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ABSTRACT
This paper presents a visually realistic animation system for
synthesizing a talking mouth. Video synthesis is achieved by
first learning generative models from the recorded speech
videos and then using the learned models to generate videos
for novel utterances. A generative model considers the whole
utterance contained in a video as a continuous process and
represents it using a set of trigonometric functions embedded
within a path graph. The transformation that projects the
values of the functions to the image space is found through
graph embedding. Such a model allows us to synthesize
mouth images at arbitrary positions in the utterance. To
synthesize a video for a novel utterance, the utterance is
first compared with the existing ones from which we find the
phoneme combinations that best approximate the utterance.
Based on the learned models, dense videos are synthesized,
concatenated and downsampled. A new generative model
is then built on the remaining image samples for the final
video synthesis.

1. INTRODUCTION
Realistic speech animation has been an active topic in

recent years for its wide range of potential real-world appli-
cations [17]. In human-computer interaction, for instance,
instead of outputting text or audio only to communicate
with users, an animated talking head synchronized with the
audio/text may attract more attentions from users and make
such applications more engaging. A visually realistic talk-
ing head could make users feel comfortable and natural and
hence improve the quality of the human-machine interac-
tions. Moreover, such animation techniques may be used to
generate visual cues for audio clips so as to help hearing-
impaired people understand machine responses better.

The key for such an animation task is to realize a visually
realistic talking mouth since most of the dynamic shape and
texture changes on face appear in the mouth area. In gen-
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eral, animating such a mouth consists of two steps: analysis
and synthesis. In the analysis step, recorded video corpus is
processed to learn models that capture the dynamics (e.g.,
co-articulations) of a talking mouth. After that, new videos
are synthesized for novel utterances based on the learned
models.

In this paper, we present a speech animation system for
synthesizing a talking mouth. Instead of modelling single
phonemes, we consider an utterance (e.g., a word, phrase or
short sentence) as a continuous dynamic process and mod-
elled by a novel generative model learned from the video
footage. The model consists of two components: a contin-
uous low-dimensional curve that characterizes the temporal
relations between both the seen (video frames) and the un-
seen (to be interpolated) mouth images occurring during the
process of uttering, and a linear transformation that maps
a point on the curve to a mouth image, resulting in a fast
image-synthesis process based on the model. Through sam-
pling points on the curve and projecting them into the image
space, the generative model allows us to stretch or compress
(or, in other words, adjust the speaking speed for) any part
of the utterance in the synthesized video.

To synthesize a video for a new utterance, we borrow the
idea of concatenating video sequences corresponding to dif-
ferent phonetic transcripts in [5]. In our work, however, the
number of phonemes in the transcripts is not limited to, for
example, three [5]. The transcripts can contain phonemes
representing any proportion of an existing utterance and the
generative models learned from the training video footage
are responsible for generating videos for concatenation. In-
stead of directly concatenating videos, we learn a new model
for the whole utterance to diminish discontinuities in the
synthesized video and to time-align the video to the new
utterance.

The rest of this paper is organized in the following way.
In Section 2, we review the literature related to our work.
Section 3 describes how to construct a generative model.
Section 4 provides details of how to synthesize videos for
unknown utterances. Experiments and results are presented
in Section 5. Finally, Section 6 concludes our work and gives
future work.

2. BACKGROUND
Audio-visual speech synthesis [1, 19] has long been an ac-

tive topic in the communities of computer graphics and vi-
sion. Generally speaking, most of the existing methods can
be categorized as either model-based or image-based. The
model-based methods [6, 15, 11] attempt to produce a 3D



model, either geometric or biomechanics-driven, to simulate
a talking head. The image-based approaches, on the other
hand, construct a talking-head model directly from video
footage of the human subject, achieving relatively high lev-
els of video-realism. We consider our mouth synthesizer as
an image-based method and will give a brief review on some
of the established research work.

Bregler et al. [5] developed a pioneering system called
Video Rewrite. The model for animation was simply a col-
lection of short triphone video segments of a talking mouth.
An error function was defined to measure the similarity be-
tween two triphones based on the phoneme-context distance
and the distance between lip shapes extracted from the video
segments. Given a transcript of phonemes, a collection of
existing triphone were chosen to approximate the utterance
using dynamic programming. The corresponding video seg-
ments were then picked from the database and concatenated
to produce the videos.

Cosatto and Graf [9] also proposed a speech animation
system following the idea of choosing images from the ex-
isting footage to synthesize new videos. In their work, the
face was decomposed into different facial parts. These parts
were located, parameterized, normalized and stored in the
database. Given a phonetic transcript for synthesis, candi-
dates of mouth images were selected from the database for
each phoneme. Distances between these images were defined
and the best image sequence was found using the Viterbi al-
gorithm. After that, bitmaps of facial parts were projected
to the base face for the final synthesis.

Ezzat et al. [13] introduced a multidimensional morphable
model (MMM) to model a talking mouth (or face). Such
a model was comprised of a set of prototype images that
represent various lip texture and a set of prototype flows
that represent the correspondences between a reference im-
age and other prototype images. Given MMM parameters,
the target image was synthesized as a linear combination of
images warped from the prototype images. During the train-
ing stage, a Gaussian was trained for each phoneme in the
MMM space. These distributions were then used to find the
MMM parameters for the given phonetic transcript through
regularization. A video was then generated by projecting
the MMM parameters back into the image space.

Theobald et al. [20] used the active appearance model
(AAM) [8] to model the shape and appearance of a talking
head. Instead of triphone video segments, they stored the
parameter trajectories corresponding to various triphones in
AAM space. When synthesizing videos for the input pho-
netic transcript, triphone trajectories were selected based
on some phoneme-context errors, concatenated, smoothed
by fitting cubic splines and temporally warped to the de-
sired duration. Face images were synthesized from the final
trajectory representing the target utterance.

It can be seen that video realism of the synthesized face
may be achieved by storing and re-organizing the original
facial images in the training video corpus [5, 9] or by a gen-
erative model [10, 13, 20] that is learned from the training
images and provides a way to project its model parameters
back into the image space. The former methods have the
advantage of being able to preserve the fine facial textures
and natural dynamics (if video segments are stored) in syn-
thesized videos, but typically require the storage of a large
number of sample images (e.g., the triphone model [5]) to
show correct mouth motion, dynamics and coarticulation

effects because of their inability to generate novel images.
On the other hand, the generative models (MMM [13] and

AAM [10, 20]) produce new faces from any valid data points
in the model parameter space, which turns the problem of
video synthesis in the image domain into the problem in the
domain of model parameters, that is, to synthesize a trajec-
tory best representing the target utterance. The parameter-
ization of facial images allows the use of different model to
capture video dynamics (e.g., the hidden Markov model [4,
21] and the Gaussian representation of phonemes [13]). The
above generative models also have their disadvantages. For
instance, to control the dimension of the parameter space,
the principle component analysis (PCA) [3] is implemented
to compress original images, resulting in, for instance, the
smoothed skin textures or the blurring of tongues and teeth.
Moreover, subtle dynamics of a talking mouth may be lost
after the smoothing of the synthesized trajectories.

In this work, we present a novel generative model to ad-
dress the issues mentioned above. Unlike the MMM and
AAM, which rely PCA to reduce the number of model pa-
rameters, our model is built on the original video frames
of an utterance. After training, the model is controlled by
a single variable which determine the temporal position of
the image to be interpolated within the utterance. In this
way, the model is capable of reflect the fine facial textures
in the synthesized videos. We can then produce any part of
an existing utterance easily, allowing us to preserve the true
dynamics of a talking mouth without exhaustive sampling
of, for example, triphone segments [5]. Moreover, inside
the model, the utterance is represented by a deterministic
and analytic continuous curve, instead of a synthesized and
smoothed one, from which we are able to reproduce the orig-
inal training images.

3. LEARNING GENERATIVE MODELS

3.1 Graph Representation
As mentioned above, we consider the movement of a talk-

ing mouth as a continuous process. Therefore, an input
video of an utterance can be viewed as a set of image sam-
ples sampled at a fixed pace along the curve that represents
the utterance in the image space. Typically, the image space
has a high dimension and we may assume that there exists a
low-dimensional manifold within which the continuous pro-
cess of uttering can be characterized by a determined and
continuous function.

In our work, we reveal such a function through repre-
senting the input video as a path graph Pn [12] where n is
the number of vertices. An example of such a graph rep-
resentation is given in Figure 1(a). As shown in the figure,
each vertex corresponds to a frame in the video and the
connections between the vertices can be represented by an
adjacency matrix W∈{0, 1}n×n where Wij = 1 if |i − j| =
1, i, j = 1, 2, . . . , n and 0 otherwise. As described in [2], to
get the manifold embedded in the graph, we can consider
the problem of mapping Pn to a line so that connected ver-
tices stay as close as possible. Let y = (y1, y2, . . . , yn)T be
such a map and we can obtain y by minimizing∑

i,j

(yi − yj)2Wij , i, j = 1, 2, . . . , n. (1)

It is equivalent to calculate the eigenvectors of the graph
Laplacian L [7] of Pn. The matrix L is defined as: L =
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Figure 1: (a) Graph (P19) representation of an input
video of the utterance ‘How are you’ with 19 frames
in total and (b)-(d) the 1st, 9th and 18th eigenvec-
tors of the Laplacian of the graph. Each eigenvector
has a dimension of 19 and the value of its ith element
is marked by the dot at the frame index i. The dash
lines show the curves of trigonometric functions f19

1 ,
f19
9 and f19

18 on which the eigenvectors lie.

D − W , where D is a diagonal matrix with the ith di-
agonal entry computed as Dii =

∑n
j=1Wij . According to

the definition of L, it is not difficult to verify that it has
n − 1 eigenvectors {y1,y2, . . . ,yn−1} with non-zero eigen-
values λ1 < λ2 < · · · < λn−1 and the uth element (u =
1, 2, . . . , n) of yk (k = 1, 2, . . . , n− 1) is determined by:

yk(u) = sin (πku/n+ π(n− k)/n) . (2)

If we replace u by t = u/n in Equation 2, yk can be
viewed as a set of points on the curve described by func-
tions fn

k (t) = sin (πkt+ π(n− k)/n) , t ∈ [1/n, 1] sampled
at t = 1/n, 2/n, . . . , n/n. Figures 1(b)-(d) illustrate the 1st,
9th and 18th eigenvectors (black dots) of path graph P19

and functions f19
1 , f19

9 and f19
18 (dashed curves). It can be

seen that the temporal relations between the video frames
are governed by the curve, which motivates us to make
an assumption that the unseen mouth images occurring in
the continuous process of uttering can also be characterized
by the n − 1 dimensional curve defined by function Fn :

[1/n, 1]→ Rn−1:

Fn(t) =


fn
1 (t)
fn
2 (t)
...

fn
n−1(t)

 , (3)

that is, we are to use function Fn to temporally interpolate
images at arbitrary positions within the utterance.

3.2 From Fn to Images
To find the correspondences for the curve Fn in the mouth-

image space, we start from mapping the image frames of
the input video to the points defined by Fn(1/n),Fn(2/n),
. . . ,Fn(1). Given a video with n frame, we first vectorize
images and denote them as {ξi ∈ Rm}ni=1. Here m is the di-
mension of the image space. Typically, n�m and we assume
that image frames ξi are linearly independent. The mean
image ξ̄ is calculated and removed from ξi. The reason for
doing that will be described shortly. The mean-removed vec-
tors are denoted as xi = ξi − ξ̄. Based on the assumption
on ξi and the mean-removal operation, we have a rank n−1
matrix X = [x1,x2, . . . ,xn].

Recall that we represent the video by graph Pn with ad-
jacency matrix W . By using the linear extension of graph
embedding [22], we can learn a transformation vectorw that
minimizes∑

i,j

(
wTxi −wTxj

)2
Wij , i, j = 1, 2, . . . , n. (4)

Vectorw can be computed as the eigenvector of the following
generalized eigenvalue problem:

XLXTw = λ
′
XXTw. (5)

He et al. [16] solved the above problem using the singular
value decomposition [14] on X, i.e., X = UΣV T and then
turned the problem into a normal eigenvalue problem

Aυ = λ
′
υ (6)

A = (QQT)−1(QLQT)

Q = ΣV T.

such that w = Uυ. Since we remove the mean from all
xi which makes rank(X) = n − 1, Q ∈ R(n−1)×n, A ∈
R(n−1)×(n−1), and they are both of full rank.

Let υ1,υ2, . . . ,υn−1 be the eigenvectors of A with their

eigenvalues λ
′
1 ≤ λ

′
2 ≤ · · · ≤ λ

′
n−1. From Equation 6, for

any of its eigenvectors, υk (k = 1, 2, . . . , n− 1) we have:

(QQT)−1(QLQT)υk = λ
′
kυk

⇒ LQTυk = λ
′
kQυk (7)

It can be seen that vectors QTυk are eigenvectors of L.
Therefore, we have

λ
′
k = λk

QTυk = mkyk (8)

where mk is a scaling constant. Without loss of generality,
mk can be evaluated as the ratio of the first element of vector
QTυk to the first element of yk:

mk =

∑n−1
i=1 Qi1υk(i)

yk(1)
. (9)



Let M be a diagonal matrix with Mkk = mk, Y = [y1,y2,
. . . ,yn−1] and Υ = [υ1,υ2, . . . ,υn−1]. From Equation 8 and
Q = ΣV T = UTX, we have

QTΥ =
(
UTX

)T
Υ = YM . (10)

Recall that vectors yk are determined by a set of trigonomet-
ric functions fn

k (see Equation 2). We can write matrix Y
as:

Y =
[
y1,y2, . . . ,yn−1

]

=


fn
1 (1/n) fn

2 (1/n) · · · fn
n−1(1/n)

fn
1 (2/n) fn

2 (2/n) · · · fn
n−1(2/n)

...
...

. . .
...

fn
1 (n/n) fn

2 (n/n) · · · fn
n−1(n/n)

 (11)

From Equation 3, Y T = [Fn(1/n),Fn(2/n), . . . ,Fn(1)].
We then have(

M−1ΥTUT
)
xi = Fn(i/n), i = 1, 2, . . . , n. (12)

So far, we have found the map from the image frames to
their correspondences on the curve defined by Fn through
Equation 12. Now the question is raised that whether such a
map is reversible. Once again, since the mean ξ̄ is removed
from ξi, resulting in rank(X) = n−1, Υ is a (n−1)×(n−1)
square matrix of full rank and hence, Υ−1 exists. From
Equation 12, we have

xi = U
(
Υ−1)TMFn(i/n). (13)

It can be seen that the map is reversible and therefore, given
any t ∈ [1/n, 1], we can synthesize an image ξsyn by:

ξsyn = U
(
Υ−1)TMFn(t) + ξ̄. (14)

For color images, the synthesis should be carried out in each
of the color channels. In this work, we use the RGB color
model.

Very often, the dimension of the image space is much
larger than the overall number of images contained in the
video corpus used for training. In such a case, we can per-
form the PCA to represent images of the same speaker in
a more compact way. To preserve all the fine facial tex-
tures, we keep all the eigenvectors of the covariance matrix
with non-zero eigenvalues. Let Wpca be the transformation
matrix whose columns are the eigenvectors. After perform-
ing PCA, we can obtain a set of vectors ξ̃i = WT

pca(ξi − ξ̄)
(i = 1, . . . , n) in the PCA domain. We then redefine vectors

xi as xi = ξ̃i − ¯̃
ξ where

¯̃
ξ is the mean of ξ̃i. Equation 14

can then be rewritten as

ξsyn = Wpca

(
U
(
Υ−1)TMFn(t) +

¯̃
ξ
)

+ ξ̄. (15)

3.3 Usage of the Learned Generative Model
Equation 14 allows us to synthesize a mouth image from

t that locates the image within the utterance spoken in the
input video. Since any proportion of the utterance can be
represented by an interval [t1, t2]⊆[1/n, 1], to synthesize an
n′-frame video, we only need to sample n′ values of t within
the interval and generate frames using Equation 14. Given
any frame rate, we can simply change n′ to control the dura-
tion of the synthesized video. Moreover, the sampled values

do not have to be equally spaced in [t1, t2]. In the synthe-
sized video, we can prolong/shorten any part of the utter-
ance by sampling more/less densely in the interval corre-
sponding to the part. It can be seen that the learned model
provides an effective and efficient way to manipulate utter-
ances in the training corpus.

3.4 Discussions on Linear-Independence As-
sumption

The validity of the synthesis formula, Equations 14 and
15, depends on the reliability of the assumption that all the
frames of an input video, ξi are linearly independent. In this
work, the utterances included in the video corpus are either
single words, phrases or short sentences. The videos contain
no more than 30 frames and are no longer than a couple of
seconds. It has been tested that the assumption holds on the
data. In case of the video frames being linearly dependent,
we suggest two ways to tune the input video. Firstly, we
may downsample the video (e.g., using only the odd frames)
to make the images linearly independent. The other way
we may try is to divide the input video into subsequences
somewhere, for instance, the speaker does not utter, such
that the assumption holds for each subsequence. We can
then learn a model for each of the subsequences.

4. SYNTHESIZING VIDEOS FOR NOVEL
UTTERANCES

In [5], Bregler et al. proposed to concatenate triphone
videos to synthesize a video for a novel utterance. The syn-
thesis was done in the following way: 1) Previously stored
triphone videos were selected based on the distances between
the tripones and those in the utterance. 2) The selected
videos were then stitched together and time-aligned to the
utterance.

In this work, we borrow the idea of synthesizing videos
through concatenating various video sequences. However,
we implement this idea in a very different way. Firstly, the
video to be concatenated are not stored, but generated by
the previously learned models. The generated videos do not
have to be a triphone video, but can be arbitrary propor-
tions of the existing utterances. Moreover, we do not simply
concatenate various video sequences, but learn a new model
for the mouth-appearance continuity and time alignment.

4.1 Generating Videos for Concatenation
A novel utterance U can be labelled by a sequence of

phoneme or a phonetic transcript. Our goal is to synthesize
a video that describes the transitions within the phoneme
sequence. If the exact phoneme transitions were found in
the existing utterances, we would be able to synthesize a
video using the models learned for those utterances. How-
ever, very often, the exact transitions cannot be found and
we will have to search for subsequences of phonemes of the
existing utterances that best approximate U .

To maximally preserve the dynamics in the recorded video
corpus, we match U against every existing utterance to find
out the maximum overlap between their phoneme sequences.
An l-phoneme overlap is defined as follows. Let pi, pi+1, . . . ,
pi+l−1 be the phoneme subsequence found from U and Q =
qj , qj+1, . . . , qj+l−1 the counterpart from an existing utter-
ance where i and j are phoneme indices. It is required that
pi and qj are in the same viseme category. Same are pi+l−1



and qj+l−1. For the rest of the phonemes, pi+k = qj+k,
k = 2, . . . , l − 1.

Having had a match for pi, pi+1, . . . , pi+l−1, the rest of the
L-long phoneme sequence of U , p1, p2, . . . , pi and pi+l−1, pi+l,
. . . , pL are matched again against all the existing utterances
to search for the maximum overlap. Such an operation is
carried on until a series of subsequences, Q1,Q2, . . . being
found to approximate U . After that, we will be able to use
those already learned models to generate a video for each
Qi for concatenation.

4.2 Stitching Videos
Given Qi, we synthesize a dense video Vi from the learned

model. By dense, we mean that its frame rate is relatively
high (e.g., one frame per millisecond) such that there are a
number of frames marking every phoneme in Qi. To con-
catenate two videos Vi and Vi+1, we calculate the Euclidean
distances between images corresponding to the last phoneme
of Vi and those corresponding to the first phoneme of Vi+1.
Based on the distances, we search for a pair of frames that
look most similar and then concatenate Vi and Vi+1 based
on the found frames.

As will be shown in Figures 3(a)-(c), simply concatenation
of all the synthesized videos Vi may cause discontinuity in
the image or PCA domain. In this work, we evaluate our
work in the PCA domain. To model U as a continuous
process, we downsample the concatenated video at a frame
rate (e.g., one frame per 25 milliseconds) that makes the
sampled frames linearly independent. After that, a model
is learned using the method described in Section 3.2. In
this way, we are able to synthesize images around the places
where discontinuities occur.

4.3 Time Alignment
Another advantage of learning a generative model from

downsampled image frames is that we can do time align-
ment very easily for the final output video. As mentioned
in Section 3.3, we can represent any part of the utterance
using an interval [t1, t2]⊆[1/n, 1] where n is the number of
frames downsampled from the concatenated dense videos.
For each phoneme pi in the phonetic transcript, we can use
an interval [ti1, t

i
2] to bound the phoneme. When synthesiz-

ing images for pi, based on the length of pi in the phonetic
transcript and the frame rate of the output video, we can
calculate the number of images, ni, to be synthesized for pi.
We then sample ni points that even spaced in [ti1, t

i
2] and

generate video frames using Equation 14 or 15.
When the duration of phoneme pi in the synthesized video

is significantly (e.g., twice) longer than that in the original
video, we have found that the linear sampling in [ti1, t

i
2] could

produce unnatural mouth movement. It is because the tran-
sition between pi and its previous/next phoneme is also sig-
nificantly prolonged by such a sampling operation. To avoid
the unnaturalness, we keep a short period (e.g., 30ms) at
the beginning and end of [ti1, t

i
2] unstretched to preserve the

natural phoneme transitions.

5. EXPERIMENTS AND RESULTS

5.1 Video Corpus
We used the OuluVS database [23] as the training cor-

pus. The database was originally designed for audio-visual
speech recognition [18]. Twenty subjects were included in

the database and each of them was asked to speak ten differ-
ent utterances comprised of single words, phrases and short
sentences. Videos in the database were recorded with a
frame rate of 25 fps. The resolution of video frames was
set as 720×576 pixels. Further detailed information about
the database can be found in [23].

In our experiments, we preprocessed the original videos to
get videos of a talking mouth. To do that, the eyes of the
speaker were first located in video frames and moved to some
fixed places in the image space through rotating and scaling
the images. An 84×70 mouth region was then cropped from
the frames and patched into videos which were later on used
for training.

5.2 Evaluation of Using Fn to Model Utter-
ances

Recall that we consider the mouth movement when speak-
ing an utterance as a continuous process and assumed that
the utterance can be modelled by function Fn which is
formed by a set of trigonometric functions (see Equation 3).
It is crucial that we evaluate such an assumption since it
forms the foundation of the construction of the generative
models.

In this experiment, we took a video as an example to
demonstrate our method. To do that, we used part of its
frames as training data and the rest as the ground truth
for comparison. The original video contained 19 frames of
a talking mouth speaking the utterance ‘How are you’. Fig-
ure 2(a) shows all the 19 frames which are placed from left
to right and top to bottom. We first trained a model on
the odd frames (10 frames in total) and synthesized a new
19-frame video. Figure 2(b) shows the synthesized video
where the red boxes mark the positions of the frames used
for training and the green ones for testing. As guaranteed
by our method, the images in the red boxes are duplicates of
their counterparts in the original video. By comparing the
green-boxed images with the original video frames, it can be
seen that the synthesized images well catch the intermediate
appearance (shape and texture) of the mouth between two
red-boxed frames.

We further challenged our method by using fewer frames
for training. At this time, we chose the first frame every
three frames as illustrated by the red boxes in Figure 2(c).
By doing so, we intentionally increase the dissimilarity be-
tween any two consecutive frames used for training. Once
again, we can see that the synthesized images (green boxed)
approximate the dynamics of the mouth well. Moreover, it
can be seen that the blurring in one image used for train-
ing may cause blurring in its nearby synthesized images.
Both experiments have demonstrated the capability of func-
tion Fn for modelling the dynamics of a talking mouth.

To quantify our visual findings, we project the original and
synthesized videos along eigenvectors in the PCA domain.
Here, we choose the eigenvectors with the largest eigenvalue
in R channel, second largest eigenvalue in G channel and
third largest eigenvalue in B channel. The corresponding
eigenvalues are 1.68×109, 9.52×108 and 4.63×108, respec-
tively. Figures 2(d), (e) and (f) show the projections from
the original (circles) and synthesized images (squares and
triangles) as well as the synthesized trajectories (the solid
and dash lines). From the figures, we can see that quan-
titatively, the synthesized images are close to the original
frames, which is consistent with their visual similarities.
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Figure 2: (a) The original mouth video of a subject uttering ‘How are you’, (b) the synthesized video using
odd frames for training and (c) the synthesized video using the first frame every three frames for training.
In (b) and (c), the red boxes locate the frames used for training in the original video and the green ones
mark the synthesized novel mouth images for comparison. Figures (d), (e) and (f) show the values of the
above images along the eigenvectors with the largest eigenvalue in R channel, second largest eigenvalue in G
channel and third largest eigenvalue in B channel. The circles mark the original frames and the squares and
triangles correspond to the images in green boxes in (b) and (c), respectively. The solid and dashed lines
show the synthesized trajectories projected on the eigenvectors.

5.3 Evaluation of Synthesizing Videos for Novel
Utterances

In the next experiment, we gave an example of synthe-
sizing a video for a novel utterance. The utterance is kept
short and simple, allowing us to show the synthesis results
in a detailed way. Despite of the simplicity, the example
illustrates the key ideas of video synthesis presented in this
paper. We followed the way in [18] to define visemes ex-
cept that the viseme of silence, /SIL/, was merged with the
bilabial class (/M/, /P/ and /B/), resulting in 12 visemes
in total. The novel utterance we chose to demonstrate our

method was ‘See me’, which had a phoneme sequence Q =
/S-IY-M-IY/. After comparing it with the existing utter-
ances in the database, we obtained a sequence of phoneme
combinations, Q1,Q2,Q3, that best approximated Q. Here
Q1 = /S-IY/ from the utterance ’See you’, Q2 = /IY-SIL/
and Q3 = /M-IY/. The latter two were both from the ut-
terance ‘Excuse me’.

Following the procedure described in Section 4, we first
generated dense videos for Qi, i = 1, 2, 3 at the frame rate
of one frame per millisecond and concatenated them. To
show the discontinuities within the concatenated video, we
projected the dense videos in the PCA domain. Figures 3(a)-
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Figure 3: Figures (a), (b) and (c) show the projected curve of the synthesized dense video for phoneme
segments /S-IY/, /IY-SIL/ and /M-SIL/ along the three eigenvectors with the largest eigenvalues in the R
channel by the red, green and magenta dashed lines, respectively. The vertical lines locate the boundaries
of phonemes as identified in (c). The solid black line illustrates the curve synthesized by the model learned
from the downsampled frames. The final synthesized video frames are sampled from the synthesized curve
at the places marked by the black triangles.

(c) show the projected curves along the three eigenvectors
with the largest eigenvalues in the R channel. In the figures,
the blue, red and green dashed lines are the curves projected
from the dense videos synthesized for Q1, Q2 and Q3. The
discontinuity can be easily found in all of the figures.

We downsampled the concatenated video frames at the
rate of one frame per 25 milliseconds (or 40 fps) and learned
a model for the utterance ‘See me’. The black solid lines
are the curves synthesized by the model to represent the
whole utterance Q. The model was then used to generate
a 30 fps video according the lengths of the phonemes in the
input phonetic transcript. Time-alignment was achieved by
sampling image frames along the curves and the locations of
the frames were marked by the black triangles in the figures.
It can be seen that the learned generative model is capable
of smoothing the discontinuities naturally, generating time-
aligned videos easily and capturing the video dynamics for

the utterance.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a video-realistic anima-

tion system for synthesizing a talking mouth. The system
consists of two major components: 1) learning generative
models from the recorded videos and 2) synthesizing new
videos for novel utterances. A generative model is con-
structed on the assumption that an utterance can be mod-
elled by function Fn(t) which is formed by a set of trigono-
metric functions embedded within a path graph. The trans-
formation from Fn(t) is then found through graph embed-
ding. To synthesize a video for a novel utterance, we com-
pare it with the existing utterances and use the learned gen-
erative models to generate dense videos that best approxi-
mate the novel utterance. The videos are then concatenated
and downsampled. A new generative model is constructed



on the remaining image samples for diminishing discontinu-
ity and easy time-alignment.

This work is part of our efforts towards a video-realistic
animation system for synthesizing a talking head. As men-
tioned before, the visual realism of a synthesized talking
head depends largely on how well we can synthesize a visu-
ally realistic talking mouth since the mouth region contains
the most prominent dynamic changes on the face when we
talk. The work of synthesizing such a mouth is already pre-
sented in this paper. In future, to complete the system of
synthesizing a talking head, we plan to collect a new speech
corpus for training, to investigate the methods of combining
the synthesized mouth images with the background video
frames, and to develop a fast searching algorithm for com-
paring novel utterances with the existing ones to find the
best phoneme approximations.
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