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ABSTRACT
Traffic monitoring/prediction using a distributed camera net-
work is presented in this paper. The activities on each road
link are monitored and features are derived to identify the
pattern. Then it is learnt, classified, predicted and com-
municated to neighboring road links. We used GMM-EM
based classification and HMM based prediction. Optimum
path is determined by assigning proportional weights to the
predicted states of the connected road links. The proposed
method is neither based on tracking nor on vehicle detection.
Apart from this the method is flexible, adaptive, robust and
computationally light . Unlike the existing methods it does
not assume or draws analogies of traffic moving as particles,
neither does it impose restriction on road conditions or road
tributaries and distributaries. The model is validated using
traffic simulator and tested on real road network.

Keywords
traffic surveillance, spatial interest points, spatial-temporal
interest points, traffic classification, hidden Markov model,
traffic prediction

1. INTRODUCTION
In this paper we are presenting a distributed camera net-

work based traffic model. The traffic model we developed
extracts video based features and processes the same to clas-
sify the road condition as open, slight congestion, heavy con-
gestion or traffic jam. It can also be used for predicting the
traffic conditions along the road which is extended to find the
best route to the destination. Currently, the dominant tech-
nology for this purpose is magnetic loop detectors, which
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are buried underneath highways to count vehicles passing
over them. Video camera based systems present some ad-
vantages over the current technology. First, a much larger
set of traffic parameters can be estimated in addition to
vehicle counts and speeds. These include vehicle classifi-
cations, link travel times, lane changes, rapid accelerations
or decelerations, queue lengths at urban intersections, etc.
Second, cameras are less disruptive and less costly to install
than loop detectors, which require digging up the road sur-
face. Therefore, video cameras are becoming more popular
in traffic monitoring and control systems.

Sensor nodes which can communicate to the nearby nodes
are placed in all road links. A sensor node is equipped with,
a camera with accessories to process the data and commu-
nication devices. The features (SIP and STIP) are derived
from the video frames generated by the camera. Spatial in-
terest points are points (SIP) in spatial domain with signif-
icant variation in local intensities where as spatio-temporal
interest points (STIP) are points in space time domain with
significant variation in local intensities. It is observed that
vehicles on a road generate SIP and the moving vehicles gen-
erate STIP. Hence, the number of SIP is indicative of number
of vehicles on a road and ratio of STIP to number of SIP
is suggestive of percentage of moving vehicles. These points
are classified using GMM and then traffic state prediction
is carried out using HMM. Once the next state of each road
link is available, we can obtain the optimal path by assign-
ing weights (in accordance with the predicted state) to each
link.

2. RELATED WORK
Traffic modeling has gained significant interest among re-

searchers and lot of work has been carried out already. Even
then it is still a challenging work due to its nonlinear nature.
The existing research works can be divided into two groups
(i) Traffic classification and (ii) classification and prediction.

Most of the existing road classification research works are
based on image segmentation and tracking vehicle, which
cannot be used for on line learning due to the computa-
tional complexity[10] [5] [14] and [7]. Peng Cheng and et.
al. [4] developed a particle filter based traffic estimation
utilizing hand off data. In this case every vehicle should
contain a cell phone in it, which is not practical always.
Ren C Boel and et. al. have developed a hybrid stochastic



traffic model[2]. The whole network is divided into sections
and the traffic is predicted by using sending and receiving
functions. Later they have developed a particle filter based
modeling which is faster and can even be used for online
prediction. But the main disadvantage was to detect vehicle
in every section which makes complex computation. X.Li
and et. al.[9] in their work ”A Hidden Markov Model frame-
work for traffic event detection using video features” used
DCT in spatial and temporal domain as features and used
HMM for event detection. This method is computationally
complex due to the need of image processing which makes
online learning difficult. Y. Zou and et.al [18] have devel-
oped HMM based traffic incident detection. The method is
location specific and also needs vehicle detection. In general
traffic modeling is done with image processing and track-
ing. We are presenting a model which do not require track-
ing and hence suitable for online prediction. Yan Qi in his
Ph.D. [12] thesis ”Probabilistic Models For Short Term Traf-
fic Conditions Prediction” compared the traffic prediction
using HMM based model and one step stichastic model. He
derived traffic features from embeeded magnetic loops on
the road. Embeeding magnetic loop on the road will be a
tedious effort. In general all the above methods belong to
group (i) and were doing traffic modeling on an individual
road link and not extended for real time navigation.

Recently, Wireless Sensor Network (WSN) is playing an
important role in traffic modeling / navigation. Vipin Ku-
mar Verma and et. al.[16] developed an ITS using WSN.
This method need a sensor in each vehicle, distributed servers
on each crossing, and embedded tracking sensors on the
road. This will make the system complex and costly. Ben-
Jye Chang and et. al in their work ”Wireless Sensor Network-
based Adaptive Vehicle Navigation in Multihop-Relay WiMAX
Networks”[3] explains a traffic navigation model by analyz-
ing the data collected from each moving vehicle through
WSN. Here distance between the vehicles and average speed
of the road is considered and cost of each road link is calcu-
lated. The main disadvantage is that every vehicle should
have a WSN in it. Malik Tubaishat and et. al (Adaptive
Traffic Light Control with Wireless Sensor Networks) [15]
have developed a traffic light control system using embed-
ded magnetic loop sensors on each lane of the road. Mainly
this method concentrates on crossings and trying to mini-
mize the weighting period. The proposed work presents an
autonomous distributed camera network (instead of embed-
ded sensor network) with traffic state prediction service in
terms of traffic conditions of the road. The macroscopic view
based traffic model so achieved is computationally light (as
we are not using tracking or vehicle identification), camera
setup independent and fast (simplification of the video pro-
cessing at sensor node). Hence the model is suitable for real
time implementation. Since the proposed work is based on
distributed processing, the camera nodes in the network are
not subordinate to any other node and are able to collect,
process and communicate information at their own will. As
we are communicating the traffic state to the neighboring
nodes only, the network is energy efficient too.

3. PROBLEM FORMULATION
The main aim of the proposed work is to develop an au-

tonomous distributed camera network for traffic prediction.
A sample road network is shown in fig.1. R1 - R10 are dif-
ferent road links and C1 - C10 are cameras for recording

Figure 1: Road Network

the activities on the road links respectively. The video fea-
tures of each road link will be extracted, processed, predicted
and communicated to the nearby nodes periodically by each
node. Each node will be sending the predicted states of the
road and neighboring road links along with the ID of the
respective road link for updating the current status.

Traffic on any road can be completely defined by the num-
ber of moving vehicles and their average velocity. But these
two features depend on each other. Therefore we classify the
road states by comparing the no. of vehicles with the num-
ber of moving vehicles. If the no. of vehicles in a road link
is η and the no. of moving vehicle is γ, we can classify the
road state ηγ domain. The major classification considered
is: Stopped (S), Heavy congestion (HC), Mild congestion
(MC), Slight Traffic (ST), and Open (O) We can extract
SIP and STIP from the video frames recorded by the cam-
era. The classification of the traffic state can be done based
on the ratio of STIP to SIP as the ratio will give the indica-
tion of the state of the road. This is possible only when we
get a dense feature set of correlated SIP and STIP, whereas
the existing operators are providing sparse feature set of
uncorrelated SIP and STIP. Hence we made a novel spatial
interest point detector which provides dense feature set of
correlated points by modifying the Harris corner detector.

The parametric model of the saliency features distribution
is learned by fitting a Gaussian Mixture Model (GMM) using
the Expectation-Maximization (EM) algorithm on a hand
labelled training data set. This approach is used because it
is suitable for fast data processing with only three features,
weight, mean and covariance.



Using the spatal (ηsp ) and spatio-temporal interest (γpt)
points we can classify the road state by using Gaussian mix-
ture model given by equation 1

Let the feature vector be S = (ηsp, γpt) , no. of classes be
k and no. of Gaussian mixtures be n

The conditional probability that belongs to Kth class is
given by

p(S/Mk) =

nkX
i=0

wki

2Πd/2| Σi |1/2
e(S−µk

i )
T

Σk
i (S−µk

i ) (1)

The traffic on road links can be universally mapped into
any of the above traffic states on a road link. Hence the traf-
fic on a road link can be considered as a finite state machine
transiting from one traffic state to another with time. The
problem with such a model for traffic prediction is that it is
too rigid and allows only small changes in traffic state dis-
tribution and brings up the need of learning 2 Dimensional
finite state machines, with states transiting with variation
in space and time. In order to make the system self evolving
and avoid the complications of 2 dimensional finite state ma-
chine learning, we turn to Hidden Markov Models for traffic
modeling. The HMM so learnt, does soft classification after
adjusting to lower minima for that road link and also evolve
through time while learning online and can predict the fu-
ture state. The flowchart of the proposed Traffic model is
given in fig.2.

Once we get the future state of neighboring road links, we
can assign weight to each state and the optimal route can
be determined. The system is energy efficient as the sensor
nodes have to communicate only the traffic state periodi-
cally. Driver of the vehicle can communicate to the nearby
sensor node and can select his route.

Figure 2: Traffic prediction Model

4. TRAFFIC MODEL

4.1 Road Traffic States
Traffic on a road segment can be completely defined on

the basis of:

• Number of vehicles on the road segment(η).

• Number of moving vehicles (γ).

• Average velocity of the vehicles (v).

We can define each and every road state as an area in do-
main of η and v by mapping them into a certain fixed average
number of vehicles and a certain average velocity of vehicles
with a given fuzziness. These road states, if mapped accord-
ingly can correspond to road states as we define cognitively
like open, slight traffic, mild congestion, heavy congestion,
jam etc. The states into which a road link can be classified
vary with different road links as the two properties of a road
segment, ie. η and v are not completely independent. The
number of vehicles on a given road link affects the average
time taken to traverse it; similarly the average time taken to
traverse a road link affects the number of vehicles on it. We
take advantage of the above fact to minimize our feature vec-
tor by defining the road state, by comparing the number of
vehicles to the number of moving vehicles on the road. These
two parameters are estimated by extracting spatial interest
points (SIP) and spatio-temporal interest points (STIP) as
the number of spatial interest points indicates the number
of vehicles on the road link and number of spatio-temporal
interest points indicates the number of moving vehicles on
the road. Using SIP and STIP, the road states are classi-
fied in the ηγ domain using Gaussian mixture models and
Maximum Likelihood.

4.1.1 SIP and STIP extraction
The currently available STIP detectors [17] [8] [11] like

Harris corner detector, determines the second moment ma-
trix over image derivatives used to to achieve rotational in-
variance. As it is not required in the proposed method, the
computational burden of calculating second moment matrix
over image derivatives is avoided and direct second moment
matrix over intensities is obtained. This helps in making the
system computationally light and the STIP so generated is
a very crude form but optimized to work in real time on
low computational power systems. Therefore we found spa-
tial interest points by recording the intensity values along
each dimension in a local neighborhood and then found the
Eigen values of recorded 2 dimensional data. This concept
is then further extended to temporal domain. This way we
obtained spatial and corresponding spatio-temporal interest
points with detection of minor changes in intensity over tem-
poral domain. The fig. 3 shows the SIP and STIP detected
by our algorithm

Let us define the image as fsp(x, y). To remove high fre-
quency variation over the spatial domain we convolve the
image with a 2D Gaussian kernal with variance σ2

1 to obtain
F sp(x, y).

F sp(x, y) = fsp(x, y) ∗ gsp(x, y, σ1) (2)

The spatial interest points are obtained by listing the in-
tensities at points F sp(x − 1, y), F sp(x, y), F sp(x + 1, y)
along a dimension IX and points F sp(x, y − 1), F sp(x, y),
F sp(x, y + 1) along a dimension Iy.

Ix =

24F sp(x− 1, y)
F sp(x, y)

F sp(x+ 1, y)

35 (3)

IY =

24F sp(x, y − 1)
F sp(x, y)
F sp(, y + 1)

35 (4)

lsp = Cov(Ix, IY ) (5)



Figure 3: The red circle shows SIP and blue cross
shows STIP

| lsp |> thsp (6)

Now, determinant of lsp will give us the product of Eigen
values, this product is indicative of variance along the two
principal directions, hence in our operator the det(lsp) de-
notes the strength of spatial interest point. In our case we
define a strength threshold (thsp), above which all the points
are considered spatial interest points

For spatio-temporal domain the consecutive smoothened
frames are stacked to form F sp(x, y, t). And Ix, Iy and It
are expressed as

Ix =

24F sp(x− 1, y, t)
F sp(x, y), t

F sp(x+ 1, y, t)

35 (7)

IY =

24F sp(x, y − 1, t)
F sp(x, y, t)

F sp(x, y + 1, t)

35 (8)

It =

24F sp(x, y, t− 1)
F sp(x, y, t)

F sp(x, y, t+ 1)

35 (9)

lspt = Cov(Ix, IY , It) (10)

| lspt |> thspt (11)

A spatial temporal interest point should satisfy both the
equations. The resulting operator gives a dense representa-
tion of a video with strength of each point defined crisply
in both spatial and temporal domain independently. Such
points can be used to identify moving spatial interest points
and hence detect moving objects in the field of view. The
next section concentrates on using the above defined spatial
and spatial interest points as features for road traffic state
classification.

4.1.2 Classification
The normal traffic situation can be roughly categorized

into two states, open and congestion. But we observe that
such a classification is not enough to describe the traffic situ-
ation. Thus, we use traffic patterns similar to what humans
define; Stopped (S), Heavy congestion (HC), Mild conges-
tion (MC), Slight Traffic (ST), and Open (O). They are de-
fined as follows. Stopped: there are a large number of
vehicles and almost all the vehicles run very slowly or are
completely stopped. Heavy congestion: there are a large
number of vehicles and most vehicles run slowly, Mild con-
gestion: most of the vehicles run at half speed. Slight
Traffic: vehicles run at normal speed. Open: there is no
vehicle or minimum number of vehicles in the region of in-
terest. It is important to note that for different road links,
the above defined traffic state will map to different region in
the ηγ domain. Hence for every road link the corresponding
parameters and their feature set mapping has to be learnt
for every class or traffic pattern. To avoid this problem we
normalized the feature set by considering the no. of vehicles
per unit area. The normalized feature set will be (ηspγspt)
where ηsp and γspt will be no. of SIP and no. of STIP per
unit area. The classified set will give an indication of av-
erage velocity (v). By doing so we can do offline learning
once, which can be further used for real time application.

Classifier.
A parametric model of the saliency features distribution is

learned by fitting a Gaussian Mixture Model (GMM) using
the Expectation-Maximization (EM) algorithm on a hand
labeled training data set. This approach is used because
its properties are well-known and it is suitable for fast data
processing with only three features. See [1] for practical
details on the EM algorithm and [6] for classification using
GMM. The resulting density probability model for each class
is the sum of n Gaussians with weight, mean and covariance
matrices (wki , µ

k
i ,Σ

k
i )i=1...n.

Let Mk = (wki , µ
k
i ,Σ

k
i )i=1...nk be the GMM of the kth

class. LetS = (ηspγspt) be the saliency features of a road
state to be classified. The conditional probability that the
point belongs to the kth class is given by equation(1) and

kmax = argmax(p(S/Mk)) (12)

Using equation(1) and equation(12), the class or the road
state and velocity can be suggested.

Training Model.
In order to capture the variability of the traffic states,

the training set must contain data from all the traffic states
defined. The labeling process is performed using a graphical
interface developed in matlab which allows the selection of
frames individually or in groups. We enforce a balanced
labeled dataset between the different traffic states. In order
to keep the high frequency change in traffic from influencing
the state classification, averaged features are computed over
a fixed number of frames. This labeling and model fitting is
performed off-line and only once. Once a model is obtained,
it can be used to classify road states in real time.

4.2 Traffic Prediction

4.2.1 Traffic as finite state machines



The traffic on road links can be universally mapped into
any of the above traffic states on a road link. Hence it can
be considered as a finite state machine transiting from one
traffic state to another with time. As the states are transit-
ing with variation in space and time, we need to learn two
dimensional finite state machines for traffic prediction. To
avoid this complication and to make the system self evolv-
ing, we use Hidden Markov Model for traffic monitoring /
prediction. The HMM so learnt, does soft classification af-
ter adjusting to lower minima for that road link and also
evolve through time while learning online. A hidden Markov
model (HMM) is a statistical model in which the system
being modeled is assumed to be a Markov process with un-
observed state and it can be considered as the simplest dy-
namic Bayesian network. In a regular Markov model, the
state is directly visible to the observer, and therefore the
state transition probabilities are the only parameters. In
a hidden Markov model, the state is not directly visible,
but output, dependent on the state, is visible. Each state
has a probability distribution over the possible output to-
kens. Hence while expectation maximization or learning,
the HMM trains itself to optimize the probability distribu-
tion of output over states to a local minima and also learning
the transition probabilities. [13] and [1].

4.2.2 Hidden Markov Models for traffic prediction
Let R − 1, R,R + 1 be the three neighboring road links,

linked together, TR−1, TR, TR+1 be the traffic states defined
at R−1, R,R+1 with T ≡ (T 1, T 2, T 3...M) by GMM based
classification and TRn denote the traffic state at nth time.

For learning the 2 dimensional relation (spatial and tem-
poral) of the traffic states, we use Hidden Markov Model
with an assumption that for very short interval of time (re-
fresh time of our system), the traffic condition at a given
road link change only due to the traffic conditions on neigh-
boring road links.

Therefore, we define an HMM state for road link to be
TR−1n , TRn , TR−1n

Hence there are M3 states for a HMM for a road link. Us-
ing expectation maximization, we learn the transition ma-
trix of dimension M3XM3 given by

TM =

2664
P (T0/T0) ... P (T0/TM )

.... ........... .....

.... ............ ....
P (TM/T0) ... P (TM/TM )

3775 (13)

learning.
We take the learnt GMMs as our class definitions, or class

distribution initially. Then the road is kept under observa-
tion by the system for sufficient time to generate data, for
learning transitions and optimizing state distributions. The
temporal flow of states on the road is recorded while it is
under observation using state definitions described earlier.
The data so generated is used to learn HMM parameters
through Balm - Welch algorithm. A compact description of
the learning procedure is defined below:

• The initial state distributions represented asB ≡ (bj(.))
are given by GMMS described in the classification sec-
tion.

• These state distributions are used to observe and record

the temporal flow of observed features on a road, using
cameras and features described in section 4.1. Let this
data or flow of features be represented by O ≡ (Ot).

• The transition matrix for state distributions is ini-
tialised randomly and is represented by A.

• The initial state distribution is again given by GMMs
learnt previously and is represented by π ≡ (P (Q(x0)i)).

• λ∗ = argmax(P (O/λ∗)) is found by Baum-Welch al-
gorithm, where λ = (A,B, π). The λ∗, so obtained has
tuned parameters as per the information available.

The same process can be followed periodically, making the
system defined as self evolving and changing as the road
conditions change. The transition matrix and state distri-
butions are hence learnt on periodically making the system
adaptive.

Prediction.
Using the transition matrix and from the learnt HMM we

sample the next state for the road link
[TR−1n+1 , TRn+1 , TR+1n+1 ]
The priors can be calculated by marginalizing any two

road links; we can compute the probability of future states,
using the formula-

PR(T iRn
) =

MX
j=1

MX
k=1

PR(T jR−1n
T iRn

T kR+1n
) (14)

and

PR(T iRn
) =

R+1X
g=R−1

Pg(T
i
Rn

) (15)

After calculating the probabilities of future traffic states of
road links, we calculate the priors for next HMM sampling

PR(T jR−1n+1
T iRn+1T

k
R+1n+1) = P (T jR−1n+1

T iRn+1T
k
R+1n+1)

(16)
Using the priors calculated the next state is sampled using
Monte Carlo method. The GMMS learnt during classifica-
tion are used to initialize the HMM states or provide the
HMM states an initial belief as the system runs , it learns
online using expectation maximization to tune the GMMs
learnt for each to local minima , hence making the system
self evolving and adaptive through online learning.

cost of the road links.
The cost of the road link can be calculated as

Ci = Σx+1
i=x−1Pi(T

i
Rn

)Riwi (17)

Where Ri and wi are the road length and weight of the
road class specified by the predicted state Pi(T

i
xn

) of the cor-
responding road link respectively. Time taken by a vehicle
to traverse a road path can be predicted like this and hence
the best path towards a destination can easily be suggested
using cost based optimal path algorithms.

5. RESULTS



Figure 4: Each column illustrates a road traffic state with the region of interest bounded in yellow, spatial
and spatial temporal points in red and blues respectively. From left to right each column indicates open,
slight traffic, mild congestion and heavy congestion road states.

5.1 Classification
We evaluated the method suggested using the data col-

lected from real traffic scenes. The data set includes vari-
ous illumination conditions, e.g. sunny, overcast and night
time. The video data is low resolution (172X180) and is
taken at 4fps in grayscale. All testing clips are hand-labeled
to make a comparison with a ground truth. The training
video data is chosen such that there is no overlap with the
testing data. The total length of the training data is about
120 minutes. Figure 4 shows the four traffic states, that
is open, slight traffic, mild congestion and heavy conges-
tion at a road link. The Region of Interest is marked by
yellow boundary. The red points indicate spatial interest
points and the blue points indicate spatial temporal inter-
est points generated using the STIP operator. Interestingly,
as the traffic state changes from open to heavy congestion,
the number of spatial interest points become more as com-
pared to number of corresponding spatial temporal interest
points, hence further validating our feature selection .It is
visible that all of the existing traffic states are successfully
detected. We compared our results with the hand labeled
ground-truth. When we examine the ’false’ classifications
given by the technique, an interesting fact is found that the
system is more receptive to traffic changes and suggests a
continuous state change, which is more intuitive or common
to observe in real traffic than abrupt changes as suggested by
human operator. Even if we consider all the states defined
by the operator to be true, the classifier shows around 84%
accuracy in determining the correct states. The optimum
number of Gaussians used for modeling the data is learnt
by testing for the classification rates for different number of
Gaussians and most accurate results reaching saturation are
obtained when 2 Gaussians used to represent a single traf-
fic state. Table 1 and Table 2 shows the confusion matrix
of classification results of road at Rajouri Garden and Moti
bagh, Delhi.

The corresponding road parameters that is the number
of vehicles and average velocity, for every traffic state for
a given road link under observation are learnt by training
a GMM over the labeled data with number of vehicles per
unit area and average velocity over average velocity of road
link as inputs. The most probable number of vehicles and
average velocity for a given state is designated as the road

Figure 5: graph of predicted road states. Red ,
green and blue lines depict the prediction error plot
with respect to time for different road links. The
drop to value to zero indicates error in state predic-
tion. For hundred time steps.

parameters when it is belonging to a certain traffic state.

5.2 prediction
The prediction technique was tested in real road condi-

tions as well as simulation. The cameras were installed
at foot over bridges at Motibagh to get time synchronised
videos. Videos at Rajouri Garden , Delhi were used to form
prior GMMs. These GMMs were then successfully tested
at Motibagh and then were given as priors to HMM. It was
observed that 89.891% of the predicted states were correct
and predicted time taken to cross the road stretch under
observation normalised over actual time taken was centered
at 0.96373 with a variance of 0.1052. Even better results
were produced in simulation where 94.026% of the predicted



Table 1: confusion matrix on the road at Rajouri Garden, Delhi
Open Slight Traffic Mild Congestion Heavy Congestion

Open 86.11521 3.148855 12.64479 3.374447
Slight Traffic 2.215657 81.10687 0.22522 0.698162

Mild Congestion 5.317578 9.446565 73.9704 4.212241
Heavy Congestion 6.351551 6.29771 13.15959 91.71515

Table 2: confusion matrix on the road at MotiBagh, Delhi
Open Slight Traffic Mild Congestion Heavy Congestion

Open 80.93 9.49 0 2.3
Slight Traffic 8.53 76.54 0.18 0

Mild Congestion 9.01 16.04 99.82 1.73
Heavy Congestion 1.52 1.08 0 95.97

states were correct and predicted time taken to cross the
road stretch under observation normalised over actual time
taken was centered at 1.0238 with variance of 0.0711. Error
graph of predicted road states is shown in figure 5

6. CONCLUSION
We presented a novel method for monitoring / prediction

using the camera network. The method is simple, real time
and computationally light. We also present detailed results
on road state classification. The method presented is ro-
bust to light changes, adaptive to varying road topologies
under observation, camera set up independent and requires
no pre-processing; the requirements of the method presented
are very low with successful testing on resolution as low as
172X180 and frame rate of 4fps. The low demands on video
quality of data, suggests that the method can also be im-
plemented on relatively low quality satellite imagery. The
selection of states makes it possible to learn a 2 dimensional
relation of road states using HMM. The HMM so used makes
the system self evolving or self adjusting which could not
have been the case with Finite state machine model. The
prediction results are satisfactory and indicative of the suit-
ability of the model used. It is worth noting that the model
used in this paper does not assume or draws analogies of
traffic moving as particles, neither does it impose restriction
on road conditions or road tributaries and distributaries,
resulting in a robust and adaptive framework of real time
traffic classification and prediction.
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