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ABSTRACT
In this paper, we employ ideas grounded in physics to ex-
amine activities in video. We build the Multi-Resolution
Phase Space (MRPS) descriptor, which is a set of feature
descriptors that is able to represent complex activities in
multiple domains directly from tracks without the need for
different heuristics. MRPS is used to do single- and multi-
object activity modelling in phase space, which consists of
all possible values of the coordinates. The MRPS contains
the Sethi Metric (S-Metric), the Hamiltonian Energy Sig-
nature (HES), and the Multiple Objects, Pairwise Analy-
sis (MOPA) descriptors: the S-Metric is a distance met-
ric which characterizes the global motion of the object, or
the entire scene, with a single, scalar value; the HES is a
scalar or multi-dimensional time-series that represents the
motion of an object over the course of an activity using ei-
ther the Hamiltonian or the S-Metric; and the MOPA con-
tains phase space features for paired activities, in which we
develop physical models of complex interactions in phase
space (specifically, we model paired motion as a damped os-
cillator in phase space). Finally, we show the S-Metric is
a proper distance measure over a metric space and prove
its additivity; this allows use of the S-Metric as a distance
measure as well as its use in the HES. Experimental valida-
tion of the theory is provided on the standard VIVID and
UCR Videoweb datasets capturing a variety of problem set-
tings: single agent actions, multi-agent actions, and aerial
sequences, including video search.
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1. INTRODUCTION
Motion underlies all activities; human activities, in fact,

are defined by motion. The rigorous study of motion has
been the cornerstone of physics and we exploit the physics
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of motion to understand activities of individual objects as
well as the interaction between them.

1.1 Related Work & Contributions
We build liberally upon theoretical thrusts from several

different disciplines, including Analytical Hamiltonian Me-
chanics and human activity recognition [1], especially for
multiple activities [2]. Our approach also draws inspiration
from the method employed in [3], which detects global mo-
tion patterns by constructing super tracks using flow vec-
tors for tracking high-density crowd flows in low-resolution.
Our methodology in this paper, on the other hand, works in
both high- and low-resolution and for densely- and sparsely-
distributed objects since all it requires is the (x, y, t) tracks
for the various objects’ motion analysis, as shown in Figure
1.

Using a physics-based methodology, [4] derived the Hamil-
tonian Energy Signatures (HES) for individual objects;
the HES is a scalar or multi-dimensional time-series that
represents the motion of an object over the course of an
activity. The HES is derived from Hamilton’s Principle of
Least Action and is a time-series built using the Hamiltonian
Equations of motion. Hamiltonian Dynamics is an elegant
and powerful alternative formulation of classical mechanics
that not only gives the equations of motion for a system
but, more importantly, provides greater, and often more ab-
stract, insight about the system. Hamilton’s equations are
primarily of interest in establishing basic theoretical results,
rather than determining the motions of particular systems.

In this paper, however, we generalize the HES and phase
space analysis and also apply the physics-based methodol-
ogy to modelling multi-object activities in phase space. The
phase space of a system consists of all possible values of
the coordinates, which is usually represented as the space of
position vs momentum (x, p) or position vs velocity (x, v)
but can be any set of coordinates like the generalized coor-
dinates and Hamiltonian values discussed in detail below.

In addition, we develop a distance metric, the Sethi Met-
ric (S-Metric), which characterizes the global motion of
the object, or the entire scene, with a single, scalar value;
we show, in the Appendix, that the S-Metric is a Norm and
thus the S-Metric is a proper distance measure over a metric
space and can be used as a distance in other distance mea-
sures. The S-Metric can also be represented as a series of
values in the HES if the total video is broken up into shorter
time-segments since we prove the S-Metric is additive in the
Appendix, as well. A derivation of the HES and S-Metric
from the Principle of Least Action is also given in Section
2.1. The HES and the S-Metric have distinct properties: the



Figure 1: Tracks to Phase Space

S-Metric can be used to characterize the entire scene with
a single, scalar, global value; the HES time series, on the
other hand, can characterize activities of individual objects.

Finally, we develop physical models of complex interac-
tions in phase space; specifically, we do a Multiple Ob-
jects Pairwise Analysis (MOPA) in which we model
paired motion as a damped oscillator in phase space using
relative distances. Others, such as [5], have utilized relative
distances within a coupled HMM but our methodology does
not require an external stochastic framework and can charac-
terize motion directly from tracks without requiring training
or classifiers. In addition, they interpret pedestrian actions
only and create prior models of human behaviour by using
synthetic agents that encapsulate their assumptions for sim-
ple actions that are atomic in nature and only look at single
interaction detections. Our approach, on the other hand,
looks at complex activities betwen multiple, interacting ob-
jects of any variety without the need for synthetic agents
or prior models of the objects. Also, unlike the heuristic
examination of simple activities in a single domain using
relative distances in [6], we create a consistent framework
to derive and unify different representations of motion for
activity recognition. All these previous approaches also rely
on a classifier (coupled HMM in [5] and a simple hypothesis
testing framework based on two-class nearest neighbor clas-
sification with extensive parameterizations and thresholds
in [6]) whereas our approach uses our physics-based models
to do the recognition directly.

The HES, S-Metric, and MOPA together form a Multi-
Resolution Phase Space (MRPS) feature descriptor set that
can be applied to any system, from multiple objects to mul-
tiple points on a single object to a single point on each ob-
ject. The advantage of our approach over others is that we
build a single, consistent feature descriptor set, the MRPS,
to do both single- and multi-object modelling in phase space
across different resolutions and domains. We are thus able
to model a wide variety of complex motions using a single,
consistent framework that operates in phase space. This
consistent framework yields a descriptor that is able to rep-
resent complex activities directly from tracks without the
need for different heuristics. Thus, our main contributions
are:

• Building the MRPS feature descriptor set to do single-
and multi-object activity modelling in phase space across
different resolutions and domains directly from tracks
without requiring training or classifiers

• Developing the MOPA, phase space features for paired
activities

• Developing the S-Metric and proving it is a proper
distance measure over a metric space, as well as its
additivity

2. MULTI-RESOLUTION PHASE SPACE FEA-
TURE DESCRIPTOR

The Multi-Resolution Phase Space (MRPS) feature de-
scriptor is composed of the HES, S-Metric, and MOPA and
can be used to model both single-object and multi-object
activities in phase space, as discussed in detail below.

2.1 S-Metric in Phase Space
Following Hamilton’s approach, we define Hamilton’s

Action, S, for motion along a worldline between two fixed
physical events (not events in activity recognition) as:

S ≡
ˆ t2

t1

L(q(t), q̇(t), t)dt (1)

with q, the generalized coordinates, and L, in this case,
the Lagrangian which, for a conservative system, is defined
as L = T − U , where, T is the Kinetic Energy and U
is the Potential Energy. The Action is what we cast as
the Sethi Metric (S-Metric). The Hamiltonian func-
tion, derived from Hamilton’s Variational Principle, is usu-
ally stated most compactly, in generalized coordinates, as
[4]:

H(q, p, t) =
∑
i

piq̇i − L(q, q̇, t) (2)

where H is the Hamiltonian, p is the generalized momentum,
and q̇ is the time derivative of the generalized coordinates,
q. This defines the dynamics on the system’s phase space, in
which the qi and pi are regarded as functions of time. The
phase space of a system consists of all possible values of the
generalized coordinate variables qi and the generalized mo-
menta variables pi. If the Hamiltonian is time-independent,
then phase space is 2-dimensional, (q,p); if the Hamilto-
nian is time-dependent, then phase space is 3-dimensional,
(q,p,t) [7]. We may also look at modified phase plots of
(H,t), (H,q,p), etc.

We also prove (in the appendix) the S-Metric is a proper
distance measure over a metric space thus allowing its use as
a global, scalar signature of the system, possibly consisting
of multiple objects. Finally, we prove the additivity of S in
the Appendix, which allows us to use the S-Metric within
the HES, as explained further in the next section.

2.2 Modelling Single Object Activities in Phase
Space

The Hamiltonian in (2) is normally utilized as the Hamil-
tonian Energy Signature (HES) for various objects (either
entire objects or the parts of a single object) involved in an
activity, thus representing the motion of each object over the
course of the activity as a time series. We can now also use
the Action within the HES since we prove the additivity of S
in the Appendix. By incorporating the Action or Hamilto-
nian within it, the HES gives a simple, intuitive expression
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Figure 2: (a) Video of two people exchanging a box
and their (b) Ideal vs (c) Actual HES.

for an abstract, compact representation of the system; i.e.,
the characteristic time-series curves for each object.

In this section, we will deal with individual objects. They
can be represented by a single point, like the center of mass,
or a collection of points, like points on the contour of the
human body or joints of the body. For example, if we track
a person in video, we can compute these HES curves for the
centroid of the person (considering the person as an entire
object, as shown in Figure 2) or consider all the points on the
contour of that person’s silhouette, thus leading to a multi-
dimensional time series (which can, for example, represent
the gait of a person, as shown in [8, 9]).

Note that these HES curves can be computed in either
the image plane, yielding the Image HES, composed of the
pseudo-Hamiltonian or pseudo-Action, as used in this paper,
or in the 3D world, giving the Physical HES, composed of
the actual Hamiltonian or Action, depending on the appli-
cation domain and the nature of the tracks extracted. We
thus use the motion trajectories to calculate this physically-
relevant pseudo-Hamiltonian or pseudo-Action and the more
information we have about the objects in the video, the
more physically significant they become. In either case,
the Hamiltonian framework gives a highly abstract, com-
pact representation for a system and can yield the energy
of the system being considered under certain conditions and
the more information we have about the objects in the video,
the more physically significant it becomes. Therefore, this
pseudo-Hamiltonian or pseudo-Action (used to construct the
HES) allows us to extract an abstract representation of the
motion of the underlying physical systems we consider in
video and allows us to represent a video sequence using a
physics-driven HES and provides a framework for theoreti-
cal extensions.

We compute the Lagrangian and then the pseudo-Hamiltonian
or pseudo-Action using T = 1

2
mv2

o and U = mg(yb − ya),
derived directly from the trajectories, (x, y, t). We thus seg-
ment the video into systems and sub-systems (e.g., whole
body of a person, or parts of the body) and, for each of
those, get their tracks, from which we compute T and U ,
and use that to get the HES curve signature, which can
then be evaluated further and the results analyzed accord-
ingly. In the same manner, we compute the S-Metric from
the tracks for the relevant time period by first computing
the L from the T and U , as shown in Figure 1. Thus, we
use the video to gain knowledge of the physics and use the
physics to capture the essence of the system being observed

via the HES and S-Metric.
Examples: For example, in the general case when U 6= 0,

the Lagrangian, T − U , of a single particle or object acting
under a constant force, F (e.g., for a gravitational field, g,
F=mg) over a distance, x, is:

L(x(t), ẋ(t)) = 1
2
mv2 − Fx

with x = xo + vot+ 1
2
at2 and a = F

m

(3)

We now use this Lagrangian to calculate Hamilton’s Ac-
tion for the general system:

S =
´ tb
ta
Ldt =

´ tb
ta

(
1
2
m(v2

o + 2vo
F
m
t)− F (xo + vot)

)
dt

= 1
2
mv2

o(tb − ta)− Fxo(tb − ta)
(4)

Using Hamilton’s Variational Principle on (4) for a grav-
itational force yields (with y being the vertical position,
which can be determined from the tracks):

H = T + U =
1

2
mv2

o +mgh =
1

2
mv2

o +mg(yb − ya) (5)

Here, as a first approximation, we treat m as a scale factor
and set it to unity; in future, we can estimate mass using the
shape of the object or other heuristics, including estimating
it as a Bayesian parameter. In addition, mass is not as
significant when we consider the same class of objects.

We can thus plot Hamilton’s Action vs. time as the HES
curve since the partial derivative of the Action is energy
[10]. In addition, we can compute differences in the S-Metric
between multiple objects by just subtracting their S Metrics,
since Hamilton’s Action is shown to be additive in Appendix.
Since the HES is already a time-series, we can compare two
characteristic HES curves for two activities using a Dynamic
Time Warping (DTW) algorithm.

We can also compare their full-fledged S-Metrics or, when
we need a greater granularity of matches, we can segment
the video into smaller time-intervals and compute the S-
Metric piecewise for each of them, leading to a time-series
in this case also. The additivity of S allows this and we can
use DTW for matching the S-Metric sequences. In addition,
it can be shown that the Image HES allows us to recognize
activities in a moderately view-invariant manner while the
3D Physical HES is completely view invariant; the invari-
ance of both comes from the invariance of the HES to affine
transformations.

The main advantage of using the Hamiltonian formalism
is that it provides a framework for theoretical extensions to
more complex physical models. In the next section, we show
just such an example of extension to modelling the paired
activity of two objects moving together.

2.3 Modelling Multi-Object Activities in Phase
Space

In this section, we do a pairwise analysis of multiple ob-
jects. In particular, we develop physical models of complex
interactions in phase space and do a Multiple Objects
Pairwise Analysis (MOPA) in which we model paired
motion as a damped oscillator in phase space using relative
distances. MOPA thus contains phase space features for
paired activities, with physical models of complex interac-
tions in phase space.



Figure 3: modelling Paired Motion: a) Two people
walking towards each other is modeled as a Damped
Oscillator; b) Two people walking away from each
other is modeled as a Resonant Driven Oscillator; c)
Two people walking parallel to each other is modeled
as an Un-driven SHO.

We start with the problem of trying to categorize the mo-
tion of two objects in video and to see if their motion is
correlated (this is taken as a simple example and can be
generalized further). We hypothesize that the motion of two
objects can be modeled as an oscillation with the envelope
of that oscillation, as seen in Figure 4, being the average
distance over time between the two. We thus calculate the
relative distance with respect to time between these two ob-
jects and use that as the envelope for the oscillation.

To further elucidate our method, let us consider two peo-
ple walking. In order to model the motion of two people
walking, we consider the three possibilities: they can walk
towards each other, they can walk away from each other,
or they can walk parallel to each other. These three situa-
tions are shown in Figure 3 where we model all three types
of motion as an oscillator. In Figure 3a, two people walk-
ing towards each other is modeled as a Damped Oscillator;
in Figure 3b, two people walking away from each other is
modeled as a Resonant Driven Oscillator; in Figure 3c, two
people walking parallel to each other is modeled as an Un-
driven Simple Harmonic Oscillator (SHO).

A damped oscillator is described by the following second
order differential equation of motion, which can represent all
three cases and can model mass, damping, and elasticity:

mẍ+ cẋ+ kx = 0 (6)

where c is the damping constant and k is the spring constant.
This leads to:

x(t) = e−γt
(
A1e
√
γ2−ω2

0t +A2e
−
√
γ2−ω2

0t
)

(7)

where γ = c
2m

is the damping factor with mass m, A1 and

A2 are the coefficients, and ω2
0 = k

m
. For an under-damped

oscillator, this gives x(t) = Ae−γtcos[ω1t−φ] with amplitude

A, phase constant φ, and angular frequency ω1 =
√
ω2

0 − γ2.
Thus, the damping is determined by γ, which is deter-

mined by the coefficients, and, as in systems theory, x need
not only be the position. This damping is pictured in Figure
4 along with the envelope, which is given by Ae−γt. This
gives the Hamiltonian for the damped oscillator as [11]:

H(x, p) =
p2

2m
+

1

2
mω2

0x
2 =

1

2
mẋ2 +

1

2
mx2 (8)

The change in energy is then given as dH
dt

= −cẋ2. The
under-damped oscillator is also shown in the (x, v), (H, t),
and ( dH

dt
, t) modified phase space plots in Figure 4.

The damping ratio is defined as ζ = c
2mω0

= γ
ω0

and de-
termines whether the damping is critical, under-, or over-
damping. Logarithmic decrement, δ, is used to find the

a) c)

c)

Figure 4: Under-damped oscillator in modified
phase space plots: a) Under-damped Oscillation En-
velope, b) (x, v) phase space plot, and c) (H, t) and
( dH
dt
, t) phase space plots.

damping ratio of an under-damped system in the time do-
main. The logarithmic decrement is the natural log of the
amplitudes of any two successive peaks:

δ =
1

n
ln
x0

xn
(9)

where x0 is the greater of the two amplitudes and xn is the
amplitude of a peak n periods away. The damping ratio is
then found from the logarithmic decrement as:

ζ =
1√

1 + ( 2π
δ

)2

(10)

When two people are walking as in Figure 3, we can thus
estimate the kind of oscillation via the damping factor, γ; in
particular, we do an exponential fit to the average distance
between the two people with respect to time in order to
determine the damping factor. We then conclude SHO if
γ = 0, driven resonant oscillator if γ < 0, and damping if
γ > 0. To further qualify the damping, we utilize the quality
factor, Q. We could use the damping time, τ = m

γ
, to define

Q = ω0τ provided ω0τ � 2π. Q is also defined as:

Q =
1

2ζ
(11)

We can then use (11) to determine the kind of damping as
critical damping when Q = 1

2
; over-damping when Q < 1

2
;

and under-damping when Q > 1
2
.

2.3.1 Application to Activity Modelling
For example, we model two people walking towards each

other, as in Figure 3a, as an under-damped oscillator. We
thus use the logarithmic decrement, δ, to estimate the damp-
ing ratio, ζ, by estimating n in (9). We use this damping
ratio to compute the quality factor, Q, and determine the
specific kind of damping. We can also use the damping ra-
tio to get the angular frequency, ω, and then plot x vs ω
or use ω directly. Finally, can also use average distance and



ω to get average velocity since v = rω. In fact, it is also
possible to estimate Q from the (x, v) phase space plot, as
in Figure 4a (under-damped oscillations spiral in while SHO
is an ellipse, e.g.), or to use an exponential fit on the (H, t)
or ( dH

dt
, t) phase space plot, as in Figure 4b.

The proposed method is generalizable to many other cases
of arbitrary motion interactions. For example, it can be ap-
plied to deal with intersections since intersections imply a
transition from over-damped to under-damped or critically
damped. In fact, it can be generalized to more than two ob-
jects by considering pairwise combinations and future work
can consider more efficient methods than this combinatorial
approach.

3. EXPERIMENTAL RESULTS
We experimented with videos consisting of people, vehi-

cles, and buildings, which encompasses a large class of pos-
sible activities. We used high-resolution and low-resolution
video from standard datasets like the UCR Videoweb (http:
//vwdata.ee.ucr.edu/) and VIVID (https://www.sdms.afrl.af.mil/
request/data_request.php) datasets. We also assumed tracking
and basic object-detection to be available. We utilized these
(x,y,t) tracks to compute the Kinetic (T) and Potential (U)
energies of the objects (mass can be idealized to unity or
computed from shape). The distance and velocity vectors
derived from the tracks are thereby used to compute both
the HES curves, S-Metric, and MOPA.

3.1 Single-Object Activity Modelling with MRPS
Here we first show an example of the characteristic HES

curves and apply them to tracking three cars from the UCR
Videoweb dataset, where two cars maintain distance and one
starts off together with them and then veers away, as shown
in the frame in Figure 5. Since it involves more than two
objects, we could then utilize the S-Metric to help charac-
terize the gist of this system. For this experiment, we see
the HES vs. Time curves for the two cars which follow all
the way are highly correlated while the curve for the third
car is not; similarly, the S-Metric (Table 1) calculated for
them shows the coupling between Car 1 and Car 2 and the
non-coupling between the others.

3.2 Modelling Paired Activities with MRPS
In this section, we show the results of modelling a paired

activity from the UCR Videoweb dataset. In Figure 6a, we
see three representative samples from a video of a person
walking to their car. We model this as a paired activity
where the stationary track of the car finally intersects the
dynamic track of the person. In Figure 6b, we plot the
average distance between the two tracks with respect to time
and then do an exponential fit to that curve. The results
are analyzed further in Table 2, where we see the analysis
of Section 2.3 applied to the video and chart represented in
Figure 6. We find a value for γ of 0.007, which indicates
Damping; subsequent analysis yields a Q-factor of 37.878,

S(1,2) = 0.05382 S(1,3) = 0.56237 S(2,3) = 0.63720

Table 1: S-Metric Distance between the three cars
shows coupling between Car 1 and Car 2 (with a
small distance) and the non-coupling between the
others (showing larger distances).

Figure 5: Two cars following; the first car, trajec-
tory in orange, is the lead car and executes a U-turn;
the second car, trajectory in blue, follows it and also
makes a U-turn; the third car, trajectory in red, fol-
lows it for a while and then turns away.

thus indicating Under-Damping and showing that the two
tracks eventually converge.

In addition, we show two people running away from each
other and towards a car in Figure 7. As can be seen in
Figure 7b, we plot the average distance between the two
people with respect to time and then do an exponential fit
to that curve to see a driven oscillator, while in Figure 7c
and Figure 7d, we see the motion of each person running
towards the car as being a damped oscillator.

3.2.1 Advantages
The advantages of our approach over a simple linear fit

are manifold. One of the main is the robustness in tracking:
short-term tracking errors would not affect our method since
we fit to a model. In addition, the utilization of the Q-factor
lets us determine the extent of the motion (if an object is
headed for another, this lets us characterize if they head
directly there or meander and go back and forth, instead).
Finally, the formalism afforded by our method provides a
framework that is extensible with more complex models to
an even wider variety of situations and domains.

3.2.2 Application to Activity Modeling
For example, we model two people walking towards each

other, as in Figure 3a, as an under-damped oscillator. We
thus use the logarithmic decrement, δ, to estimate the damp-

Factor Value Result

γ 0.007 Damping
δ 0.083
ζ 0.013

Q-Factor 37.878 Under-Damping

Table 2: Person-Car Paired Activity Values. We
find a value for γ of 0.007, which indicates Damp-
ing; subsequent analysis yields a Q-factor of 37.878,
thus indicating Under-Damping and showing that
the two tracks eventually converge.



a)

b)

Figure 6: Person-Car Paired Activity modelling. In
a) we see three representative samples from a video
of a person walking to their car. We model this
as a paired activity where the stationary track of
the car finally intersects the dynamic track of the
person. In b) we plot the average distance between
the two tracks with respect to time and then do
an exponential fit to that curve. The results are
analyzed further in Table 2.

a)

b) c) d)

Figure 7: Two People and A Car: in a) we see three
representative samples from a video of two people
running away from each other and towards a car. In
b) we plot the average distance between the two peo-
ple with respect to time and then do an exponential
fit to that curve to see a driven oscillator while in
c) and d) we see the motion of each person running
towards the car is modeled as a damped oscillator.

a1) a2)

a3) a4)

b1) b2)

c ) d )

Figure 8: Multi-Object Activity Modeling. a) Sam-
ple frames representing complex interactions cap-
tured by our approach: construction site, court-
yard, and parking lot; (b) Sample trajectories in
space (time is parameterized along the curve) for
the courtyard and parking lot; (c) Temporal over-
lap of objects’ trajectories; (d) Turning points for a
single trajectory.

ing ratio, ζ, by estimating n in (9). We use this damping
ratio to compute the quality factor, Q, and determine the
specific kind of damping. We can also use the damping ratio
to get the angular frequency, ω, and then plot x vs ω or use
ω directly. Finally, we can use average distance and ω to get
average velocity since v = rω. In fact, it is also possible to
estimate Q from the (x, v) phase space plot, as in Figure 4a
(under-damped oscillations spiral in SHO is an ellipse, e.g.),
or to use an exponential fit on the (H, t) or ( dH

dt
, t) phase

space plot, as in Figure 4b.

3.2.3 Generalization
The proposed method is also generalizable to many other

cases of arbitrary motion interactions. For example, it can
be applied to deal with intersections since intersections im-
ply a transition from over-damped to under-damped or crit-
ically damped. In fact, it can be generalized to more than
two objects by considering pairwise combinations (as seen in
Figure 8 and Figure 7) and future work can consider more
efficient methods than this combinatorial approach.

This generalization can also be extended to more complex
interactions, as shown in Figure 8a. Here, we see interactions
that are not atomic, direct interactions; instead, we might
observe interactions like people milling together, where they



Activity Precision Recall Total
Fetched

True
Positive

Ground
Truth

Person Entering Building 1 1 9 9 9
Person Exiting Building 1 1 7 7 7
Person Entering Vehicle 0.9 0.9 11 10 10
Person Exiting Vehicle 1 1 6 6 6
People Walking Together 1 0.71 5 5 7
People Coming Together 0.86 0.86 7 6 6
People Going Apart 0.8 1 5 4 5

Table 3: Precision/Recall Values for database query and retrieval using the combined VIVID and UCR
Videoweb database.

alternately approach and recede from each other. Similarly,
they might interact with a static object, like a car or a build-
ing, by meandering around it, rather than approaching it
directly and then becoming static in its vicinity. In video
of activities in the “wild”, as in the UCR Videoweb dataset,
these are exactly the kinds of activities observed, as shown
in Figure 8b, where we see how convoluted the trajectories
of individual objects can seem. When two objects interact,
there’s a temporal overlap to their trajectories, as shown in
Figure 8c, where we see the overlap of frames between all
the objects in a scene.

Thus, in these complex situations, people don’t gener-
ally exhibit the simple, direct motions examined in [5, 6].
Instead, there are multiple turning points of their motion
as they might alternate between approaching each other or
moving away from each other; these turning points are char-
acterized as the extrema of the (r, t) plot between two ob-
jects, as shown in Figure 8d. Thus, in order to model these
behaviours, we do a pathwise MOPA analysis between all
the turning points by using the extrema of the path to indi-
cate the turning points for each segment.

3.3 Activity Recognition in Video Search us-
ing the MRPS

We also apply our modelling methodology to activity recog-
nition by testing it within a query-based retrieval framework.
We use a combined database from the UCR Videoweb and
VIVID datasets and the results are shown in Table 3, where
we see the precision/recall values for this experiment. In ad-
dition to tracking, we also assumed basic object detection.
As shown in the table, the detection rate for the activity
“People Walking Together” is lower because, as can be seen
in the video, the participants tend to walk towards or away
from each other instead of continuing perfectly parallel to
each other.

4. CONCLUSION
We propose a set of descriptors motivated by Hamilto-

nian mechanics that forms a physics-based framework and
provides a structured approach for activity recognition that
only requires tracks for the motion. The descriptors pro-
vide, loosely speaking, a measure of global energy over a
sequence (S-metric), a time series representation of motion
or energy of an object (HES), and representation of rela-
tive position of pairs of interacting objects, characterized
as damped oscillatory motion (MOPA). These descriptors
form the Multi-Resolution Phase Space (MRPS) descriptor
set. All measures can be computed directly form (x, y, t)
trajectories of each interacting object.
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APPENDIX
A. PROOF ACTION IS A NORM

Given the Action for a free particle (U = 0):

Sf =
´ tb
ta
L (q, q̇, t) dt = 1

2
m (xb−xa)2

tb−ta
= 1

2
mv2 (tb − ta) = 1

2
mv2∆t

(12)

We want to prove that
√
Sf (m, v,∆t) = ‖v‖m,∆t is a



norm on the vector space R3of the velocities. We have to
prove that the following holds:

1. ‖v‖m,∆t ≥ 0, ‖v‖m,∆t = 0 if and only if v = 0

2. ‖λv‖m,∆t = |λ| ‖v‖m,∆t
3. Given two free particles, (m1, v1) and (m2, v2), and

the system made up by the two, (mTM , vCM ), where
mTM is their Total Mass and vCM is the velocity of
their Center of Mass:

‖vCM‖mTM ,∆t ≤ ‖v1‖m1,∆t
+ ‖v2‖m2,∆t

(13)

Properties 1 and 2 are trivially true. In order to prove
Property 3, the triangle inequality, let (m1, v1) and (m2, v2)
be two free particles. The system of the two particles is char-
acterized by its total mass (TM), its center of mass (CM),
and the velocity of its center of mass:

mTM = m1+m2,

xCM = m1~x1+m2~x2
m1+m2

,

vCM = m1~v1+m2~v2
m1+m2

(14)

and the Action of the two particles, from (12), considered
as one gives the norm:

‖vCM‖mTM,∆t=

√
mTM~v2

CM
2

∆t (15)

In order to prove the triangle inequality, we need:

‖vCM‖
2
mTM ,∆t = mTM~v2

CM
2

∆t (16)

= 1
2

(m1+m2)

(
m1~v1+m2~v2

m1+m2

)2
∆t

= 1
2

m2
1~v2

1+2m1m2~v1·~v2+m2
2~v2

2
m1+m2

∆t

and

(
‖v1‖m1,∆t

+ ‖v2‖m2,∆t

)2

=
m1~v

2
1

2
∆t+

√
m1m2 v1v2∆t+

m2~v
2
2

2
∆t

(17)

Their difference gives:

(
‖v1‖m1,∆t

+ ‖v2‖m2,∆t

)2

− ‖vCM‖2mG,∆t

=
m1~v

2
1

2
∆t+

√
m1m2v1v2∆t+

m2~v
2
2

2
∆t

− 1
2

m2
1~v

2
1+2m1m2~v1·~v2+m2

2~v
2
2

m1+m2
∆t

=
m1m2~v

2
1+m1m2~v

2
2+2(m1+m2)

√
m1m2v1v2−2m1m2~v1·~v2

2(m1+m2)
∆t

(18)
The difference is positive because:

m1m2~v
2
1 , m1m2~v

2
2 > 0 (19)

and

2(m1 +m2)
√
m1m2v1v2 − 2m1m2~v1 · ~v2 > 0 (20)

with strict inequality, because of the Cauchy-Schwarz in-
equality :

v1v2 ≥ ~v1 · ~v2 (21)

and, because the arithmetic mean is greater than the geo-
metric mean, we have: m1 + m2 ≥ 2

√
m1m2 >

√
m1m2.

Substituting these in and expanding, gives:

2(m1 +m2)
√
m1m2v1v2 − 2m1m2~v1 · ~v2

= 2
√
m1m2((m1 +m2)v1v2 −

√
m1m2~v1 · ~v2)

> 2
√
m1m2(

√
m1m2v1v2 −

√
m1m2~v1 · ~v2)

= 2m1m1(v1v2 − ~v1 · ~v2) ≥ 0

(22)

Putting it all together, this finally yields:

(
‖v1‖m1,∆t

+ ‖v2‖m2,∆t

)2

− ‖vCM‖2mTM ,∆t > 0 (23)

And so, we have the triangle inequality:

‖vCM‖mTM ,∆t < ‖v1‖m1,∆t
+ ‖v2‖m2,∆t

(24)

Thus, this proves that

‖vCM‖mTM ,∆t < ‖v1‖m1,∆t
+ ‖v2‖m2,∆t

(25)

is a norm and therefore it induces a distance in the vector
space of the velocities. Although it can be shown to apply to
situations where the potential is not zero, the exact nature
of this distance needs to be verified and explored further.

A.1 Additivity of Actions
To prove the additivity of Actions, we start off by com-

puting the S-Metric for two objects by first constructing the
combined Action for the two objects, S12. Again under the
assumption of U = 0, we start off by using the S for one
object, as shown in (1). From this, we compute the Action
for both objects by first constructing their Lagrangian:

L12 =
1

2
m1v

2
1 +

1

2
m2v

2
2 (26)

This leads to a combined Action for the two objects:

S12 =
´ tb
ta
L(q, q̇, t)dt

=
´ tb
ta

1
2
m1

(
x1,b−x1,a

tb−ta

)2

+ 1
2
m2

(
x2,b−x2,a

tb−ta

)2

dt

= 1
2
m1

(x1,b−x1,a)2

tb−ta
+ 1

2
m2

(x2,b−x2,a)2

tb−ta
= S1 + S2

(27)

Thus showing the combined Action is just the sum of the
individual Actions:

S12 = S1 + S2 (28)

where S12 is used as the S-Metric for composite systems.


