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ABSTRACT
Being lack of theoretical support from biological cues in com-
puter vision, current computational and learning approaches
of object categorization mostly aim at better performances
neglecting analysis on framework in human brain for vi-
sual information processing materially which cause little-
marginal improvement and more complexity. Focusing on
the uncertainty of color mechanism in visual cortex and
motivating from biological issues on shape information, we
present the model incorporating color invariant descriptors
and plausible shape feature biologically to formulate the ro-
bust representation of each category with only simple SVM
classifier to achieve the amazing performance. Our model
has the characteristics of illumination, scale, position, ori-
entation, viewpoint invariance, and competitive with current
algorithms on only a few training examples from several data
sets, including Caltech 101 and GRAZ for category recogni-
tion. Also, experimental results show the robustness when
challenged by noisy or blurred images.
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1. INTRODUCTION
Human visual system can categorize objects rapidly and

effortlessly despite the complexity and objective ambigui-
ties of natural images. Despite the ease with which we see,
visual categorization is an extremely difficult task for com-
puters and is indeed widely acknowledged as a very difficult
computational problem. The main issues lie in the vari-
ability of objects, such as scale, rotation, illumination, po-
sition, and occlusion. In previous work, it have been shown
that scanning window strategy works relatively well for the
recognition of objects with scale and position invariance [1].
Object categorization involves signal processing in neural
circuit from a neuroscience perspective. If transmission and
processing mechanism of visual information in the human
brain were known, we would avoid designing unnecessary
complex models (or algorithms). Much of the recent work
on object recognition in computer vision lack physiological
or psychological evidence.

According to the principle of ’what’ pathway (i.e. ven-
tral stream) in the human visual cortex [2], M. Riesenhuber
and T. Poggio [3] extended Hubel and Wiese’s hierarchical
structure of visual cortex [4] and proposed the first feedfor-
ward model, called ’HMAX’, mimicking visual information
processing. Their model selects input with the strongest re-
sponse by MAX-like operation, which is in fact a window
analysis method from a computational perspective. Ob-
ject recognition task was explained and supported by neu-
roscience data in their work. One drawback to this model
is that they only learn and recognize computer-generated
images of 3d wire frame (paperclip-like) stimuli, faces, and
rendered cats and dogs. On the base of ’HMAX’ model, T.
Serre et al [5, 6] created a biologically inspired feedforward
framework (now frequently called the ’Standard Model’ ) that
mimics the first 150 milliseconds of the visual process in the
brain and produces numerous shape-tuned units that are
invariant to orientation, position and size during learning



stage. This is a biologically inspired model comparable to
the state of the art in computer vision when applying into
real-world scenes with high recognition rate on Caltech 101
database.
Further, although the majority of images are recorded in

color format in daily life, the explicit incorporation of color
cues into object recognition systems has been largely ignored
[7], only focusing on shape information to detect and extract
features. Color values collected by sensors change greatly
owing to variability in the outside world, which makes the
color information hard to describe.
It is difficult to create neuron models of color information

because of insufficient experiments. Studies on neuroscience
have suggested that cells respond to colored stimuli more
strongly than colorless one in Inferior Temporal (IT) and
extrastriate visual areas V4 of the visual cortex. Other ev-
idences indicate opponent color (i.e. red vs. green, blue vs.
yellow) captures signals from cone cells and transmits them
in the retina, Lateral Geniculate Nucleus (LGN) and visual
cortex [8]. Psychophysical research has revealed that color,
shape, depth and motion, as the subsystems of visual sys-
tem, are interacted with each other in human perception.
It was found that significant amount of visual processing
is dedicated to the operation of color information [9]. Un-
til now, how color works for object categorization has not
arrived at a consistent conclusion.
In the case of feature extraction, full invariance is nec-

essary. This naturally leads to our hypothesis that gen-
eral object categorization is implemented not only by shape
properties, but also by color cues. Our aim, nevertheless,
is to design a computational model by taking into account
some of neuroscience evidences present throughout cortex.
In this paper, the model is designed according to the follow-
ing criteria: (1) Features must target the orientation, scale,
translation, photometric and geometry variations needed for
applications. (2) Features must be robust against noise or
blur, and should not contain instabilities. (3) Features must
complement each other for occlusion.
To meet these criteria, we build on earlier work [5, 6]

to extend the biologically inspired feedforward model and
propose that color facilities object categorization in complex
scenes or under variations. We propose a model to combine
the biologically plausible shape features with color invariant
descriptors.
The paper is organized as follows. In section 2, the bio-

logical mechanism of visual information in ’what’ pathway
is discussed. In section 3, an improved model incorporated
with color invariant descriptors is proposed, considering re-
flection nature of color in physical optics. Section 4, provides
several experiments and section 5 contains the concluding
remarks.

2. BIOLOGICAL MECHANISM OF VISUAL
INFORMATION IN ’WHAT’ PATHWAY

In somewhat of an oversimplification, visual information
in the brain transmits along two parallel and concurrent
streams: the ventral (’what’) stream and the dorsal (’where’)
stream. ’What’ pathway processes visual shape, color, and
texture appearance and is largely responsible for object cat-
egorization. Beginning at the retina, visual information ar-
rives at Primary Visual Cortex (i.e. V1) through LGN, and
then transmits to V2, V4 and IT. The receptive field sizes

Figure 1: The processing and transmission of shape
and color cues in the ’what’ pathway of visual sys-
tem.

and the position and scale invariance of the neural detectors
increase along the stream [2, 10]. The receptive field size and
preferred stimuli are shown in Table 1. Therefore, neuron
mechanism can be considered as a feedforward hierarchical
procedure in a low-high and bottom-up manner.

When light reflected by an object hits our photorecep-
tors of the retina, the decomposition of wavelength energy
captured by retina sensory cells (i.e. cone cells), electrical
impulses are created by retinal ganglion cells and sent out
to other parts of the brain, that is V1, V2 and V4 of visual
cortex along the ’what’ pathway, which are important for
the processing and perception of color [10]. Figure 1 shows
information transmitted to LGN through retina is regarded
as a human optics system, while information transmission in
the ’what’ pathway is viewed as a neurophysiology system.
Information passes to small cell layer and large cell layer of
LGN with the help of neuron cells as soon as it arrives at
the retina. Then different visual cues, like color and shape,
separate into two different subsystems in V1. The red solid
line indicates information processing in the color subsystem,
from V1 to V2 or V4, the blue dashed line shows shape cues
processing in the visual cortex, from V1, V2 to V4.

3. OUR MODEL
Color responses strongly in IT (V4), and where opponent

color response exists in the entire visual cortex. Thus shape-
based model incorporated with color cues may increase the
performance on object categorization significantly. Algo-
rithmically, this computation can be performed borrowing
color story from physical optics [11]. We combine color de-
scriptions invariant to photometric and geometric robustness
with biologically plausible shape features.

Here we use the framework of object recognition from T.
Serre et al [5, 6]. In this framework, the integrated features
(F), which will be used to represent objects, are computed
by combining two sources of information: shape features
(S), and a model of color descriptors (C).

F = [S, αC] (1)

Where the coefficient α acts like a weight parameter. The
parameter α is set by sequentially searching for the best
α on a validation set. The optimization was achieved by



Table 1: Preferred stimuli and receptive field size in the hierarchy of ’what’ pathway
visual cortex V1 V4 IT
preferred stimuli oriented bars, edge, retina position angle, color, shape, texture objects such as face
receptive field size ˜1.5◦ ˜4◦ ˜26◦

using Caltech 5 as the target object (see details in the first
experiment). However, we found this parameter had a small
effect when the target object was changed. The parameter
α was then fixed for all the experiments.
Figure 2 illustrates an overview of the data flow diagram.

The right part of the scheme, showed as yellow elliptic boxes,
corresponds to the feedforward shape model. Details about
the model can be found elsewhere [5, 6]. In the following we
provide a short description of its implementation.
Gabor filter, similar as reflective field properties of simple

cells, provides selectivity to specific frequency and orienta-
tion, that is, once the image is filtered, features that corre-
spond to specific frequency and orientation can be obtained.
Thus S1 cells response at scale s and direction d is computed
using Gabor filters with 4 orientations (0, π/4,−π/4, π/2) ,
16 different scales (from 7×7 to 37×37 pixels in steps of two
pixels, forming 8 scale bands), thus leading to 64 different
filter responses. Next, the C1 cell responses are computed
by MAX-like operation. That is, we take a max over the two
scales within the same orientation which shows some toler-
ance to shift and size. The results are 32 responded images
(8 scales×4 orientations). In the S2 layer, we firstly extract
a set of prototype features for the S2 units at the level of
the C1 layer across all four orientations, i.e., a patch of size
n×n×4, n=4, 8, 12 and 16. The response of an individual S2
unit is given by matching (similar to Gaussian-like tuning.)
on the Euclidean distance between a new input and a stored
prototype. Thus we obtain S2 maps on 8 bands. Our final
set of shift- and scale-invariant C2 responses (a vector S of
1,000 values) is computed by taking a global maximum over
all scales and positions for each S2 type.
The left part of this scheme in green elliptic boxes shows

the extraction of color descriptors. Although color cues
can not be built by neuron models, Dichromatic Reflection
(DRF) model [11] explains how the image formation and
photometric changes (such as shadow, light source, specu-
larities) influence RGB values of images. On the basis of
DRF model, color models are discussed containing invari-
ance in the following.
We assume that objects consist of different materials (in-

cluding e.g. papers and plastics), the RGB values obtained
by sensors with spectral sensitivities fC(λ) are:

C⃗(x) = [R,G,B]T = mb(x)C⃗b +mi(x)C⃗i + C⃗a (2)

C(x) = mb(x)

∫
λ

eC(λ)fC(λ)cb(λ)dλ+

mi(x)

∫
λ

eC(λ)fC(λ)ci(λ)dλ+

∫
λ

aC(λ)fC(λ)dλ

(3)

For C ∈ R,G,B, and where C⃗i is color of specular re-
flectance light that is immediately reflected at the surface,
causing highlights. C⃗b and C⃗a are the body reflectance and
diffuse light caused by reflectance from all the directions.
The geometric terms of the reflectance m(x) are the geo-
metric dependencies on the viewing angle, light source di-
rection and surface orientation. Suppose body reflectance is

Figure 3: Schematic diagram for color information
entering into human retina when sunlight shines ob-
ject.

Neutral Interface Reflection (NIR) model, meaning Fresnel
reflectance ci(λ) = ci. Furthermore, ec(λ) is a single light
source, ac(λ) is the diffuse light, where λ is the wavelength.
When light shines upon one object, the RGB-colors formed
by reflectance light superposition on the surface of the object
are captured by human retina, see Fig. 3.

For simplicity, we assume white illumination, i.e. all light
sources in the scenes have constants: eC(λ) = e, and assume
that the following holds: fC(λ) = δ(λ − λC). With these
assumptions, we have the following equation for the sensor
values from an object under white light:

C(x) = mb(x)c
C
b (λ)e+mi(x)cie+ aC(λ) (4)

Equation 4 is reflectance function of objects in scenes.

3.1 Photometric invariance
Opponent color theory assumes retina has three visual

components, corresponding to retinal ganglion cells, which
transmit in the LGN and visual cortex. The three compo-
nents are defined as

O1 =
G+B +R√

3
, O2 =

R−G√
2

, O3 =
G+R− 2B√

6
(5)

Where O1, O2, and O3 are white-black, red-green, and blue-
yellow components, respectively. Here, we only consider
(O2, O3), because color changes don’t affectO1 , and the case
for which there is no diffuse illuminant present (aC(λ) = 0)
. By substituting eq. 5 in the eq. 4 we obtain

O2 =
mb(x)e[c

R
b (λ)− cGb (λ)]√

2
(6)

O3 =
mb(x)e[c

G
b (λ) + cRb (λ)− 2cBb (λ)]√

6
(7)

Obviously, the above equation is invariant for mi(x), that
is, in the absence of diffuse light, invariance with respect to
the highlight can be obtained.

Since hue can be treated as the angle of colors in the



Figure 2: The extended model incorporated with color invariant descriptors.

(O2, O3) space [12], that is,

H(R,G,B) = arctan(
O2

O3
)

= arctan(

√
3(cRb (λ)− cGb (λ)

cRb (λ) + cGb (λ)− 2cBb (λ)
)

(8)

Invariance with respect to both the lighting geometry mb(x)
and specularity mi(x) is obtained by hue.
We consider hue (H) as a color invariant descriptor. To

suppress the effect of noise for unstable color invariant val-
ues, an effective object representation is on the basis of his-
togram [13]. The predicted uncertainty in H is given by

σH =

√
(
∂H

∂O2
σo2)

2 + (
∂H

∂O3
σo3)

2

=

√
1

O2
2 +O2

3

(9)

Where σ is the standard deviation of opponent colors, and
we set σ = 1.
Opponent color is known to be sensitive to saturation that

indicates the color amplitude. The smaller the saturation is
the more uncertain the hue estimation [12]:

S(R,G,B) =
√

O2
2 +O2

3 =
1

∂H(R,G,B)

= (
2

3
(mbe)

2[(cRb )
2 + (cGb )

2 + (cBb )
2

− cRb c
G
b − cRb c

B
b − cGb c

B
b ])

1
2

(10)

Thus we can weight Hhist by its saturation.

3.2 Geometric invariance
Suppose that the color of an edge can locally be mod-

eled as a smoothed step edge. It is now straightforward
to prove that the angles between the derivative-based color
channels are invariant to this smoothing and are only de-
pendent on the edge amplitude [14]. We introduce a new
invariant, called ’color angle’, to implement the geometric
invariance. The derivatives of the colors

Cx(x) = mbx(x)c
C
b (λ)e+mb(x)c

C
bx(λ)e+mix(x)cie (11)

are invariant to diffuse light aC(λ). If we subsequently con-
sider specular reflection, we obtain the derivatives of the
opponent colors

O2x = Rx −Gx

=
1√
2
mbx(x)e[c

R
b (λ)− cGb (λ)] +mb(x)e[c

R
bx(λ)− cGbx(λ)]

(12)

O3x = Gx +Rx − 2Bx

=
1√
6
mbx(x)e[c

R
b (λ) + cGb (λ)− 2cBb (λ)]

+mb(x)e[c
R
bx(λ) + cGbx(λ)− cBbx(λ)]

(13)

This can be proven to be invariant with respect to specular
variations, similarly as in Eq. 6 and Eq. 7.



We can now add the geometrical invariance to the pho-
tometrical invariant derivatives, this leads to the opponent
angle:

θx = arctan(
O2x

O3x

) (14)

Similarly as for the hue we apply an error analysis to the
color angle equations of Eq. 14, which yields the following
results of predicted uncertainty in θx

σθ =

√
(
∂H

∂O2x

σO2x
)2 + (

∂H

∂O3x

σO3x
)2 =

√
1

O2
2x

+O2
3x

(15)
Hence, we will use σθ as the weight for the opponent an-
gle histogram θxhist when converting it to a local color his-
togram.
So far, we obtain color descriptors by concatenating a pho-

tometric invariance descriptor Hhist to the geometric invari-
ance descriptor θxhist , according to

C = [Hhist, θxhist ] (16)

In Table 2 an overview of the invariants in our model is
given.

4. EXPERIMENTS AND DISCUSSION
We evaluate our model by six experiments, each of which

focuses on different performance: (1) Performance obtained
with different weights α, (2) binary classification, (3) the
influence of the number of training examples on the per-
formance of the model, (4) blurred or noised robustness,
(5) multiclass classification, and (6) the performance on the
complex image database (including occlusion, intra-class vari-
ations, etc).

4.1 Image data sets
Each image set was randomly split into two disjoint sets

of training and test images. In our experiments, no single
object was present in both sets.
Caltech 5 : We considered five of the databases, i.e., Faces,

Motorbikes, Cars (rear), and Airplanes data sets [15], as well
as Leaves data set [16] (see typical examples in Fig. 4(a))
for the former five experiments. All images were normalized
to 140 pixels in height (width was rescaled accordingly so
that the image aspect ratio was preserved) and converted to
gray scale before processing.
Caltech 101 : This datasets contain 101 objects plus a

background category (used as the negative set) [15], which
have been a standard database owing to objects in it are
involved in several circumstances in the real world, such
as light, view, orientation changes. All images were pre-
processed as Caltech 5.
GRAZ : The dataset is very challenging: it contains a large

variety of objects under wide pose and extreme illumination
conditions [16]. Here we used cars, person and bikes (see
typical examples in Fig. 4(b)).

4.2 Results
(1) Weight optimization
In order to validate our weight α, we tested the perfor-

mance, under the classification task described in Section 3.
We learned models with different α (α ∈ {0, 1}) for Caltech
5 dataset. For algorithm effectiveness, we only took 5 posi-
tive training examples, 20 negative images for training and

Figure 4: Examples of Caltech 5(a) and GRAZ
database(b).
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Figure 5: Performance for all 101-object categories
for different weights α.

40 images for testing (half positive, half negative). Figure 5
shows the results that summarize the success of the overall
features in the increase of the parameter α. Upon inspection
of the different α selected across model, it is necessary to ex-
plore the range of parameters [0.5, 1] with α = 0.6 in order
to guaranty that perfect performance can be achieved given
the parameter α within our experiments. A small value for
α (α < 0.5) has the effect of downweighting the importance
of color with respect to shape information. It has to be
noted that, when no color information (α = 0) is taken into
account, the performance declined significantly by 25% at
least for airplane category.

This suggests that although regions that have different
shape properties than their neighborhood are often consid-
ered salient (more informative) and attract attention, color
features with photometric and geometric invariants, as a
complementary cue, can boost categorization performance.

(2) Binary classification
This experiment was carried out as follows: the model was

trained on the first set and tested on the second one. The
results reported were averaged over 3 independent runs. The
performance figures quoted are ROC equal error rates. As
Fig. 6 shows, surprisingly, the performances of our model on
all five categories are almost perfect. Amongst the datasets,
only the faces involve small changes. Table 3 summarizes the



Table 2: Properties of descriptors in each stage (’+’ indicates the feature is insensitive to the property,
otherwise ’-’ indicates sensitive)

Features Orientation Scale Translation View Highlight Illumination geometry Diffuse light
H - - - - + + -
θ + - + + + - +
C1 - + + - - - -
C2 + + + - - - -

90

91

92

93

94

95

96

97

98

99

100

e
q

u
a

l 
e

rr
o

r 
ra

te

Cars(rear) AirplanesMotorbikes Faces

object categories

Leaves

Figure 6: Equal error rate on the Caltech 5 database.

performance of our model compared with other published
results from benchmark systems.
This experiment verifies that color cues facilitate object

categorization. But it should be noted that the running time
is long owing to the training set size. In the next experiment
it will be shown how well our model can arrive given less
training examples.
(3) Different numbers of training examples
For each of five object category, the model was trained

with 1, 3, 6, 15, 30 and 40 positive training examples and 50
negative training examples from the background class. From
the remaining images, we extracted 50 images from the posi-
tive and 50 images from the negative set to test the system’s
performance (each result is an average of 5 different random
splits). The performance measure reported is the area un-
der the ROC (AUC). Figure 7 illustrates the recognition
performance for the different training examples. A strong
performance gain is observed for the majority of the 5 cate-
gories, even when only a few training examples are used. At
Training Number = 3, the model achieves the performance
near 100%. Looking back to the last two experiments, it
is no wonder that they have succeeded. At Training Num-
ber = 5 that our model achieves an average performance of
100%, which is shown by the black arrow. With less than
5 training examples, the model achieves recognition perfor-
mance comparable to [5, 6] using 40 training examples, that
is, the extended model clearly show a big advantage over
shape model when training number is small.
(4) Robust to blurred or noisy images
Actually, the captured images present with blur or noise

probably due to inevitable limitation of imaging sensor. We
here describe an experiment that suggests that it is possi-
ble to perform robust object categorization with our model
learned from low quality images. It is known from the last
experiment that the model gets nearly 100% correct using
5 training examples. Thus the Caltech 5 dataset used here
contains 5 positive and 20 negative training examples and
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Figure 7: Performance obtained with improved
model and different numbers of training examples.
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Figure 8: Equal error rate between improved model
and shape model for blurred images.

40 test examples (half positive, half negative). Classifica-
tion scores for our model were averaged over 5 runs. Figure
8 shows the comparison of equal error rate across all 5 cat-
egories between our model (called Shape + Color model)
and T. Serre’s shape model. Overall, for 4-object categories
tested, results obtained with our model achieve perfect per-
formance. For the worst case of motorbike category, our
model gets 97.5% correct (equal error rate = 0.95). The
performance of shape model degrades by 35% for leave and
airplane categories.

It is interesting to investigate why objects can not be rec-
ognized correctly without color cues. We take faces, cars
(rear) and leaves for examples. Figure 9 shows missed ex-
amples of shape model and their color invariant histograms.
The top and second lines illustrate original and blurred im-
ages we created, and their corresponding color descriptors.
It can be seen that blur don’t influence color information, so
color may play a positive role in object recognition. The bot-



Table 3: Comparison between improved model and the state of the art
Datasets Cars(rear) Faces Motorbikes Airplanes Leaves
Our model 100 100 100 100 100
Shape model [5, 6] 99.8 98.1 97.4 94.9 95.9
Constellation models 84.8 [17] 96.4 [17] 95.0 [17] 94.0 [17] 84.0 [18]

Figure 9: Some missed examples of shape model.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise density (d)

c
o

rr
e

c
t 

c
la

s
s
if
ic

a
ti
o

n

performance on 5 object categories with noise

Shape+Color/Cars(rear)

Shape+Color/Faces

Shape+Color/Motorbikes

Shape+Color/Airplanes

Shape+Color/Leaves

Shape/Cars(rear)

Shape/Faces

Shape/Motorbikes

Shape/Airplanes

Shape/Leaves

Figure 10: Correctness rate of two models with dif-
ferent noise densities.

tom line shows blurred grey images with less clearer shape,
which is the reason for significant decline in performance
without color cues.
Similarly, we reported results on binary classification on

the Caltech 5 database with different noise density (d). To
conduct this experiment, we generated different testing sets
of noise density 0, 0.1 · · · 0.9, and 1. Figure 10 compares the
influence of noise on recognition performance of our model
to that of shape model. It is seen that our model is markedly
superior to those from shape model. The sharp difference
of performance between these two models is 95%. Table 5
shows the detailed performance across the five datasets.
In general, under degradation, purely shape representa-

tions are not enough for accounting for the reliable object
recognition performance when the object is presented in
clutter. Our model is more robust to image degradation.
(5) Multiple classes case
We conducted initial experiments on the multiple classes

case. For this task we used the Caltech 101 dataset. We
split each category into a training set of size 5 and a test set
containing 20 images, similar to the experiments described
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Figure 11: ROC curves for cars, persons and bikes
with 5 training examples on GRAZ database.

earlier. The classifier is a simple multiclass linear SVM that
applied the all-pairs method for multiple label classification
and is trained on 102 labels. We obtained above 36% correct
classification rate only using 5 training examples per class,
comparable to [6] on 15 training examples.

(6) Object recognition in complex scenes
In order to test our model on a challenging real-world ob-

ject recognition problem, we have built training and test
data from the GRAZ data set, as shown in Fig. 4 (b). This
database consists of wide internal variability in their appear-
ance. For example, the object class car includes examples of
many diverse models, at many poses, and in various types of
occlusion and lighting, person appears at different locations,
and the class of bikes includes bicycles as well as electric mo-
tor car. Our results are shown in Fig. 11 along with those
of shape model. The performance could be improved signifi-
cantly if the model was incorporated with color information.
This is due to color features are important for light, view-
point changes and occlusion in objects.

5. CONCLUSION
Biology research suggests that color plays an important

role in the information processing of human visual cortex,
especially for opponent color responding strongly to IT (V4).
In this study we have shown that a biologically-based model
with color cues, a color descriptor with photometric and ge-
ometric invariance in the opponent color space, strengthens
the case for investigating biologically-motivated approaches
to this problem, can compete with other state-of-the-art ap-
proaches to object categorization. The categorization results
presented here convincingly exhibit excellent performance of
our model: Interestingly, the approach was shown to be able
to learn from a few examples and robust to the images with
low quality, even for a variety of real-world object recogni-
tion tasks. The goal of our approach is to develop a model



Table 4: Correctness rate of improved model and shape model with different noise densities (d) (the left of
’/’ denotes our model, the right shape model)

Object category d=0.5 d=0.6 d=0.7 d=0.8 d=0.9 d=1
Cars(rear) 1/0.6750 1/0.5000 1/0.5000 1/0.5000 1/0.5000 1/0.5000
Faces 1/0.7500 1/0.0500 1/0.5000 1/0.5000 1/0.5000 1/0.5000
Motorbikes 1/0.7000 0.9750/0.3750 1/0.5750 1/0.6750 1/0.5000 1/0.5000
Airplanes 1/0.7750 1/0.5000 1/0.5000 1/0.5000 1/0.5000 1/0.5000
Leaves 1/0.5500 1/0.8750 1/0.5250 1/0.5000 1/0.5000 1/0.5000

built on the visual cognition, not pursue complicated algo-
rithms directly. Finally it is worth pointing out that there
are also horizontal, within-area and feedback connections.
It is likely that future work will study the role of feedback
connections.
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