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ABSTRACT 
Combining the results of different clustering to get a consensus 

clustering has attracted the attention of data mining researchers. In 

this context, it becomes necessary to measure diversity (or 

similarity) of a pair of partitions. Several diversity indices exist 

and these are based either on pairwise agreement or on clusterwise 

agreement. In pairwise agreement approach, similarity of two 

clusters is the number of common pairs of data elements. 

However, it is equally important to measure the level of 

disagreement rather than counting the frequency of disagreed 

pairs. We formulate this problem as a Transportation Problem and 

use Northwest Corner rule to compute feasible significance 

measures. We use this idea to propose a new index which differs 

from the existing measures in evaluating the extent of agreement 

by measuring the disagreement of data-pairs in terms of distance 

between cluster-pair of the disagreed data. We show 

experimentally that this yields a far better diversity index. 
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1. I�TRODUCTIO� 
Data mining has emerged as one of the important areas of 

research in last decade and in this process, many clustering 

algorithms are developed in recent years. Clustering is 

essentially to partition the set of points so that similar 

points are together and dissimilar points are separated. 

Different clustering algorithms [10] generate different 

partitions based on their own strategy of joining or of 

separation. Since no single clustering strategy is universally 

suitable, combining the results of several clustering 

strategies has become one prime area of investigations [3, 

4]. The aim is to determine a consensus partition by 

analyzing multiple partitions obtained from different 

clustering sessions in order to improve the quality and 

robustness. In this context, one of the important problems 

of investigation is to measure the diversity (or equivalently, 

similarity) of partitions. This is significant because a 

measure of agreement is required to compare the result of a 

clustering algorithm with the ground truth partition and to 

compare results of two different clustering. There are two 

main families of methods for comparing partitions- one 

evaluating the pairwise agreement, the other searching for 

the clusterwise agreement. Clusterwise methods use the 

contingency table that contains the dual classification of 

each individual data point in two partitions. On the other 

hand, pairwise methods are computed from a mismatch 

matrix derivable from the contingency table.  

In the present work, we propose a new and improved 

method in pairwise agreement category. The well-known 

measures in this category are Rand index [12], Jaccard 

index [1], Adjusted Rand index [5], and Wallace index 

[15]. There has also been proposal to use mutual 

information. Although there are several measures of 

comparing partitions, there is no consensus on choice of a 

method. Denoeud et al [2] report a comparative study of 

these indices based on transfer distance between partitions. 

This analysis is one of the motivating factors of the present 

research. 

The motivation to develop a new method stemmed from the 

observation that all the previous approaches attempt to 

measure the agreement (or, equivalently disagreement) 

based on agreement of pairs of data between partitions. In a 

naïve term, two clusters are similar if they contain same 

pairs of data elements. However, it is more appropriate to 

determine similarity based on agreement of individual data 

elements. That is, two clusters are to be similar when they 

contain same set of data elements. Though this looks 

obvious and natural, it is difficult to measure the diversity 

of the whole partition if we consider individual data 

elements. Hence majority of the earlier methods are based 

on either data-pairwise similarity or cluster-pairwise 

similarity. The proposed index, IRM-index, differs from the 

existing measures in evaluating the extent of agreement 

between any two groupings, taking into account intercluster 

similarities. It differs from the other known methods by 

measuring the disagreement of data pair in terms of 

distance between cluster-pair of the disagreed data. The 

similarity measures are compared with ground truth 

partition. The main idea is to measure a significance of 

agreement between clusters and this can be formulated as a 



 

set of inequalities. Incidentally, the system of inequalities 

so generated has the similar structure as the well-known 

Transportation Problem and hence its solution can be found 

by any of the well-known methods such as Matrix 

Minimum method, North-West Corner rule etc. We use 

here north-west corner rule to get a solution of the system 

inequalities.  

A brief account of existing diversity measures is given in 

section 2. We introduce the new index, called as IRM-

index, in section 3. We report our experiments in Section 4.    

2. SIMILARITY MEASURES 

2.1 �otations and Definitions 

Let S be the set of data points.  S = {s1, s2, …, sn}. A 

partition P on S is defined as P = {C1, C2, …, Cp} such that 

Ci ⊆ S, Ci ∩ Cj = ∅ and ∪Ci = S.  Let P = {C1, C2, …, Cp} 

and Q = {C′′′′1, C′′′′2, …, C′′′′q} be two partitions on S. P and Q 
are said to agree on a pair of data points (si, sj) if there 

exists indices k and m  such that si, sj ∈ Ck and also, si, sj ∈ 
C′′′′m. For two partitions P and Q, let νννν11 denote the number 
of pairs of data points that are in the same cluster in 

partition P as well as in Q. Similarly, we can define three 

other quantities, νννν00 is the number of pairs of data points 
that are in different clusters in P as well as in Q; νννν10 is the 
number of pairs of data points that in same cluster in P but 

in different clusters in Q and νννν01 is the number of pairs that 
are in different clusters in P but in same clusters in Q. We 

can construct the contingency table � where the ij
th
 entry 

�ij is the number of data items in Ci ∩C′′′′j. Let ni∗  and n′′′′∗j 
be number of items present in Ci and C′′′′j, respectively.  
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2.2 Known Diversity Indices 

This section describes several existing pairwise similarity 

measures of comparing partitions.  

 

The Rand Index [12] 

Rand index is a measure of agreement between partitions 

with values in [0, 1].  Rand index is defined as follows. 
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The Jaccard Index [1]  

Unlike the Rand index where the pairs simultaneously 

joined or separated are treated similarly, the Jaccard index 

ignores the pairs of data points that are separated in both 

partitions. The Jaccard index is defined as follows. 
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The Adjusted Rand Index [5, 13] 

There are many variants of the Rand index. An important 

variant, Adjusted Rand index corrects for the lack of a 

constant value of the Rand index when partitions are 

selected at random [5]. Let us first define the following 

quantities. 
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The Adjusted Rand index is defined as [13]   
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The Wallace Index [15] 

Wallace index is the ratio of number of joined pairs 

common to P and Q to the number of possible pairs. This 

denominator depends on the partition of reference and, if 

we do not want to favour neither P nor Q, the geometrical 

average is used. 
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The �ormalized Mutual Information [4, 14]  

From contingency table the value of mutual information 

between P and Q is.    
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Measure of similarity between partitions is the Normalized 

Mutual Information given as                                                      
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3. PROPOSED METHOD 
Methods that compare partitions based on pairwise 

agreement consider whether pairs are in same clusters in 

different partitions or not. We observe that when a pair is 

not in agreement it is important to quantify the level of 

disagreement. This can be done by determining the 

closeness of the cluster pairs to which the disagreed data 

belong. Thus the pairwise agreement methods can utilize 

this information to measure the similarity among partitions. 

Our motivation of a new index stems from this observation. 

All known methods are, in a sense, binary as they 

determine the pairs in agreement or not. Our method tries 

to differentiate different levels of disagreement. IRM-index 

considers matching of clusters in P with all the other 



 

clusters in Q.  We denote dij as the distance between 

clusters Ci of P and C′′′′j of Q and define it as follows. 
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Thus the similarity (or diversity) measure between P and Q 

should ideally be the sum total of all dij. We introduce a 

significance based weighting  and the significance values 

are computed based on a sort of matching. A matching 

between clusters Ci and C′′′′j assigns a significance credit σσσσij 

where σσσσij ≥ 0. Thus the proposed diversity index, IRM-

index, between two partitions is defined as follows.  
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Thus significance credits σσσσij can be determined by the 

following set of inequalities.   
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This becomes similar to the “Transportation Problem” 

constraints and any feasible solution of transportation 

problem will determine the significant values. We use 

Northwest Corner rule to get a feasible solution (the Initial 

Basic Feasible Solution in the context of the Transportation 

Problem). The following algorithm describes the process. 

compute_significance 

1. initialize ∀ i and j,  labeled(i,j) = 0 and σij = 0  
2.   do while there is no (i, j) with labeled(i,j) = 0 

3.   select the unlabeled index-pair (i,j) corresponding to the 

largest dij    

4.   set σij  ←  min (ni∗∗∗∗, n∗∗∗∗j)   

5.   update  labeled(i,j) ←1 
6.   update    ni∗∗∗∗  ←  ni∗∗∗∗ - σij   
7.   update    n∗∗∗∗j ← n∗∗∗∗j - σij  
8.   if  ni∗∗∗∗  =0 

9.            update  labeled(i, u) ←1, ∀ u 
10.        if  n∗∗∗∗j = 0 

11.            update  labeled(v, j) ←1, ∀ v 
12.      end dowhile  

 

The proposed method is similar to Integrated Region 

Matching (IRM) technique [9] which is a similarity 

measure for pairs of segmented images. IRM overcomes 

the difficulty of inaccurate segmentation in images by 

allowing one region of image to be matched with several 

other regions of other image. This philosophy can be 

applied in the present context as there is always the 

problem of inaccurate clustering. The algorithm 

compute_significance outlines the steps to compute the 

significance value satisfying the above set of inequalities.               

Illustrative Example                                
In order to see the desirable properties of the proposed 

diversity measure, let us consider an example given in 

Figure 1. There are three different partitions P1, P2 and P3 

for eight data items. These partitions are  
P1 = {1,2}|{3}|{4}|{5}|{6}|{7,8};  

P2= {1,2}|{3}|{4}|{5}|{6}|{7}|{8}; and  

P3 =  {1,2}|{3,6}|{4,5}|{7,8}.  

We can see that P1 is more similar to P2 than it is to P3. P1 and P2 

differ only in one cluster whereas there are several other clusters 

in P3. Thus it is desirable that any measure of similarity between 

pair of partitions should highlight this aspect. The values of 

measures for these pairs of partitions are summarized in Table 1. 

 

Table 1: Distance indices between P1, P2  and P1, P3        

Index P1, P2 P1, P3 

Jaccard 0.50 0.50 

Wallace 0.70721 0.70721 

AR 0.65 0.63157 

Rand index 0.9642 0.8571 

IRM-index 0.875 0.75 

NMI 0.0757575 0.05555 

        

It is observed that the Jaccard index, the Wallace index and 

the Adjusted Rand index determine both P2 and P3 

equidistant from P1. These measures do not take into 

account singleton clusters while computing similarities. In 

a situation where large number of clusters differ among 

themselves by single elements, these indices (except the 

Rand index) will not yield desired result. And the Rand 

index fails when there are many of nonintersecting pairs in 

both the clusters because it gives equal importance to pairs 

in same clusters, and pairs in different cluster. The 

Adjusted Rand index and the Normalized Mutual 

Information can take negative values and the behavior of 

NMI is unpredictable which can be observed from the 

experimental results. 

4. EXPERIME�TAL RESULTS 
In order to evaluate the discriminatory ability of the 

proposed index, we carried out experiments using data with 

known partitions from UCI/ML repository. We use k-

means clustering method to obtain candidate partition. We 

determine the distance of the computed partition from the 

known partition by using all known diversity indices.  A 

major design issue in the present context is the 

determination of reference partition in the absence of any 

“ground truth”.  In such cases normally one chooses one of 

the known method as reference and tries to compare other 

techniques with reference to this chosen one. We 

experimented with several known technique as references. 

We observed that all other indices exhibit consistent 

behavior with respect to Hungarian method. Thus reference 

distance is determined by computing the distance of two 

partitions using Hungarian method [6, 7].  

This distance is normally used to measure the accuracy of 

the clustering technique.  Our experiment is to determine 



 

the index that is close to the accuracy.  Thus for a given 

partition, obtained from one clustering session, we compute 

the accuracy by Hungarian technique and then compute the 

similarity measure using indices described earlier and then 

find the difference of accuracy and similarity. This 

quantity, accuracy – similarity, is the performance measure 

of an index for a given partition. A desirable property of an 

ideal index is to have smaller deviation from the accuracy. 

We use k-means algorithm for different values of k and for 

each k, we take the average of the deviation for 50 runs 

with random seed points. Thus for a fixed k, we take 50 

different partitions generated by 50 runs of k-means and 

compute all the diversity indices for each of these 

partitions. Figures 2-5 show the graphs with k as the 

abscissa and deviation from accuracy value on the ordinate.  

The Australia Dataset  

The dataset consists of 690 data items in 2 clusters. We 

experimented for  k from 2 to 50. The deviation of the 

Rand index is very low when k is near 2 and jumps to high 

values as k increases. The deviation of NM index is very 

high when k=2 and gradually reduces as k increases. IRM-

index and the Wallace index show much balanced 

behaviour. It is observed that IRM-index has less deviation.  

Adjusted Rand index and the NMI are almost similar to 

each other. Figure 2 gives the performance of different 

indices for this data set. 

Figure 2. Experimentation and comparision for Australia 

Dataset         

The Iris Dataset  

The Iris dataset is of 150 data items with 3 clusters of 

which two of them are very similar. We take k in [3, 50]. 

The Rand index has larger accuracy whereas the Adjusted 

Rand index gives better results for initial values of k. The 

IRM-index demonstrates the distances in a balanced 

manner. It can be observed that the proposed method 

always supersedes Jaccard index which considers number 

of intersection by union of data pairs. Figure 3 summarizes 

the experiments for this data set.  

The Spect Dataset  

The Spect dataset consists of 267 data items with two 

clusters of which 187 are training and 80 are testing. The 

IRM-index is closer to real similarity. For this data set the 

Adjusted Rand index and NMI demonstrate very 

undesirable behaviour; the diversity is very high for correct 

value of k and decreases for higher k values. The Jaccard, 

Wallace and the IRM-index are acceptable in this case with 

IRM-index giving smallest deviation throughout. The detail 

result is depicted in Figure 4. 

 
Figure 3: Comparison of similarity indices for Iris dataset.  

 

Figure 4: Comparison of similarity indices for Spect 

dataset. 

 The Liver disorders Dataset  

This dataset consists of 345 data items separated into two 

clusters. It can be observed that with increasing cluster 

numbers IRM-index was much closer to accuracy values 

(Figure 5). 



 

Results for different datasets are formulated in Table 2

below where k is the true number of clusters in the dataset 

and k1 is the cluster number for which the IRM

better. For every dataset 50 partitions were created with 

number of clusters starting with k1 and incrementing by one 

cluster and results were compared with the existing 

measures. We take the sum of deviation (= accuracy 

similarity) values starting from k1 clusters to 50 clusters. 

We observe that the IRM-index has smallest deviation. As 

the number of clusters increases the deviations of Jaccard, 

Adjusted Rand, Wallace and IRM indices tend to be closer 

to zero. Although for few datasets initially other measu

were better, there is no consensus on choice of measure that 

best suites any given data. IRM measure overcomes this 

difficulty and can be considered to work for different kinds 

of data. Experimental results prove that IRM

better choice when the number of clusters is large. 

Figure 5. Comparison of similarity indices for Liver 

disorders dataset.  

5. CO�CLUSIO� 
We, in this paper, develop a new diversity measure to 

compare partitions.  The diversity measure takes into 

account the membership of individual data element to same 

or different clusters in a pair of partitions. This is different 

and more appropriate than the known methods which take 

into account the pairs of data element sharing same 

clusters. We show through elaborate experiments tha

diversity measure is close to the accuracy. Thus the 

proposed measure will be very useful for consensus 

clustering. We propose to investigate this aspect in future.  

In the same line as reported in [11], one can even consider 

an additional parameter of distance between clusters when 

the two data elements disagree.  We shall be investigating 

this in future. 

 

 

 

sets are formulated in Table 2 

below where k is the true number of clusters in the dataset 

which the IRM-index is 

or every dataset 50 partitions were created with 

and incrementing by one 

cluster and results were compared with the existing 

viation (= accuracy - 

clusters to 50 clusters. 

index has smallest deviation. As 

the number of clusters increases the deviations of Jaccard, 

Adjusted Rand, Wallace and IRM indices tend to be closer 

to zero. Although for few datasets initially other measures 

were better, there is no consensus on choice of measure that 

best suites any given data. IRM measure overcomes this 

difficulty and can be considered to work for different kinds 

of data. Experimental results prove that IRM-index is even 

en the number of clusters is large.  

 

Comparison of similarity indices for Liver 

We, in this paper, develop a new diversity measure to 

compare partitions.  The diversity measure takes into 

individual data element to same 

or different clusters in a pair of partitions. This is different 

and more appropriate than the known methods which take 

into account the pairs of data element sharing same 

clusters. We show through elaborate experiments that our 

diversity measure is close to the accuracy. Thus the 

proposed measure will be very useful for consensus 

clustering. We propose to investigate this aspect in future.  

In the same line as reported in [11], one can even consider 

of distance between clusters when 

the two data elements disagree.  We shall be investigating 
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Figure 1(below): Partition P1 has 6 clusters which can be identified by rectangle boxes. Similarly P2 has 7 and  P3 has 4 

clusters. It can be noticed clearly from the picture that P1 is similar to P2 
than to P3. 

 

  



 

 

 

    Dataset � k k1   IRM   Rand Jaccard    AR Wallace �MI 

Australian 690       2 2 1.337249   10.125183    1.597784   4.358551   2.044201   4.027432 

German   1000                2 15 1.048532   4.645780     1.225258   2.174214   1.090978   1.565228   

Glass 214           7 7 1.215728 15.853014 1.272213 3.865350 1.513213 2.288114 

Heart 270                2 11 0.967244   7.024978    1.297638   2.455763   0.972834   1.803880   

Iris 150                 3 33 0.452911 10.527431   2.835106   0.493838 2.767596   5.541363   

Lenses 24                  3 4 2.382998    7.329707     5.475070   7.945702   2.410549   3.225222 

Liver 345              2 14 0.880220    6.211665     1.128411   2.150390   0.933740   1.504367   

Spect 267                 2 2 1.896824   5.477993      2.144411   5.882934   2.235649   4.993913   

Thyroid 215                3 29 0.086105   0.723668      0.144460   0.212707   0.116261   0.140647   

Wine 178                 3 26 0.177859   1.533105     0.246755   0.282415   0.182751   0.431561 

Table 2 : Aggregated (Accuracy – Similarity) values from K1 to 50 partitions. 


