, can be kept in a

list divided into four sub-lists, which keep fractions of types
a
b
, a
−b

, −a
−b

, and −a
b

respectively; and for each sub-list, the
fractions are in increasing order. For each fraction in each
sub-list, we can easily access its position in the sub-list by
accessing the table F , as shown in Fig. 2.

2.3 Farey-based Polygonal Cover
Extraction of straight edges from a gray-scale image gen-

erates an ordered set E (endpoints of straight edges), as
explained earlier. Now, in order to reduce the number of
straight edges defining the boundary of the object, vertices
are taken out from E, and if they are“almost collinear”, then
they are combined together to form a longer straight edge.
If 〈ei, ei+1, . . . , ej〉 be a maximal (ordered) subset of straight
edges that are almost collinear, then these j− i+1 edges are
combined to a single edge. The process is repeated for all
such maximal subsets in succession to obtain a reduced set of
(almost) straight edges corresponding to the object bound-
ary. There are several techniques available in the literature
to replace the almost-collinear pieces by a single piece [3,
16]. We have used a novel technique using differences of
indices corresponding to edge slopes—which are equivalent
to fractions— in the augmented Farey table, F . Each F-
index is obtained by a single probe in F and the decision on
linearity of three points is taken in the integer domain us-
ing addition/subtraction operation only. For a straight edge
with end points p := (xp, yp) and q := (xq, yq), we do access

the index of the fraction
yp−yq

xp−xq
, which is the slope of the line

segment pq, in F . If two line segments L1 and L2 are having
their respective F-indices as f1 and f2, then L1 and L2 are
merged if the difference of f1 and f2 is less than a threshold
Tf , which is a differential Farey index and a parameter of
our algorithm. Such a result for Tf = 5000 (order of Farey
table being N = 200) is shown in Fig. 1.

3. SHAPE DECOMPOSITION
The shape of an object S is given by its polygonal cover

P , which, in turn, is captured (partially) in the sequence
of internal angles of P . For example, for a rectangular
shape, the angular description will be 〈90o, 90o, 90o, 90o〉 ir-
respective of its orientation; for an equilateral triangle, it
will be 〈60o, 60o, 60o〉. In general, for a polygon having n
vertices, there will be n entries in the description. The pro-
cess involves computation of the angle magnitudes, which
is ultimately based on multiplication and division in the
real/floating-point domain.

For every edge of P , we need to compute its slope, and
then the angle between each pair of consecutive edges. In-
stead of writing these angles in succession, we use the Farey
indices to provide a description in the integer domain. Every
straight edge of P corresponds to an index, namely the Farey



if (yk ≥ yk+1 ≥ yk+2 or yk ≤ yk+1 ≤ yk+2)
if (fk > fk+1) then f ′k+1 ← 2 ·Nf − (fk − fk+1)
else f ′k+1 ← 2 ·Nf + (fk+1 − fk)

else
if |fk − fk+1| < 2 ·Nf

if (fk > fk+1) then f ′k+1 ← 2 ·Nf − (fk − fk+1)
else f ′k+1 ← 2 ·Nf + (fk+1 − fk)

else
if (fk > fk+1) then f ′k+1 ← fk − fk+1

else f ′k+1 ← 4 ·Nf − (fk+1 − fk)

Figure 3: Procedure for computing the differential
Farey index, f ′k+1, for two consecutive edges, ek and
ek+1.

index, which, for a “positive slope” of the edge, is the rank2

of the fraction (equaling the slope of the edge) in FN . For
example, the rank of 3

4
in F4 is 6, since there are five smaller

fractions ( 0
1
, 1

4
, 1

2
, 2

3
, 3

4
) in F4. For other fractions, the in-

dices are computed in a convenient way (Fig. 2) and used
for subsequent analysis, as explained in the following sec-
tions. Every two consecutive indices generate a difference,
and the sequence of these differences is used as a (circular
chain) description for the (closed) polygon, P .

3.1 Turn Checking Using F-indices
The difference between the slopes of an edge ek and of

its next edge ek+1 is estimated as the difference of their
Farey indices. We call it the differential Farey index. If the
respective Farey indices of ek and ek+1 be fk and fk+1, then
the differential Farey index of ek+1 from ek is realized using
an appropriate difference of fk+1 from fk. The procedure of
computing these Farey differences has been given in Fig. 3.
It is based on the analysis of various possible cases apropos
the signs of the numerators and the denominators of fk and
fk+1.

We consider the traversal of a polygon P such that the
interior of P , and the corresponding object thereof, always
lies right during the traversal. For three consecutive ver-
tices of P , namely vk−1 := (xk−1, yk−1), vk := (xk, yk),
vk+1 := (xk+1, yk+1), which define two consecutive edges ek

and ek+1 of P , we decide whether there is a left turn or a
right turn at the vertex vk, using the respective Farey in-
dices fk and fk+1 of ek and ek+1 incident at vk. Depending
on a few combinatorial cases and their sub-cases, the dif-
ferential Farey index, namely f ′k+1, corresponding to vk, is
hence obtained from fk and fk+1, as given in Fig. 3. If Nf

denotes the number of positive, simple (proper or improper
fractions) in the Farey sequence of order N (corresponding
to slopes in [0, π/2]), then the total number of simple frac-
tions in FN is 4(Nf−1), which increases with the order N of
FN ; for example, Nf (F4) = 13, whereby the total number
of fractions in FN is 48 (Fig. 2).

The turn checking at a vertex is done using its differential
Farey index. There is a right turn at the vertex vk+1 if
f ′k+1 ≤ 2Nf , and a left turn if f ′k+1 ≥ 2Nf , since 2Nf

corresponds to the angular measure π. An illustration is

2A simple, proper fraction p
q
∈ FN has a rank (i.e., index)

f in FN if and only if there exists f − 1 simple fractions in
FN whose values are less than p

q
.

2

3

5

2

vk−1

vk+1

vk

fk+1
=

5

f k
=

1
4

vk−1

vk+1

vk

fk
=

5

f k
+
1

=
1
4

5

2

2

3

(a) Right turn (b) Left turn

Figure 4: Examples of turn checking with N = 5:

F 5 =
D

0
1
, 1

5
, 1

4
, 1

3
, 2
5
, 1

2
, 3

5
, 2

3
, 3

4
, 4

5
, 1

1
, 5

4
, 4

3
, 3
2
, . . .

E
; Nf = 11.

(a)Right turn, as f ′k+1 = 2Nf − (fk − fk+1) = 13 ≤
2Nf = 22. (b) Left turn, as f ′k+1 = 2Nf + (fk+1 − fk) =
27 > 2Nf = 22.

given in Fig. 4 for a right and a left turn. For example,
f ′k+1 is computed as f ′k+1 = 2Nf − (fk−fk+1) because fk >
fk+1 (Fig. 3). So, f ′k+1 = 13, which is less than 2Nf = 22
(as Nf = 11 for order N = 5), which implies a right turn
(Fig. 4(a)). On the contrary, in Fig. 4(b), as f ′k+1 exceeds
2Nf = 22, we have a left turn.

A demonstration of preparing the turn sequence for a poly-
gon P by our algorithm on a test image is shown in Fig. 5.
Starting at v1, as we traverse the polygon in clockwise man-
ner, the Farey indices of its edges e1, e2, . . . , e27 are com-
puted from the vertex coordinates. For example, for edge
e1, the vertices are v1(33, 166) and v2(37, 252), wherefore
we get its Farey index as f1 = 72827 from the AFT, F200,
with N = 200. As v2 and v3(90, 225) correspond to the edge
e2, we get its index as f2 = 42701. Using the procedure
given in Fig. 3, we get f ′1 = f1 − f2 = 30126, which in-
dicates a right turn at v2, because f ′1 ≤ 2Nf = 48928 (as
Nf (F200) = 24464).

The feature sequence of the polygon P in Fig. 5 based on
differential Farey indices is, therefore, given by
PF = 〈30126, 90019, 55100, 4039, 27982, 16817, 55908,

62684, 55554, 54164, 52740, 15277, 17948, 94673,
88106, 16817, 20359, 59928, 22382, 26464, 67016,
55729, 6005, 9998, 51744, 56564, 17165〉.

We enumerate the above sequence of differential Farey in-
dices as a turn sequence, using the turn types at their ver-
tices, namely L (left turn) and R. Such a turn sequence for
the boundary of the shape of Fig. 5a has been shown in
Fig. 5b.

3.2 Finding Saddle Points
It can be noticed from the turn sequence that a subse-

quence (i.e., a contiguous segment) of L represents a local
concavity and that of R, a local convexity. In particular, the
L-segments represent the concave parts, and the R-segments
represent the convex parts. Further, the end of an L-segment
(concave part) marks the beginning of an R-segment (convex
part), and vice versa. We define a saddle point as the first or
the last point of an L-segment,3 before or after which an R-
segment ends or starts. Evidently, in every L-segment there
will be at least one and at most two saddle points. For, if
an L-segment consists of a single L, then it marks the end of

3Mathematically, a saddle point for a curve is a stationary
point such that the curve in the neighborhood of that point is
not entirely on any side of the tangent space at that point [6].
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(a) Initial saddle points. (b) Turn sequence
at the vertices
(v1, v2, . . . , v27) of P .

(c) Visibility graph. (d) Final saddle points.

Figure 5: Critical points (vertices), turn sequence, saddle points (encircled), and visibility graph resulting to
the final set of saddle points, obtained by our algorithm.

its preceding R-segment and also the beginning of the next
R-segment. And if it is made up of two or more Ls, then its
first L marks the end of the preceding R-segment and its last
L marks the beginning of the next R-segment. For example,
in Fig. 5, 〈v3, v4〉 is an L-segment; its first vertex v3 signifies
the end of the preceding R-segment 〈v1, v2〉 and its last ver-
tex v4 signifies the start of the next R-segment 〈v5, v6, v7〉.
Vertex v19 is the degenerate case of an L-segment with a
single L, which marks the end of the R-segment 〈v17, v18〉
and the start of the R-segment 〈v20, v21〉.

3.3 Component Detection
After obtaining the sequence of saddle points, namely

SP := 〈s1, s2, . . .〉, we construct the visibility graph, namely
GP (VP , EP ), defined on P . The graph GP is constructed
based on SP for component detection as explained below
(Fig. 5c), which is subsequently used for object decomposi-
tion. Observe that, each point si ∈ SP occurs before each
other point sj ∈ SP if and only if si is traversed before sj

while obtaining the vertex set of P .
To construct the node set VP , for each si ∈ SP , we con-

sider the corresponding L-segment, Si, from the turn se-
quence, and add a vertex vi in VP for each saddle point or
critical point/vertex (of type L, if any) of Si. For example,
in Fig. 5c, the L-segments are denoted as S1, S2, . . . , S6, and
for the L-segment S1 := 〈v3, v4〉, we have two saddle points
considered as nodes in VP ; for S2 := 〈v8, . . . , v12〉, we have
two saddle points (v8 and v12) and three other critical points
(v9, v10, v11) in VP ; and so forth. For the jth vertex (saddle
point or critical point) vij ∈ Si, which is added as a node
uij in VP , we also store the id i of the segment Si as an
auxiliary information of uij for construction of the edge set
as follows.

For construction of the edge set EP , we consider each
pair of nodes (uij , ui′j′) from VP such that the following
conditions are satisfied:

(e1) i − i′ = 1 (mod m), m being the total number of L-
segments.

(e2) The line segment l(vij , vi′j′) joining vij and vi′j′ lies
entirely inside P .

Condition e1 ensures that there is no edge between two sad-
dle points or critical points belonging to the same L-segment
(by this, we do not have any line segment lying outside P ).
Condition e2 is to guarantee that, after the decomposition,
no part of any component lies outside the polygonal cover P
of the concerned object. To decide whether l(vij , vi′j′) lies
entirely inside P , we consider each side/edge of P and find
its intersection, if any, with l(vij , vi′j′). The line segment
l(vij , vi′j′) is considered to be lying inside P if it has no
point of intersection with any of the edges of P .

The components are extracted based on the visibility graph,
GP , as illustrated in Fig. 5c. The basic steps are as follows.
We consider the first two L-segments, and check from GP

whether there exists an edge between the nodes correspond-
ing to the first vertex of S1 and the last vertex of S2. If so,
then the line segment joining these two vertices—one from
S1 and the other from S2—is considered to be the first parti-
tion line of the decomposition (for example, the line segment
connecting v3 and v12 in Fig. 5d); and the part of the object
contained in the sub-polygon starting from the first vertex
of S1, ending at the last vertex of S2, and bounded by the
concerned partition line is reported as the first component.
Otherwise, we consider the second vertex of S1 and the last
(or its previous, in the next iteration) vertex of S2, and
so on, until there is a success. If there is a failure, then it
implies that there exists no edge in GP between any vertex
of S1 and any vertex of S2; hence, no partition line is formed
between S1 and S2, and the process is repeated between S2

and S3, starting from the first vertex of S2 and the last one
of S3. In general, if a partition line is formed between jth
vertex of Si and j′th vertex of Si+1, then in the next iter-
ation, we consider j′th vertex of Si+1 as its resultant first
vertex and check whether edges exist between it and the last
vertex of Si+2. If yes, then the corresponding partition line
is formed. Otherwise, we consider the (j′ + 1)th vertex of
Si+1 and do a similar checking until we get a success or all
the vertices of Si+1 and Si+2 get exhausted. If it is a suc-
cess, then the vertex of Si+2 incident on the partition line is
set as the resultant first vertex in the next iteration; other-
wise, the actual first vertex of Si+2 remains the first vertex
in the next iteration. The procedure is repeated until all the



Table 1: Summary of results for some images.

Image Straight
Edges

n
Compo-
nents

CPU
Time
(seconds)

t001 77 39 6 0.0289

t002 87 72 8 0.0419

t003 76 48 7 0.0372

bird 64 32 7 0.0256

camel-1 111 69 11 0.0418

camel-2 84 53 10 0.0389

hammer 20 13 4 0.0277

jar 45 29 5 0.0249

palm-1 55 25 7 0.0324

stem 37 28 7 0.0283

L-segments are considered for forming the partition lines in
succession. The red-colored lines in Fig. 5d illustrate the
final partition lines, as reported by our algorithm.

4. IMPLEMENTATION AND RESULTS
We have implemented the algorithm in C in Linux Fedora

Release 7, Kernel version 2.6.21.1.3194.fc7, Dual Intel Xeon
Processor 2.8 GHz, 800 MHz FSB. To reduce the number
of edges by merging the “almost collinear” edges, we have
considered Tf as the Farey threshold and have tested on
several datasets for various Tf . If two consecutive edges e
and e′ are having AFT indices f and f ′, then they will be
almost collinear if |f −f ′| is appreciably small, or, |f −f ′| is
less than the threshold, Tf . Thus, the threshold Tf realizes
the tolerance of merging two or more edges in succession,
where the value of Tf , in turn, depends on the order N of
FN .

As Tf increases for a fixed AFT, the number of straight
edges in P gets reduced. For example, when the order
N = 100, total number of fractions is 24352. These 24352
slopes/fractions divide the interval of [0, 360o) into 24352
divisions. Similarly, for N = 200, there exist 24464 × 4 =
97856 slope vectors, wherefore each division amounts to 0.0037o.
Hence Tf = 1000, 2000, and 4000, for N = 200, provides
tolerances of 3.679o, 7.356o, and 14.716o respectively. Al-
though theoretically all the divisions will not be equal, the
impact on practical applications is relatively negligible when
the number of divisions is significantly large. Hence, in our
implementation, we have taken N = 200. Table 1 shows our
test results for a few shapes whose final decompositions are
shown in Fig. 6.

5. CONCLUSION
Shape decomposition is a pertinent problem in content-

based image retrieval and computer vision. The proposed
algorithm is an attempt to solve the problem in a novel
manner using the classical concept of Farey sequence with
an efficient implementation of augmented Farey table (AFT)
for computation of differential Farey indices. These indices,
in turn, aid in a fast and elegant procedure of generating the
turn sequence, and a sequence of saddle points thereof, cor-
responding to the vertex sequence of the polygonal cover of
the underlying object. The visibility graph based on the turn
sequence and saddle points, helps in deriving a successful de-
composition of various digital objects. A faster construction

of the visibility graph is a prospective option related with
this work, and the possibility of obtaining alternative solu-
tions of decomposition using non-successive saddle points is
also a challenging issue, which would be addressed in future.
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Figure 6: Results of decomposition by our algorithm (N = 200, Tf = 5000).


