
Subtractive Clustering of Vertices for CPCA based
Animation Geometry Compression

Sanjib Das
∗

Department of ECE
IIT Guwahati

Guwahati-781039, India
sanjib@iitg.ernet.in

Prabin Kumar Bora
Department of ECE

IIT Guwahati
Guwahati-781039, India
prabin@iitg.ernet.in

Anup Kumar Gogoi
Department of ECE

IIT Guwahati
Guwahati-781039, India

akg@iitg.ernet.in

ABSTRACT
In the Clustered PCA(CPCA) algorithm for compressing the
animation geometry sequences, the vertex trajectories are
clustered using the K-means algorithm followed by the Prin-
cipal Component Analysis(PCA) of the clusters. However,
the compression performance of the method is constrained
by the initial random selection of the cluster centres. This
paper presents a stable method for initializing the cluster
centres by the subtractive clustering technique prior to the
application of the K-means algorithm. Simulation results
on some test animation sequences show better performance
of the CPCA with the proposed initialization compared to
the CPCA with random initialization.

Keywords
Subtractive Clustering, Animation Geometry Compression,
CPCA

1. INTRODUCTION
With the recent advancement of computer graphics hard-

ware and related software in recent decades, the need and
popularity of multimedia applications featuring 3D objects
in the form of 3D-animations have increased extensively. For
graphics rendering, 3D objects are represented in polygonal
mesh forms, mostly in triangular mesh forms consisting of
vertices, edges and faces. The attributes describing a trian-
gular mesh are: (i) ‘geometry’ components defining the posi-
tions of vertices in each mesh, (ii) ‘connectivity’ information
depicting how the triangles are associated with the vertices,
(iii) ‘surface color’ defining color of the mesh, (iv) ‘surface
normal’ representing the orientation of object and (v) ‘tex-
ture’ quantifying the variation in intensity to account for
surface roughness or smoothness. This representation has
been used in the hardware of all the manufacturers of lead-
ing graphics rendering cards. 3D mesh models with complex

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICVGIP ’10, December 12-15, 2010, Chennai, India
Copyright 2010 ACM 978-1-4503-0060-5/10/12 ...$10.00.

structures having all the above attributes always require a
large storage space and reconstruction time for visualiza-
tion. For compact storage, the meshes are to be compressed
heavily. The reliable transmission of such meshes through
the band limited channel also calls for compression of the
animation data.

3D animations are defined as a sequences of frames having
3D dynamic meshes with changing attributes over time. An-
imations again can be broadly classified into two groups: (a)
animations with rigid-body motion where the whole mesh
moves as one entity because all the vertices will be having
fixed positions and (b) animations with soft-body motion [5]
where each vertex can move independently from other ver-
tices, making the animation smooth and realistic. However,
the rigid-body motion is not practical, as it can not capture
the smooth and realistic motion required for live animations.
Soft-body motion does not require any relation between the
vertices in a mesh, as long as they form a meaningful mesh.

The soft-body animated meshes are widely used in com-
puter games, computer generated movies and other 3D sci-
entific simulations and commercial applications. Because of
the independent movement of each vertex across frames, an-
imation as a whole consists of voluminous data, and this is
the major disadvantage of soft-body animation. Therefore,
raw animation data is not practical for real time transmis-
sion over the limited bandwidth. It is important to develop
a compressed representation that significantly reduces the
storage space required for animation still maintaining a good
visual quality. Therefore, the compression of 3D animation,
specifically of soft-body animation, has produced much in-
terest among researchers.

In general animations, the geometry and connectivity of
vertices in a 3D mesh may be changing over time. How-
ever for mesh sequences whose connectivity remains con-
stant over time, the animation is characterized by changes
in geometry only. Such sequences are termed as dynamic
geometry sequences.

The Principal Component Analysis (PCA)[4] is a method
that reduces the data dimensionality while retaining the es-
sential variation present in the original dataset. It searches
for directions in the data that have largest variance and
subsequently project the data onto it. The dimensionality
reduction is achieved by performing the covariance analysis
of the data and approximating the data in terms of a few
principal eigen vectors of the covariance matrix. These prin-
cipal eigen vectors correspond to the largest eigen values of
the covariance matrix. As such, it is suitable for data sets in
multiple dimensions, such as animation with large number

of frames.
This work aims at enhancing the potential of the PCA as

an animation compression tool by combining it with efficient
clustering of vertex trajectories. We deal only with the ge-
ometry part of the animation sequence for compression and
treat the connectivity as constant for the whole animation
sequence.

2. PREVIOUS WORK
Lengyel [7] was the first researcher to work on the com-

pression of dynamic meshes. He proposed to segment the
mesh into smaller sub-meshes, and the motion of these parts
was described as that of the rigid body. Only a heuristic
solution was provided for the segmentation process. His ap-
proach is effective only when the animation primarily con-
sists of the rigid-body motion. Alexa et al. [1] used the
PCA for compressing the geometry component of animation
sequences. The PCA was applied in the temporal direction
and only a few principal components were used to represent
the whole animation. This was a lossy compression tech-
nique and the amount of loss was controlled by the required
compression ratio or the visual reconstruction quality. Karni
and Gotsman [5] enhanced the PCA based method of [1] by
combining the linear prediction coding (LPC) with the PCA.
The PCA was applied in spatial direction and the second
order LPC was applied on the principal components in the
temporal direction to exploit the large temporal coherence
present in the sequence.
In [10], clustering is combined with the PCA in a method

called the clustered PCA (CPCA). First the mesh was seg-
mented into meaningful clusters based on motion of vertices
by using Lloyd’s clustering method [8]. Then the PCA is
applied independently on each cluster and using only few
PCA components for each cluster gives compression. This
scheme is reported to give better results than the direct
PCA [1] and the PCA with LPC [5] methods. Amjoun et.
al. [2] developed a new PCA based method called the local
PCA (LPCA) method by clustering the meshes using local
similarity properties, and a local coordinate system is de-
fined for each cluster. Now the cluster motion is encoded
by applying the PCA on this local coordinates instead of
world coordinates. Results indicate that the LPCA has bet-
ter performance than CPCA and other previous methods.
Recently a new PCA based animation compression scheme
called COBRA [12] was proposed by L. Vasa et. al.. This
method applies PCA on the temporal direction of the ani-
mation matrix and then uses a new prediction scheme along
with non-uniform quantization scheme to encode the basis
vector. The results presented by them show compression
performance better than existing PCA based methods.
The above literature review suggests that most of the ex-

isting methods use the PCA as the important block for com-
pression. This work is concerned with the application of the
PCA on the clusters of vertex trajectories for better com-
pression. As in [10], theK-means based clustering algorithm
is used for grouping the vertex trajectories of the animation
sequence based on the temporal information of the vertex
positions across the frames. A stable method to initialize
the cluster centers for K-means algorithm is proposed using
the subtracting clustering method [3].

3. ANIMATION GEOMETRY COMPRESSION
USING THE CPCA

3.1 Representation of 3D Animation Geome-
try

Simple animations can be described by equations model-
ing the trajectories of the vertices across frames. In gen-
eral, the movement of vertices across different frames of a
sequence can be represented by a matrix. Consider an ani-
mation sequence of F frames with V vertices in each frame.
Each vertex is basically a point in 3D space having three
coordinate components vx, vy and vz corresponding to X,
Y and Z axes. Therefore, the animation sequence is repre-
sented by a matrix B of dimensions V × 3F given by

B =

⎡
⎢⎢⎢⎣

vf1x1
vf1y1 vf1z1 ... vfFx1 vfFy1 vfFz1

vf1x2
vf1y2 vf1z2 ... vfFx2 vfFy2 vfFz2

...
...

... ...
...

...
...

vf1xV
vf1yV vf1zV ... vfFxV vfFyV vfFzV

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

t1
t2
...
tV

⎤
⎥⎥⎥⎦

(1)

where v
fj
xi , v

fj
yi and v

fj
zi represents the x, y and z coordinates

respectively of the ith vertex vi, i = 1, . . . , V of the jth frame
fj , j = 1, . . . , F of the animation sequence. In the matrix
B, each row [size 3F × 1] represents a trajectory ti of a
single vertex vi across F frames and each column [size V ×1]
represents the values any of the three coordinate components
vxi , vyi or vzi of a vertex vi in a frame fj .The main idea
of any geometry compression algorithm is to represent this
matrix B in a more compact way for efficient storage and
transmission.

3.2 Geometry Compression using the Direct
PCA

In this case, the straight-forward approach will be to ap-
ply the PCA on the animation data matrix B directly. Per-
forming the PCA on the matrix involves the following steps
[11]:

1. Estimate and subtract the mean trajectory μ from all
trajectories or rows of B to obtain the mean centered
matrix Bms.

2. Calculate the eigenvalues and the corresponding eigen-
vectors of the covariance matrix BT

msBms.

3. Consider only c (c << 3F) principal eigenvectors based
on their eigen values to represent the animation data
by projecting the original mean subtracted data on to
the space spanned by these c eigen vectors and retain
the corresponding PCA coefficients.

3.3 Geometry Compression using the CPCA
method

The vertex trajectories in the animation matrix B are
grouped into clusters based on their similar movements across
all the frames and then the PCA is applied on each cluster.
Generally the K-means algorithm is used for clustering ap-
plications for its simplicity. For clustering of vertex trajecto-
ries, the Euclidian distances between the vertex trajectories
are used as the similarity measure. The steps for the CPCA
algorithm are as follow:

(a). For a given number of clustersK, K vertex trajectories
tcj , j = 1, 2, . . . ,K are randomly chosen as initial
cluster centers.

(b). Find the Euclidian distances of all the V vertex tra-
jectories from these K centered trajectories and put
them in a distance matrix D given by

Dij =
∥∥ti − tcj

∥∥2
, i = 1, 2, . . . , V , j = 1, 2, . . . ,K

(2)

(c). Assign each trajectory to its nearest cluster center based
on minimum distance from the matrix D and put the
cluster number it belongs to in an array of cluster in-
dex Ic.

(d). Update the cluster centers of each cluster with the
mean of the vertex trajectories belonging to that clus-
ter as

tcj =
1

Nj

∑
tk (3)

where Nj is the number of vertex trajectories in each
cluster as per cluster index array Ic.

(e). Repeat the above steps (b),(c) and (d) until there is
no change in the cluster index Ic.

After the clustering process, the input matrix B will
be divided into K cluster matrices B(j) , j = 1, . . . ,K
i.e

B =
[
B(1)|B(2)| · · · |B(K)

]T
(4)

(f). Apply the PCA based compression on each cluster ma-

trix B(j) and c principal eigen vectors per cluster is
selected based on their eigen values.

At the end of above steps, the original animation geometry
matrix B will be represented by K numbers of Eigen vec-
tor matrix of size [3F × c], PCA coefficient matrix for each
cluster of size [Nj×c], mean trajectory vectors for each clus-
ter of size [3F × 1] and the cluster index vector Ic of size
[V × 1]. Finally all these PCA data can be quantized to
achieve further compression.
The decompression is done by first de-quantizing all the

PCA eigen vectors, PCA coefficients, mean vectors and clus-
ter index vectors followed by reconstruction of all the clus-
tered trajectory matrix using the decoded PCA eigen vec-
tors, PCA coefficients and the mean trajectory vector. Fi-
nally, all the trajectory cluster matrix rearranged and com-
bined based on cluster index vector to get the original re-
constructed animation geometry matrix.
This CPCA method gives better compression results com-

pared to the direct PCA method on the whole animation
matrix B. The reason is that the clustering process com-
bines the vertex trajectories based on some similarity mea-
sure and hence there exists much redundant information to
be exploited by applying PCA afterward.

4. PROPOSED SUBTRACTIVE CLUSTER-
ING BASED CPCA (SC-CPCA) METHOD

The success of the above CPCA algorithm depends on the
effectiveness of the clustering process. With random initial-
ization of cluster centers, the K-means algorithm does not

necessarily give the optimal partitions of the input vectors
in each run as it may converges to numerous local minima
instead of the global minima. Therefore, there is a scope
for improving clustering process by proper initialization of
cluster centers instead of random initialization[13, 6] which
will results in better compression performance.

This work proposes to apply the density function based
subtractive clustering method [3] to initialize the cluster cen-
tres for the K-means algorithm. Here a density function like
Gaussian density function exp

(−α ‖ti − tj‖2
)
is assumed

at each vertex trajectory, where α is a positive constant
and ‖ti − tj‖2 is the square of the distance between any
two vectors ti and tj. The sum of the density functions
is computed at each vertex trajectory based on its Euclid-
ian distances from all other trajectories and the first cluster
center is chosen at the trajectory with the highest density
value. To get the next cluster center, the density function
for all the trajectories are modified by subtracting a value
inversely proportional to the distance of the trajectories to
the found cluster centre. After modifying the density func-
tion, the next cluster center is obtained at the point having
the largest density value. This subtractive process continues
until the required numbers of cluster centers are obtained.
The steps for this method are as follows:

1. Given the number of clusters K, density function at
every vertex trajectory ti, i = 1, . . . , V is calculated
using

Mi =

V∑
j=1

exp
(−α ‖ti − tj‖2

)
, i = 1, 2, . . . , V (5)

where α is a positive constant and ‖ti − tj‖2 is the
square of the distance between the vertex trajectories
ti and tj. Since the density function calculated for each
trajectory is a function of its distances from all other
trajectories, a vertex with many neighborhood vertices
which are moving coherently across whole animation
frames will have high density value. The constant α
is actually a radius of influence of the neighborhood
vertex trajectories on the density value.

2. Initialize k=1

3. Select the cluster centre trajectory tck as the trajec-
tory having the largest density value

MCk = Max
i

(Mi) , i = 1, . . . , V. (6)

4. Calculate the density measure of each vertex trajectory
ti using the equation

Mi = Mi −MCk exp
(−β ‖ti − tck‖2

)
(7)

where β is a positive constant, tck is the kth cluster
center trajectory and MCk is its density value. Be-
cause of this modification, the density values of the
vertex trajectories near the first cluster center will be
scaled down as per the factor β so that they will not
be selected as the next cluster center during next iter-
ation.

5. After modifying the density function, increment k by 1
and continue this subtractive process to find the next
cluster centres by iterating steps (3) and (4) until the
required numbers of cluster centres are obtained.

The cluster centres finally obtained at step (4) above will
be used by the K-means clustering algorithm as the initial
cluster centres to get the optimum clusters of vertex trajec-
tories and the cluster index vector. After clustering of vertex
trajectories, the PCA is applied on each of these clusters to
select the required number of eigen trajectories (vectors) and
the corresponding PCA weights per cluster. Finally, all the
PCA eigen vectors, PCA weights, mean vectors and the clus-
ter index vector are quantized to get the compressed form
of the input animation geometry data. The block diagram
of encoder and decoder for the proposed SC-CPCA method
is shown in figure 1.

5. EXPERIMENTAL RESULTS

5.1 Details of Animation Sequence
To study the performance of the proposed SC-CPCAmethod,

some standard test animation sequences have been consid-
ered with geometry details shown in Table 1. All these data
sets are of soft-body animation sequences whose faces and
connectivity are constant over time.

Table 1: The animation sequences used with details
Name Vertices (V) Triangles (T) Frames (F)
Face 757 1468 950
Cow 2904 5804 204

Dolphin 6179 12337 101
Chicken 3030 5664 400
Dance 7061 14118 201

5.2 Performance Metrics
The compression result of the proposed method is mea-

sured by some of the performance metrics used by most of
the researchers in the literature. The measures are com-
pression ratio (CR), distortion factor (Da) and the bits per
vertex frame (bpvf).

• Compression Ratio (CR): The compression ratio for
geometry data is determined by the ratio of number of
elements in the original animation matrix to the total
number of elements in the compressed data. For the
above K-mean clustering based PCA algorithm, the
compressed data is consisted of principal eigen vectors,
PCA coefficients and mean vectors of all the cluster
matrix and the cluster index vector. So, the calcula-
tion of CR is as follows:

CR =
3V F

lEk+lck+lmk+Ix
(8)

where lEk, lck and lmk is the total size of eigen vectors
matrix, PCA coefficients matrix and mean vectors over
all clusters respectively and Ix is the size of cluster
index.

• Distortion factor (Da): To check the distortion in the
reconstructed animation with respect to original one,
we have used the distortion measure Da also known
as KG-error metric after Karni and Gottsman [5] and
defined by

Da = 100

∥∥∥B− B̂
∥∥∥
F

‖Bms‖F
(9)

where ‖.‖F represents the ‘Frobenius norm’ or ‘entry-
wise Euclidean norm’ given by the square root of the
sum of the squares of the elements of the matrix.

• Bits per vertex frame (bpvf): It signifies the number of
bits per vertex per frame and is a unit for bandwidth
usage measurements. The calculation of bpvf for the
K-mean clustering based PCA algorithm is given by

bpvf =
qvlEk + qclck + qmlmk + 6V + 5V

V F
(10)

where qv,qc and qm are the number of quantization bits
used to represent the PCA eigen vectors, coefficients
and the mean vector respectively. The term 5V repre-
sents the bits required to encode the cluster index with
5 bits as mentioned in [10] and 6V in the numerator
corresponds to the number of bits required to encode
the connectivity information as per Edgebreaker [9] al-
gorithm for connectivity compression.

5.3 Results
In the first set of experiments, we have tested the CPCA

algorithm on different animation sequences to get the com-
pression results based on different performance metrics. Ta-
ble 2 shows the result of applying this method on the ‘Chicken’
sequence. From the results it has been observed that be-
cause of random cluster centres initialization, each iteration
of CPCA algorithm gives different values for Da, CR and
bpvf .

Table 2: Results using CPCA method (random ini-
tialization) on “Chicken” sequence

Selection of eigen vectors per cluster is based on
total energy threshold of 0.999

Run No. of Total Eigen CR Da bpvf
No. clusters (K) vectors
1 5 64 28.838 0.187 1.652
2 5 61 30.399 0.188 1.566
3 5 59 30.238 0.159 1.575
4 5 64 28.838 0.187 1.652
5 5 58 30.969 0.173 1.537

Selection of fixed no. of eigen vectors per cluster (c=12)
Run No. of Total Eigen CR Da bpvf
No. clusters (K) vectors
1 5 60 30.974 0.261 1.537
2 5 60 30.974 0.204 1.537
3 5 60 30.974 0.364 1.537
4 5 60 30.974 0.288 1.537
5 5 60 30.974 0.288 1.537

In the next set of experiments, we have applied the pro-
posed SC-CPCA method of different animation sequences.
Figure 2 shows the clustering results after application of SC-
CPCA method on ‘Cow’, ‘Chicken’, ‘Dolphin’ and ‘Dance’
animation sequence for a particular frame. The black stars
in each figure indicate the cluster centers for each cluster.

The performance metrics obtained using the proposed SC-
CPCA method for different number of clusters (K) and
eigenvectors per cluster (c) are listed in Table 3. In this ex-
periment, we have taken α=10, β=5, and a uniform quan-
tization factor of q=16 bits to quantize the eigen vectors,
PCA coefficients and the mean vectors. We have also shown

K-means
clustering of

vertex
trajectories

Initialize K-
cluster centres

using
Subtractive
clustering

K-means
clustering of

vertex
trajectories

PCA1

PCA2

PCAK

Cluster-1

Cluster-2

Cluster-K

Principal
Eigen

vectors
from all
clusters

Quantization

PCA weights
from all clustersCluster Index

Initialize K-
cluster centres

using
Subtractive
clustering

Mean Vectors
from all clusters

ENCODER

Animation
Geometry

(B)

Compressed
Data

De-quantization

PCA
Reconstruction of

Clustered

Trajectories

Rearrange
Vertex

trajectories

 PCA eigen vectors

PCA weights

Cluster Index DECODER

Mean Vectors

Cluster-1

Cluster-K

Reconstructed
Animation
Geometry

B̂()

Figure 1: Encoder and Decoder block diagram of proposed SC-CPCA method

Seq:cowheavy, Frame No. =100, No. of Clusters (K) =5

(a) ‘Cow’ with K=5

Seq:chicken, Frame No. =308, No. of Clusters (K) =7

(b) ‘Chicken’ with K=7 (c) ‘Dolphin’ with K=5

Seq:dance, Frame No. =40, No. of Clusters (K) =7

(d) ‘Dance’ with K=7

Figure 2: A frame from different animation sequences showing the results of clustering algorithm

the results obtained using CPCA method in the same for
comparison. From the results, it has been observed that for
fixed number of eigen vectors (c) per cluster, the proposed
SC-CPCA method gives better Da for same CR and bpvf
compared to the CPCA method for the ‘Chicken’, ‘Cow’ and
‘Face’ sequence whereas for the ‘Dolphin’ and ‘Dance’ an-
imation sequence it gives almost similar results as CPCA.
The major drawback of the CPCA method is that it does
not give optimal clustering result because of random initial-
ization of cluster centres. Figure 3 shows one original and
one reconstructed frame each from the ‘Cow’ and ‘Chicken’
animation sequences that were compressed using the pro-
posed method for K=5 clusters and c=10 per cluster. The
decompressed results after compression ratio of 27.09 in the
case of ‘Cow’ and 36.61 in the case of ‘Chicken’ sequence
show negligible visual artifacts.

6. CONCLUSIONS
This paper proposed to compress the geometry compo-

nent of an animation sequence in a better way by using
a subtractive clustering based clustered PCA (SC-CPCA)
method. It gives a stable initialization of cluster centers for
K-means algorithm used in CPCA algorithm instead of ran-
dom initialization. This method gives stable results in terms
of CR, Da and bpvf in each run of the algorithm. The pro-
posed SC-CPCA method has been tested on some standard
animation test sequences and the experimental results show
better performance compared to the CPCA based geometry
compression techniques. Our future work is directed towards
testing other stables methods of cluster centers initialization
for K-means algorithm as found in literatures and develop-
ing an efficient adaptive non-uniform quantization scheme
for the PCA basis vectors and transformed coefficients of

Table 3: Comparative results using proposed SC-
CPCA method and the CPCA method

Proposed SC-CPCA method CPCA method
No. of c CR Da bpvf CR Da bpvf
clusters per
(K) cluster

“Dolphin”
2 10 25.08 0.029 1.86 25.08 0.029 1.86
3 10 24.01 0.015 1.95 24.01 0.015 1.95
4 10 23.03 0.009 2.03 23.03 0.010 2.03

“Chicken”
5 5 67.11 0.984 0.70 67.11 1.180 0.70
5 10 36.61 0.388 1.30 36.61 0.591 1.30
5 20 19.17 0.054 2.49 19.17 0.091 2.49

“Cow”
5 10 27.09 0.748 1.75 27.09 1.043 1.75
5 20 14.19 0.291 3.36 14.19 0.376 3.36
10 10 17.90 0.468 2.65 17.90 0.507 2.65

“Face”
3 10 21.08 0.190 2.27 21.08 0.669 2.27
4 10 16.14 0.151 2.97 16.14 0.279 2.97
5 10 13.07 0.153 3.67 13.07 0.155 3.67

“Dance”
5 10 38.42 0.713 1.22 38.42 1.009 1.22
5 15 26.41 0.220 1.79 26.41 0.220 1.79
10 10 29.57 0.332 1.60 29.57 0.332 1.60

each cluster along with a suitable coding/decoding method
for these quantized values to get better coding rate.

7. ACKNOWLEDGMENTS
The authors would like to thank Zachi Karni, Rachida

Amjoun, S. Ramanathan and L. Vasa for providing links for
the animation sequences. The ‘Face’ animation sequence is

(a) (b) (c) (d)

Figure 3: (a) Original and (b) Reconstructed Frame of ‘Cow’ sequence (c) Original and (d) Reconstructed
Frame of ‘Chicken’ sequence

the property of ‘Visage Technologies’, the ‘Cow’ sequence is
from the ETH Zurich and the ‘Chicken’ sequence is property
of Microsoft Inc.

8. REFERENCES
[1] M. Alexa and W. Müller. Representing animations by

principal components. Wiley Inter Science Computer
Graphics Forum, 19(3):411–418, 2001.

[2] R. Amjoun and W. StraSSer. Efficient compression of
3d dynamic mesh sequences. Journal of WSCG,
placeEurope, pages 99–106, 2007.

[3] S. L. Chiu. An efficient method for extracting fuzzy
classification rules from high dimensional data.
Journal of Advanced Computational Intelligence,
1(1):31–36, 1997.

[4] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern
Classification (2nd Edition). Wiley-Interscience,
November 2000.

[5] Z. Karni and C. Gotsman. Compression of soft-body
animation sequences. Computers and Graphics,
28:25–34, 2004.

[6] S. S. Khan and A. Ahmad. Cluster center
initialization algorithm for k-means clustering. Pattern
Recognition Letters, 25(11):1293 – 1302, 2004.

[7] J. E. Lengyel. Compression of time-dependent
geometry. In In I3D Š99: Proceedings of the 1999
symposium on Interactive 3D graphics, pages 89–95.
ACM, 1999.

[8] S. P. Lloyd. Least squares quantization in pcm. IEEE
Transactions on Information Theory, 28:129–137,
1982.

[9] J. Rossignac. Edgebreaker: Connectivity compression
for triangle meshes. IEEE Transactions on
Visualization and Computer Graphics, 5:47–61, 1999.

[10] M. Sattler, R. Sarlette, and R. Klein. Simple and
efficient compression of animation sequences. In
Eurographics/ACM SIGGRAPH Symposium on
Computer Animation. The Eurographics Association,
July 2005.

[11] J. Shlens. A tutorial on principal component analysis.
http://www.snl.salk.edu/ shlens/pub/notes/pca.pdf,
December 2005.

[12] L. Vása and V. Skala. Cobra: Compression of the
basis for pca represented animations. Comput. Graph.
Forum, 28(6):1529–1540, 2009.

[13] J. Xu, B. Xu, W. Zhang, W. Zhang1, and J. Hou1.
Stable initialization scheme for k -means clustering.
Wuhan University Journal of Natural Sciences,
14(1):24–28, February 2009.

