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ABSTRACT
Recognizing faces from face detector outputs is a hard prob-
lem. While existing face recognition (FR) techniques es-
sentially work on pre-processed (cropped and aligned) data,
we employ Gabor-based covariance descriptors for recogni-
tion from free-form faces (raw face detector outputs). Our
recognition algorithm employs a Principal Geodesic Analy-
sis (PGA) of Covariance Descriptors, followed by a trans-
formation on to tangent space where faces are sparsely rep-
resented. Employing the kernel trick on this sparse feature
space enables upto 10% improvement in recognition accu-
racy.

Keywords
Covariance descriptor, Principal Geodesic Analysis, Kernel
trick, Sparse representation

1. INTRODUCTION
Face recognition (FR) is an actively researched area over

the past few decades. Extensive literature exists where a
high-dimensional test image is projected onto lower dimen-
sions like Eigenfaces [12], Fisherfaces [6], Laplacianfaces [4]
and many other variants. Use of Gabor features is also ex-
plored in [5]. All these algorithms represent faces in a vec-
tored form; also, test faces need to be properly cropped,
aligned and of the same scale as the training faces. How-
ever, typical face detector outputs are neither aligned nor
cropped and also vary in scale. Classification of such data
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is very challenging.

Recently, Olshausen et al. [9] have shown that human per-
ception of vision is sparsely modeled. Wright et al. [15] have
also come up with a sparse representation of faces. Due
to compact representation of the test data as a linear com-
bination of the training set, the sparsest solution is shown
to be indeed discriminative for FR. Sparse representation is
achieved efficiently using `1 minimization or Basis pursuit
introduced in the context of compressive sensing [1].

Instead of representing the face as a vector, Tuzel
et al. [13] propose Region Covariance matrices (RCM).
Fletcher et al. [2] propose a dimensionality reduction for
these RCM descriptors called Principal Geodesic Analysis
(PGA). These PGA-RCM descriptors are robust to align-
ment and scale variations. However, these descriptors be-
long to a symmetric space which is not a vector space. As a
result, sparse representation for PGA-RCM is not feasible.
This can be overcome by transforming PGA-RCM descrip-
tors onto a tangent space using logarithmic mapping [2].

In this paper, we propose to use PGA-RCM descriptors
for representing free-form faces and also, employ the sparse
representation of these descriptors for FR. Also, to over-
come the limitations of linear modeling, we propose kernel-
ization [16] of the sparse feature space to perform classifica-
tion in a sparse, non-linear space. On the raw AR [8] and
YaleB databases [3], which contain faces obtained from face
detector outputs without any preprocessing, we demonstrate
higher recognition accuracy using the proposed features.

The paper is organized as follows. We introduce PGA of
covariance descriptors in Section 2. In Section 3, we describe
sparse modeling using PGA features, and detail the steps for
kernelization of this sparse model in section 4. Experimental
results are discussed in Section 5, while Section 6 outlines
the conclusions.

2. PGA OF COVARIANCE DESCRIPTORS
(PGA-RCM)

Covariance descriptors are a natural way of fusing mul-
tiple correlated features. They are also of low dimension



compared to other region descriptors. These descriptors be-
long to a positive definite symmetric space, which is not a
vector space. Therefore, these features are transformed to
a vector space from a fixed base point. The transformation
spaces used for Covariance matrix is known as Lie groups,
which form a smooth Riemannian manifold, having closed
form solution to distance computation and hence suitable
for establishing statistics.

For a curve on the manifold, an instantaneous speed vec-
tor and the norm can be computed at each point on the
curve, and its integration along the curve gives the length
of the curve. The distance between two points of a con-
nected Riemannian manifold is the minimum length along
the curve joining the two points. The curves realizing this
minimum are called as Geodesics. This is an intrinsic way
of measuring the length. The extrinsic way is to embed the
manifold in a vector space, and the length of the curve will
be the distance between the two points in the vector space.
The Riemannian metric is the inner product on the tangent
space, which is a vector space, at each point on the mani-
fold. Thus, Riemannian metric on a manifold, M smoothly
assigns to each point x ∈ M a continuous collection of in-
ner product 〈, 〉x on TxM, tangent space to M at x . An
important property of the positive definite symmetric space
is that they are geodesically complete, i.e. the manifold has
no boundary nor will reach any singular point in finite time.
As a result, Hopf-Rinow-De Rham theorem states that there
always exist atleast one geodesic between any two points on
the manifold.

2.1 Exponential and Logarithmic maps
From the theory of differential equations, there exists a

unique geodesic going through the point x ∈ M, with the
tangent vector ~v ∈ TxM. The geodesics through this ref-
erence point x are transformed into straight lines on the
tangent space, preserving the distance along the curve. The
function that maps this vector ~v to the point on the man-
ifold that a geodesic reaches in unit time starting at x, is
called the exponential map. Mathematically,

Expx : TxM→M (1)

: ~v → Expx(~v) = γ(1)

where γ(t) is the geodesic.
The origin of TxM is mapped to the point itself, i.e.

Expx(0) = x. For each point x ∈ M, there exists a dif-
feomorphism from neighbourhood of the origin in TxM to
the neighbourhood of x ∈ M. Thus there exists an in-
verse of the exponential map known as the logarithmic map,
Logx = Exp−1

x . The algorithms for calculating these are
as given in [2]. The above operations can be visualized as
shown in Fig. 1

2.2 Principal Geodesic Analysis (PGA)
Principal Geodesic Analysis [2] on manifolds is a general-

ization and extension of the Principal Component Analysis
on Euclidean space. This requires the computation of the
following statistics:

• Intrinsic Mean: The mean µ of set of points {xi}ni=1 ∈
M, is defined as the point that minimizes the sum of

Figure 1: Figure Depicting the mapping of a point
y = γ(1) ∈ M to a vector ~v = Logx(y) ∈ TxM. Length
of the vector is geodesic distance between x and y

the squared distance function.

µ = arg min
µ̄∈M

n∑
i=1

d(µ̄, xi) (2)

where d(x, y) = ‖Logx(y)‖ denotes the Riemannian
metric. For a Riemannian manifold the existence and
uniqueness of the mean is guaranteed. In [11] a gra-
dient descent algorithm to calculate such a mean is
described, which is given by

µk+1 = Expµk

[
1

N

N∑
i=1

Logµk (xi)

]
(3)

• Variance: If x is the random variable and µ is its
mean, the sample variance is given by

σ2 =
1

n

n∑
i=1

d(µ, xi)
2 =

1

n

n∑
i=1

‖Logµ(xi)‖2 (4)

• Geodesic submanifold: A geodesic curve in a man-
ifold is the generalization of a straight line in a lin-
ear space. A submanifold H is said to be geodesic at
x ∈ H, if all geodesics of H, passing through x are also
geodesics of M. Submanifold geodesics at x preserve
the distances to x.

• Projection: The projection of a point x onto a geodesic
submanifold H is the point on the submanifold that is
nearest to x in Riemannian metric, given by

πH(x) = arg min
y∈H

d(x, y)2 (5)

For the symmetric space of covariance matrices this
projection exists and is unique.

Given a set of data points x1, x2, x3, . . . , xn ∈ M, the
goal is to find a geodesic submanifold such that the pro-
jected variance of the data is maximized. These subman-
ifolds are referred to as the Principal Geodesic Submani-
folds [2]. These Principal Geodesic Submanifolds are con-
structed by obtaining an orthonormal basis ζ1, ζ2, ..., ζd of
tangent vectors that span the tangent space TµM. These
tangent vectors form a subspace V . The nested subspaces



are represented by Vk = span(ζ1..., ζk). The image of the
nested subspaces under the exponential map are the Prin-
cipal Geodesic submanifolds. The first principal component
chosen to maximize the projected variance is given by

ζ1 = arg max
‖ζ‖=1

N∑
i=1

‖Logµ(πH(xi))‖2 (6)

where H = Expµ(span(ζ))
The projection operator is approximated as [2]

Logµ(πH(x)) ≈
k∑
i=1

〈ζi, Logµ(x)〉 (7)

The remaining principal directions are defined as

ζk = arg max
‖ζ‖=1

N∑
i=1

‖Logµ(πH(xi))‖2 (8)

where H = Expµ(span(ζ1, ζ2, . . . , ζk−1, ζ))
Substituting for the projection operator, we get

ζ1 ≈ arg max
‖ζ‖=1

N∑
i=1

〈ζ, Logµ(xi)〉2 (9)

ζk ≈ arg max
‖ζ‖=1

N∑
i=1

k−1∑
j=1

〈ζj , Logµ(xi)〉2 + 〈ζ, Logµ(xi)〉2 (10)

The above minimization problem is simply the PCA in
TµM of the vectors Logµ(xi)

Following are the properties of the PGA:

• It preserves positive definiteness of Covariance matrix
after projection.

• Determinant and orientation of the Covariance matrix
is preserved

• Any matrix generated by Principal geodesic compo-
nents ζi’s are also positive definite.

In Eigen faces, it is assumed that all the faces lie in a sub-
space that maximizes the projected variances of the training
samples. On similar lines we assume that the all the faces
represented by covariance matrices lie on a geodesic sub-
manifold as explained above.

Let covariance descriptor of training set be represented as
xtr1 , x

tr
2 , . . . , x

tr
n ∈M.

Calculate µ mean of the points xtr1 , x
tr
2 , . . . , x

tr
n .

The features xtri are mapped onto the tangent space to
obtain

fi = Logµ(xtri )

The principal geodesic components are calculated to ob-
tain ζ1, ζ2, ζ3, . . . , ζd. The new projected principal features
(PGA-RCM) are now generated as

ptri = Expµ

(
d∑
k=1

λi,kζk

)
(11)

where λi,k are the coefficients obtained by

λi,k = ζTk fi (12)

and we define the PGA feature vi of subject i as:

vi =

d∑
k=1

λi,kζk (13)

For classification, test data is also projected on to this sub-
manifold to obtain the PGA-RCM, pt, and NN classification
for face recognition is employed using the measure

d(ptri , p
t) = ‖Logptri (pt)‖ (14)

As in [13], the above measure can be given in terms of gen-
eralized eigen values κi of the covariance matrices ptri and
pt. i.e.,

d(ptri , p
t) =

√√√√ d∑
i=1

(log(κi))2 (15)

In the next section we see sparse modeling of face recog-
nition using these PGA features.

3. FACE RECOGNITION USING
SPARSE MODELING

It has been shown by Olshausen [9] that the human per-
ception of vision is sparsely modeled. This concept is ex-
plored by Wright et al. [15]. It is shown that the sparsest
solution is indeed discriminative for the classification of the
face as each face is compactly represented as a linear com-
bination of its training set. Such compact representation is
extremely useful if the training set is large. The sparse repre-
sentation problem is solved efficiently using `1 minimization
or Basis pursuit introduced in the context of compressive
sensing by Donoho et al. [1]. We employ the model followed
by Wright et al. [15] explained in next paragraph using the
principal geodesic features.

Let c be the number of classes of different subjects. Let
f ∈ TµM be the covariance feature on tangent space of a
given subject as explained in the previous section. Let ni
be the number of training images available for each subject.
Let this be denoted by {f1,i, f2,i, . . . , fni,i} ∈ TµM, where
ni is the number of training samples of subject i. Assume
these vectors span a geodesic submanifold of the subject i.
Any test image whose tangent space features is l ∈ TµM can
now be represented as linear combination of the training set.

l = ψα (16)

where ψ = [f1,1, . . . , fn1,1, . . . , f1,c, . . . , fnc,c]. If the test
image l belongs to subject i, then its representation in ψ
basis can be assumed to be sparse with non zero coefficients
at locations corresponding to the vectors of the ith subject.
If the dimension of f ’s is larger than the number of training
images, then the (16) becomes an overdetermined system.
This high dimensionality problem can be addressed using
the Principal Geodesic analysis. If R is the dimensionality
reduction matrix in the tangent space TµM (note that the
elements of the matrix ψ are in the tangent space) then (16)
can be modified as below

y = Rl = Rψα (17)

Now, the system of equation in (17) is ensured to be under-
determined and a test image can be represented as a linear
combination of the training images of subject only to which



it belongs to. Hence a sparse solution of α can be determined
by solving the following problem

α̂ = arg min ‖α‖`0 subject to y = Rψα (18)

But solving (18) is an NP hard problem. Recent develop-
ment in compressive sensing by Donoho [1], show that if the
solution α is “sparse enough”then the solution of the `0 min-
imization of (18) is equivalent to solving the `1 minimization
problem as below

α̂ = arg min ‖α‖`1 subject to y = Rψα (19)

But since the real data is noisy it may not be possible to
represent the test image as sparse linear combination of the
training images, in which case the constraint in (18) and (19)
will not be appropriate. Hence the modified optimization
problem can be expressed as below

α̂ = arg min ‖α‖`1 subject to ‖y −Rψα‖2 ≤ ε (20)

where ε is a very small quantity greater than zero.

3.1 Classification
In the ideal case the non-zero entries of the estimate α

will be coefficients of the columns in Rψ which belong to
the same subject. But in practice is not true because of the
inherent noise in the data. As a result the non-zero entries
may be associated with multiple classes. Taking advantage
of the subspace structure, we classify the test vector l based
on how well the coefficients associated with all the training
vectors of each subject reproduce l. The residue r(i) of test
vector l, with respect to subject i is calculated by defining
the characteristic function δi : Rn → Rn for subject i, i.e.
for α ∈ Rn, δi(α) is a vector whose only nonzero entries
are the entries in α that are associated with subject i.

r(i) = ‖y −Rψδi(α̂)‖`2 (21)

Here α̂ is the solution of optimization problem (20).

4. FACE RECOGNITION WITH SPARSE
MODELING IN KERNEL SPACE

It is shown that linear models are inaccurate if we need to
recognize faces against slight changes in pose (but still close
to frontal pose), severe expression changes and scale varia-
tions. Contrarily the nonlinear models captures higher order
statistics beyond second order there by offering rich feature
representation and exploiting this could be crucial for clas-
sification. A non-linear modeling problem can be posed as
a linear modeling problem in a higher dimensional space,
thanks to Cover’s theorem for linear separability of patterns.
To enhance the performance of the sparse linear modeling
for free form face recognition we propose sparse represen-
tation using non-linear models. This is accomplished by
defining a non-linear map φ which maps training examples
in tangent space to higher dimensional reproducing kernel
Hilbert space. In this approach instead of expressing the test
example in tangent space as linear combination of training
examples, see (16), the data vectors in tangent space is trans-
formed to a higher dimensional feature space through a non-
linear mapping. The transformed test vector is expressed as
a linear combination of transformed training vectors. Recent
advances in kernel methods demonstrate a way to efficiently
perform computations in feature space using kernel trick.

We employ Kernel based feature extraction techniques such
as Kernel PCA or Kernel FDA [16].

4.1 Kernel functions
Reproducing kernels are functions of form k : X 2 → <,

where X 2 is a Cartesian product, and are those functions
which, for all finite pattern sets

{x1, x2, · · · , x` ⊂ X}

give rise to positive semi definite matrices K with Ki,j :=
k(xi, xj). Here X denotes compact set in which data points
live. In most pattern recognition task, the set X is N- di-
mensional Euclidean space <N . The properties that a kernel
function must satisfy are:

1. The kernel function must be symmetric in its argu-
ments.

2. Must be positive semidefinite obeying the following
condition

n∑
i=1

n∑
j=1

k(xi, xj)γiγj ≥ 0

for some n ∈ N and γi 6= 0 ∀ i. This property is
also stated as: For any finite n set of data points
{xi}ni=1 ∈ X the matrix K with Ki,j = k(xi, xj) is
positive semidefinite.

Kernel functions handle computations of nonlinear mod-
els in input space <N by reducing them to linear models in
higher dimensional feature space F . An algorithm which in-
volves only inner-products of data points in input space <N
can be easily converted to nonlinear algorithm by substitut-
ing the all dot product terms by kernel function k. This
corresponds to mapping the data points in <N to higher di-
mensional feature space F with a map φ : <N → F , and
taking inner product in feature space F , i.e, k(xi, xj) =
〈φ(xi), φ(xj)〉. This approach is commonly referred to as
the“Kernel Trick”in machine learning literature. One major
drawback of such approach is that the solutions to nonlinear
problem posed in feature space with kernel trick can only be
obtained as linear combinations of input data points.

4.2 Kernels for sparse model
Let φ be any nonlinear mapping from input space to fea-

ture space.

φ : TµM → F (22)

The notations used in this section are:

1. c is the number of classes.

2. vj,k is jth PGA features of training image of kth sub-
ject.

3. ni is the number of images for subject i.

4. n = n1 +n2 +n3 + ....+nc be total number of images.

5. l be PGA features of test image

Let Ψ = [φ(v1,1) φ(v2,1) φ(vn1,1) . . . φ(vnc,c)] be a matrix
with its columns as transformed PGA features of training



images and l be the PGA feature of test data. We can now
express the transformed test vector φ(l) as

φ(l) = Ψα (23)

As in Section 3, we can expect the representation of φ(l)
to be sparse in basis Ψ. Thus recognizing the class of test
pattern is solved by finding this sparse representation. But
since (23) is overdetermined and the problem is of very high
dimensionality, we make use of suitable dimensionality re-
duction technique like KPCA to convert the problem (23) to
underdetermined problem. This facilitates the use of kernel
trick to perform higher dimensional computations efficiently.
Hence we solve the following problem:

RTφ(l) = RTΨα (24)

where R is the dimensionality reduction matrix. This prob-
lem is reduced to an `1 minimization the derivation of which
is explained next.

4.2.1 Sparse modeling in feature space with Kernel
PCA

Let

Cφ = (1/n)

n∑
i=1

φ(vi)φ(vi)
T (25)

be the covariance matrix in feature space, where vi are the
PGA features. For simplicity here it is assumed that the
data is centered in feature space. It is shown that the
projection directions in KPCA corresponds to eigenvectors
of covariance matrix with leading d eigenvalues denoted as
u1, u2, ....ud. Here d indicates dimensionality reduction pa-
rameter.

Since Cφ is symmetric PSD matrix, all the eigenvectors
corresponding to nonzero eigenvalue must live in range space
of Cφ and hence we can express these vectors as linear com-
bination of transformed training examples.

uk =

n∑
i=1

βk,iφ(vi) (26)

Here [βk,1.....βk,n]T is representation for kth eigenvector.
Now we need to solve for leading d eigenvectors

Cφu = λu (27)

This can be written as (To find kth eigenvector):

1

n

n∑
i=1

φ(vi)φ(vi)
T

n∑
j=1

βk,jφ(vj) = λ
n∑
j=1

βk,jφ(vj) (28)

Multiply φ(vr)
T both sides, for ∀ r = 1 . . . n.

1

n
φ(vr)

T
n∑
i=1

φ(vi)φ(vi)
T

n∑
j=1

βk,jφ(vj) = (29)

λ

n∑
j=1

βk,jφ(vr)
Tφ(vj)

1

n

n∑
i=1

n∑
j=1

βk,jφ(vr)
Tφ(vi)φ(vi)

Tφ(vj) = (30)

λ

n∑
j=1

βk,jφ(vr)
Tφ(vj)

1

n

n∑
i=1

n∑
j=1

βk,jKr,iKi,j = λ

n∑
j=1

βk,jKr,j ∀ r ∈ {1, 2, 3....n}

(31)
This set of equations can be reduced to matrix form as:

(1/n)K2β = λKβ (32)

where β = [βk,1 βk,2 . . . βk,n]T is the column vector. The
above problem can also be solved as:

Kβ = nλβ (33)

The KPCA projection matrix is

R = [u1 u2 . . . ud] (34)

where kth eigenvector is uk =
∑n
i=1 βk,iφ(vi). Thus, (24)

becomes:

[u1 u2 . . . ud]
Tφ(l) = [u1 u2 . . . un]TΨα (35)

Which is

[
n∑
i=1

βr,iφ(vi)
Tφ(l)

]
︸ ︷︷ ︸

(d× 1) vector

=

[
n∑
i=1

βr,iφ(vi)
Tφ(vc)

]
︸ ︷︷ ︸

(d× n) matrix

α (36)

Where r = 1→ d and c = 1→ n
This can be further written as:

[βr,c]d×n︸ ︷︷ ︸
KPCA matrix

[
φ(vc)

Tφ(l)
]
n×1︸ ︷︷ ︸

w vector

= [βr,c]
[
φ(vr)

Tφ(vc)
]
d×n︸ ︷︷ ︸

Kernel gram Matrix

α

(37)
The simplified matrix version is thus given as:

Rβw = RβKα (38)

where w = [φ(v1)Tφ(l).......φ(vn)Tφ(l)]T and K is kernel
gram matrix with Ki,j = φ(vi)

Tφ(vj) and Rβ is the Kernel
PCA matrix.

We solve the following optimization problem:

α̂ = min
α
‖α‖`1 subject to RβKα = Rβw (39)

The residue is then calculated for each of the test face as
in the previous section.



5. EXPERIMENTS AND RESULTS

5.1 Gabor features based Covariance matrix
It is known that for the task of face recognition using

Covariance descriptors, Gabor features have been very ef-
fective [10].They are orientation and scale tunable filters. A
two dimensional Gabor transform g(x, y) is given as in [7]

g(x, y) =

 1

2πσxσy

 exp

[
−1

2

x2

σ2
x

+
y2

σ2
y

+ j2πWx

]
Here W is the upper frequency. Self-similar functions,

referred as Gabor Wavelets are obtained by appropriate di-
lations and rotations of the mother wavelet g(x, y), and let
it be represented as gs,r(x, y) where s and r denote the scale
and rotation respectively. Vectorized Gabor feature is given
by

F (x, y) = [f0,0(x, y) . . . fS−1,Z−1(x, y)]T (40)

where Z is the total number of rotations and S is the number
of scales and fs,r(x, y) = I(x, y) ∗ gs,r(x, y), ∗ being the
convolution operator. For a face containing W × L pixels,
the covariance descriptors are now calculated as

CR =
1

W × L

W∑
x=1

L∑
y=1

(F (x, y)−M)(F (x, y)−M)T (41)

where M is the mean, calculated by

M =
1

W × L

W∑
x=1

L∑
y=1

F (x, y) (42)

We use 5 region covariance descriptors [13] of gabor fea-
tures for each image [10], one for the entire image, two for
the left and right halves and two more for the top and bot-
tom halves. This is illustrated in Fig 2

Figure 2: Image regions corresponding to the five
covariance descriptors.

Hence, each image datapoint is represented as Dt =
(Ct1, Ct2, Ct3, Ct4, Ct5) where t is the face. For each of the
regions we obtain the principal geodesic components and
obtain a new covariance matrix (PGA-RCM) represented as
P tr = (P tr1 , P tr2 , P tr3 , P tr4 , P tr5 ). Similarly, we obtain the co-
variance matrix projected on the geodesic submanifold for
the test image P t. The distance between P tr and P t is
calculated as

ρ(P tr, P t) =

5∑
i=1

d(P tri , P
t
i )−max

i
d(P tri , P

t
i ) (43)

where d is the distance given in (14)
For the sparse model, we calculate the residue r(i, k) as

in (21) for each region k and Class label of t is given by

Class(t) = arg min
i=1→c

(
5∑
k=1

r(i, k)−max
k

r(i, k)

)
(44)

Of the five covariance matrices the least matching matrix
is ignored. This gives robustness to possible illumination
changes, noise and slight changes in the pose.

The proposed methods using PGA-RCM (PGA of Covari-
ance matrix in Section 2) and PGA features (PGA of RCM
mapped on the tangent space) with sparse modeling (Sec-
tions 3,4) for free form face recognition was tested on two
benchmark databases viz, AR and YaleB Database. In our
experiments, we run a Viola-Jones Face detector [14] on the
uncropped images and use these outputs for evaluating the
performance of the proposed method without employing any
alignment and cropping. In Fig. 3, we show the comparison
between a properly cropped and aligned face with the face
detector output (free-form faces).

Figure 3: Four face pairs with properly cropped and
aligned faces placed alongside face detector outputs.
Inconsistencies in scale and cropping can severely
impede recognition accuracy.

In [15], it is shown that sparse modeling of faces outper-
forms many of the state-of-the-art algorithms. We compare
the effectiveness of the PGA-RCM and PGA features by
comparing with other features like PCA with sparse mod-
eling [15]. We also kernelize the sparse representation and
show results of KPCA and KFDA on image intensities and
PGA features with sparse modeling. PGA-sparse is the
sparse modeling using PGA features i.e. features on the
tangent space. KPGA-sparse is kernelized PCA on PGA
features with sparse modeling, and KFPGA-sparse is Ker-
nel fisher analysis on PGA features with sparse represen-
tation. The choice of kernels were empirically selected to
obtain better recognition accuracy.

5.2 Uncropped AR database
We have considered a total of 110 subjects, 57 male and 53

females. Each subject has 26 images with varying expres-
sion, occlusion, illumination and little pose variation. We
consider only faces which are not occluded for experimen-
tal evaluation.The images of individuals are captured in two
sessions with 13 images in each session. We consider 7 im-
ages of first session for training and remaining 7 images of
session two for testing. The Figure 4 shows a few examples
of the free form faces for AR database. In Table 1, we show
the performance of the sparse methods and PGA-RCM for
100 dimensions.

From Table 1, it is seen that PGA-RCM gives better ac-
curacies. In Table 2, we show the results using Kernelized



Figure 4: Free form faces of AR Database

Method Accuracy
PCA-sparse 61
PGA-sparse 55
PGA-RCM 67

Table 1: Accuracies with sparse representation using
PCA and PGA-RCM features with 100 dimensions
for AR database

sparse models for image intensities as in [15] and PGA fea-
tures (PGA dimension 101) modeled on the tangent space.
For KPCA and KPGA we used RBF kernels with variance
set to 100 and dimension was chosen to be 100. For KFDA
and KFPGA polynomial kernel were used with maximum
allowed dimensions(in this case one less than total number
of classes).

Method Accuracy
KPCA-sparse 63
KPGA-sparse 53
KFDA-sparse 77

KFPGA-sparse 85

Table 2: Accuracies with Kernelized sparse models
using features intensities and PGA features(101 di-
mensions) for AR database.

From Table 2 we clearly see the improvement of accuracies
using the PGA features for kernel sparse representation.

In the Fig 5 we show the plot of dimension versus accuracy
for PGA-RCM and sparse-pca model and show the superior
accuracy of the PGA-RCM.

The Fig 6 shows the plot of using PGA features of different
dimension in the tangent space and then performing Kernel
Fisher Analysis (Fisher dimension was chosen as 110) on
each of these features using the sparse representation. From
the plot, we infer that there is a flexibility in choosing PGA
features of appropriate dimension. Such a behaviour is not
seen with intensity-based features.

5.3 Uncropped YaleB database
This database contains 28 subjects, both male and female

faces. There are 64 images per subject, with varying il-
lumination, expression and little pose. We make random
selection of 10 training examples and another 10 remaining

Figure 5: Plot of Accuracies of PGA-RCM
and sparse representation v/s Dimensions for AR
database

Figure 6: Plot of PGA features of different dimen-
sions vs Accuracy in Kernel Fisher Analysis for AR
database

unseen patterns for testing. We evaluate the performance
of proposed algorithm with exactly the same setup as ex-
plained for AR database using the Detector outputs. The
Fig 7 shows a few examples of the free form faces for YaleB
database.

Figure 7: Free form faces of YaleB Database

In Table 3, we compare the results for PCA-sparse and
PGA-sparse (tangent space modeling) with PGA-RCM fea-
tures with 100 dimensions. We see that PGA-RCM clearly
outperforms the other two. We don’t see much difference in
the performance of both the sparse representations.

The Table 4 shows the results for kernel versions. We see
that KFPGA outperforms the other methods

The Fig 8 shows the variation of KPCA sparse and KPGA
sparse with varying dimensions for the RBF kernel. The
Fig 9 shows the variation of KFDA sparse and KFPGA
sparse with varying Fisher dimensions.



Method Accuracy
PCA-sparse 65
PGA-sparse 63
PGA-RCM 82

Table 3: Accuracies with sparse PCA and PGA rep-
resentation, and PGA-RCM for the YaleB database

Method Accuracy
KPCA-sparse 67
KPGA-sparse 66
KFDA-sparse 72

KFPGA-sparse 83

Table 4: Accuracies with Kernelized sparse models
using intensity features and PGA features (100 di-
mensions) on YaleB database

Figure 8: Figure depicting Accuracies of KPGA-
sparse and KPCA-sparse representation vs Dimen-
sions for RBF kernel for YaleB database

Figure 9: Figure depicting Accuracies of KFPGA-
sparse and KFDA-sparse representation v/s Dimen-
sions for Kernel Fisher Analysis for YaleB database

From the results we can infer that for linear models PGA-
RCM gives better accuracy and for kernel methods PGA
features are better features than the image intensity fea-
tures.

6. CONCLUSION
In this paper, we have proposed free-form face recognition

using PGA for Covariance descriptors. We show that these
descriptors are efficient for representing free-from faces by
showing superior results over intensity-based sparse models

for representing faces. Also, kernelized sparse representa-
tion is found to achieve higher recognition accuracy than
its linear counterpart. Investigating FR performance with
sparse representation on the original manifold, instead of the
tangent space, is an interesting direction for future work.
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