
Implicit Surface Octrees For Ray Tracing Point Models

Sriram Kashyap Rhushabh Goradia Parag Chaudhuri Sharat Chandran
∗

Indian Institute of Technology Bombay

email: {kashyap,rhushabh,paragc,sharat}@cse.iitb.ac.in

ABSTRACT
Point-based representations of objects have been used as modeling
alternatives to the almost ubiquitous quads or triangles. However,
our ability to render these points has not matched their polygonal
counterparts when we consider both rendering time and sophisti-
cated lighting effects.

In this paper, we present a framework for ray tracing massive
point model environments at interactive frame rates on the Graphic
Processing Units (GPUs). We introduce the Implicit Surface Oc-
tree (ISO), a lightweight data structure for efficient representation
of point set surfaces. ISOs provide a compact local manifold ap-
proximation of the input point data and can also be embellished
with lighting information. This enables us to further the state of the
art by demonstrating reflections, refractions and shadow effects on
complex point models at interactive frame rates.

1. INTRODUCTION
Points as primitives are well known alternatives to polygons for

representing complex models. With advances in three dimensional
scanning methods, availability of point data has become more wide-
spread. More recently, computer vision researchers are generat-
ing multi-million point models of statues and massive cultural her-
itage sites using structure from motion and multi-view stereo meth-
ods [8].

Our goal is to visualize point models interactively, but with high
image quality. Specifically, we would like to synthetically make
them more interesting by first capturing non-local illumination, and
then rendering them under novel lighting conditions, and with dif-
ferent material properties in artist driven virtual environments. We
therefore consider ray tracing (as opposed to rasterization) of point
models.

While well established for polygonal models, ray tracing has ei-
ther not been considered for point models, or has been less effec-
tive. Lack of connectivity and surface definition for points, touted
as a plus, poses serious challenges while determining ray-primitive

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICVGIP ’10, December 12-15, 2010, Chennai, India
Copyright 2010 ACM 978-1-4503-0060-5/10/12 ...$10.00.

intersections. Since both rays and points are singular entities, we
either have to trace thick rays [19] (an expensive operation), or
provide a local approximation of the surface. Local surface ap-
proximations can be in the form of discontinuous splats or locally
continuous implicit surfaces.

Ray tracing of splats often results in less than desirable effects as
mentioned in [21]. The locally continuous implicit surface repre-
sentation, however, leads to increased computation especially while
finding the zeros of the implicit surface. Performance consider-
ations, such as the use of the Graphics Processing Units (GPUs)
therefore behoove the need for an alternative representation. De-
spite their superior flop rating, GPUs have limited memory when
compared to current multi-core CPUs. To alleviate these issues, we
introduce the Implicit Surface Octree (ISO) in this paper.

Handling multi-million points impose the requirement of a hier-
archical data structure. The key idea of the ISO is to sample the data
space and store essential information at the corners of relevant leaf
nodes of the octree, thereby saving memory and expediting costly
computational tasks. Further, the sampling can be done offline, or
on the CPU, and then shipped to the GPU. Based on this idea, we
present a framework for ray tracing massive point model scenes at
interactive frame rates on the GPU. The specific contributions of
this work are as follows.

1.1 Contributions

• We introduce a GPU friendly, memory efficient, variable height
data structure, the Implicit Surface Octree (ISO), used as lo-
cal manifold approximation of point data. This enables the
use of a fast ray-implicit surface intersection primitive re-
sponsible for accelerated renderings.

• We further the state of the art by demonstrating reflections,
refractions, shadows effects and texture mapping on large
point models. Viewpoint, lighting and material properties
can be changed at real time.

• We render large point model environments (see Fig. 1 for
renders from the Sibenik Cathedral and the Sponza Atrium
scenes). To the best of our knowledge, this work presents
the first point model ray tracing system that can handle point
model environments with scale as large as these.

1.2 Scope and Limitations
In this work we assume that point based models will become as

widespread as triangular models, or at least have a niche domain.
Indeed, as mentioned earlier, 250 million points are produced for
the Piazza San Marco in [8]. Our goal is not to engage in the point
versus triangle debate. We deliberately generate point models for
the available polygonal models so that our renders can be compared

Figure 1: Point models can be rendered elegantly with our system. From left: XYZRGB dragon (5 million points) with Phong
shading. Notice the fine details in the carvings. Refractive effects with Lucy (14 million points). Sibenik cathedral (13.5 million
points) with reflections and texturing. The second last figure shows a different view of the cathedral. Texturing and fine geometry
details are nicely captured (see the railings). Sponza atrium (14.7 million points) rendered with reflections, shadows, texturing and
dynamic light changes. Every object (including the walls) in all scenes, are points. All models rendered at 512× 512 with 4×
super-sampling

to state of the art renderings of their polygonal versions. This al-
lows us to visually compare the quality of our rendering system.

We assume in our implementation that point coordinates are avail-
able in 3D along with their surface normals. At each point, some
material properties are also provided or can be assumed.

When a ray hits an object, we spawn secondary rays. However,
we do only eye-based ray tracing in this work. We do not consider
Monte-Carlo Bidirectional ray tracing, nor do we perform generic
photon mapping. However, if illumination data is precomputed,
then they can be amalgamated in ISOs resulting in extended ISOs.
We do not handle dynamic deforming geometry, and have not im-
plemented effects such as motion blur or depth of field effects.

1.3 Related Work
Research on ray tracing point models has focused on solving the

ray-point intersection problem, both rays and points being singular
primitives. [19] and [22] use ray cylinders and cones respectively
and the intersection point is based on the local density. Although
the reported results are interesting, the method as noted in [21, 18],
is expensive.

An alternative approach is to use splats for representing a local
surface around points enabling ray-primitive intersections. [18] re-
ports rendering times of around 100 seconds for a 1200×1200 im-
age using this splat based approach. In an earlier work, by using the
GPU for parallel ray tracing, real time frame rates are reported in
[13]. However, splat-based approach while conceptually simple, is
known to lead to rendering artifacts [21] at silhouettes. Our experi-
ments confirm this observation (see Fig. 3). It should be noted that
[18, 13] do not present results involving corners, edges or zoomed
versions of silhouettes.

Figure 3: A splat based approach [13] produces artefacts.
(Left) Protruding splats are visible at the nose. (Right) The
same object at the same zoom level rendered using ISOs.

[2] propose a different approach by ray tracing implicitly con-

structed point-set (implicit) surfaces. It results in a computationally
expensive algorithm (time in hours), where the points on the ray
are iteratively projected onto the surface until convergence. This
technique is substantially improved in [21]. They introduce an in-
teractive algorithm, which can render about 1 million points in an
image of size 512×512 at about 7 fps on parallel multi-core CPUs.
Note, however that in their results a large portions of the rendered
image is simply the background. Further, ray tracing is used only
for shadow computations, and the actual shading is performed us-
ing a local illumination model. Thus, unlike our implementation,
reflections and refraction effects are not modelled.

We use our ISO representation to store local implicit surfaces de-
fined over the points. Adaptive distance fields of [7] and adaptive-
resolution octrees defined in [15] come close to the ISO definition.
The emphasis in [7] is on representation and not on rendering while
the latter performs ray-casting on volumetric data using expensive
neighbor finding operations for defining the surface in its tree struc-
ture. In comparison, we introduce a new ray-implicit surface inter-
section primitive which does not require expensive neighbor find-
ing and allows us to compute shadows, reflections, refractions and
texture mapping on massive point models using GPUs.

[16] also use octrees to ray trace voxels for polygonal mod-
els. However, [16] use planes defined around the polygons in each
voxel. The use of planes implies higher sub-divisions in octrees
compared to our approach.

Rendering of point models has been attempted on the CPU and
the GPU. [21, 18, 19, 22, 2] use the CPU for rendering the scenes.
Ray tracing of deforming point model geometry, on the CPU, is
shown in [1]. However, only Phong and shadow computations are
shown, with non-interactive running time. From the perspective
of GPU-based solutions, there has been considerable interest in ray
tracers in recent years [9, 3, 4, 11]. Modern GPUs are improving in
their capacity to handle large models. Further, [6] showed that one
can get respectable frame rates on ray casting even if one performs
a real time streaming of data from the CPU to the GPU. However,
these techniques [9, 3, 4, 11] are developed with polygonal models
in mind.

Also, note that there is abundant literature on ray tracing implicit
surfaces; interested readers can refer [14, 20, 5]. Discussion of
these is beyond the scope of this paper.

1.4 System Overview and Roadmap
Our point model ray tracing system takes as input any scene con-

sisting of points, defined by their respective positions, and normals.
Each point also has a color value associated with it. In addition,

every point has material properties such as reflectance and trans-
mittance.

We pre-process this point model to associate with each point its
local radii of influence depending on the local density of points.
We skip the details of this step since this concept is similar to the
one used in splat-based rendering methods. However, we do not
explicitly ever deal with a circular disk but only a radius of influ-
ence. We organize the point data in an adaptive octree structure.
We then create a local surface approximation within each leaf of
this octree. We term this data structure as the Implicit Surface Oc-
tree (ISO). The ISO does not store the original point data but only
the local surface approximations in its leaves. Details of this step
are available in § 2.

The generation of the ISO happens entirely on the CPU as a pre-
computation step and is then shipped to the GPU. Details of the
ISO representation on the GPU appear in § 3. Given a view point,
we employ GPU threads in parallel and trace rays; this requires us
to compute intersection of rays with point set surfaces and acquire
correct normals at the intersection points for secondary and shadow
ray generation. Details of these are provided in § 4. Results and
comparisons appear in § 5.

2. IMPLICIT SURFACE OCTREE
Consider any query point Q in 3D space. We define a local

signed distance field f(Q) which is positive outside the surface,
negative inside, and zero on the surface. Assume the local neigh-
borhood around Q contains some N points. Each point sample
Pi, i = 1...N is defined by its position pi, normal ni and its radius
of influence ri.

We start by taking a weighted average of the positions and nor-
mals of these points as

p̄(Q) =

P
wi(Q)piP
wi(Q)

, n̄(Q) =

P
wi(Q)niP
wi(Q)

(1)

where the weight function wi(Q) represents the influence of
sample Pi at Q. We choose the weight associated with each point
Pi to be a truncated Gaussian w.r.t. the distance to the query point:

wi(Q) = 1√
2πr2i

e
−‖Q−pi‖

2

2r2
i ‖Q− pi‖ < ri

= 0 ‖Q− pi‖ ≥ ri

The average point and normal together represent a local plane
approximation around Q. The signed distance field function for Q
can thus be computed as:

f(Q) = (Q− p̄(Q))n̄(Q) (2)

f(Q) = 0, defines an implicit surface through Q. Our repre-
sentation is similar to the one in [2, 21] modulo the choice of the
weight function (Gaussian instead of triangular).

2.1 Basic Idea
The signed distance field is defined at every point in space. For

efficiency considerations we sample the field using Equation 2 to
compute iso-values (see Fig. 4) and organize it in an octree. The
octree depth is adaptive to the local density of points in the input
model.

OCTREE TERMINOLOGY: The root represents the entire model
space. The model space is recursively divided into eight octants,
each represented as either an internal node, an empty leaf, or a
filled leaf. If a node is divided, it is an internal node. If a node is

not divided, and if it does not have any points in it, it is an empty
leaf. Otherwise it is a filled leaf.

Corner under consideration:
All points within the radius ‘r’ from
this corner are used to compute the
implicit function value

Corners of the leaf where the
function value will be sampled

Point data

Radius ‘r’

An ISO leaf

Figure 4: A leaf in an Implicit Surface Octree

A few comments on the implementation details of the ISO are in
order.

2.2 Data Reduction
The radius ‘r’ (Fig. 4) used in computing the function value at

the corner of a leaf is set to the maximum radius of influence of
any point within that leaf. (Recall that every point comes with a
radius of influence). Every octree leaf now has a set of 8 function
values at its corners. We also calculate the normals and color value
at each corner. We can define a smooth surface within each leaf by
trilinearly interpolating the stored iso-values and normal values. In
other words, given the ISO we no longer require the original points.

2.3 Augmented ISO
Naively constructing the octree using only the input point loca-

tions as reference is insufficient as we now discuss. Leaves which
contain points are termed as filled (Leaves 1 and 3 in Fig. 5). How-
ever, there are leaves which are within the points influence but do
not contain the point itself (Leaf 2 in Fig. 5). We term such leaves
as passive. A naive construction results in no data for leaf 2 as it
does not contain any point; such a leaf would be normally termed
as an “empty leaf”. In such a scenario, a ray passing through Leaf
2 would not encounter any surface, leading to undesirable artifacts
and holes. Clearly, however, not all empty leaves are relevant. The
naive construction is thus augmented with a simple test of box-disk
intersection (disk representing the point’s radius of influence) dur-
ing the construction of the octree. In this process, passive leaves
change their status from empty to filled.

2.4 Continuity
Since we discretize a continuous surface in an ISO, continuity

may suffer when the surface passes across adjacent leaves present
at different levels. (Fig. 6). Such discontinuities manifest as holes
in the rendered surface.

To ensure continuity across adjacent leaves, we may attempt to
restrict all leaf nodes to be formed at the same level. This approach
is wasteful in regions of low curvature, like floors and walls and has
a very high memory footprint. An alternative approach – though by
no means a guarantee – is to run a post-process to discover whether
adjacent filled leaves differ by more than one level. In case they do,
we subdivide them such that the condition is met.

We observe that in practice for ISOs with 7 or more levels, this
constraint ensures that the seam between leaf nodes at different lev-
els is non-noticeably thin. Note that this approach of ours does

Filled Leaf

Passive Leaf
Leaf 1

Leaf 2 Leaf 3

p1

n1

r1

p2

n2

r2

Figure 5: Leaf 2 does not contain any points but is under the
radius of influence of p1 & p2. A naive implementation that
does not store data for Leaf 2 does not suffice, as seen for Ray
R.

not necessarily mean that the difference between the minimum and
maximum depth in the ISO is 1.

Discontinuity Patched surfaceDiscontinuity Patched surface

Figure 6: (Left) Discontinuity in the surface arising due to dif-
ference in adjacent leaf levels. (Right) Further subdivision and
slight extrapolation results in no-hole, smooth surface.

During raytracing, this constraint is used to patch the seam by
allowing rays to hit surfaces that are slightly outside a leaf node
by extrapolating the iso-values from the leaf’s corners. This slight
extrapolation of the surface outside the leaves covers up any seams
that may exist (Fig. 6). A more correct solution to this issue would
involve querying the next node along the ray direction. However
this is more time consuming and the simpler technique described
above works well in practice. Fig. 7 shows how a discontinuous
surface looks after it is patched using techniques described above.

2.5 Normals
The normal at any point in the leaf can be generated on the

fly using the first order finite difference of the leaf’s 8 iso-values.
While the precomputed normals provide better image quality when
zoomed, it consumes 40% additional memory per corner. In cases
where details at high zoom levels are not required, approximate
normals can be computed directly from the gradient of the iso-
values, thus saving memory.

2.6 Texturing
We propose a simple technique to perform texture mapping for

every point sample. Consider a point sample pi with normal ni.
We wish to calculate the texture color at pi and we want to do this
without any explicit uv mapping. We create three orthogonal, axes

Figure 7: Discontinuous render of Lucy vs. our patched render

aligned planes, and tile the texture image on each plane. Let the
normals of these planes be nx, ny and nz . Further, let the 2D
projection of point pi on each of these planes be px, py and pz .
We sample the texture using these three projected points, to obtain
three color values cx, cy and cz . The final color assigned is simply
a weighted average of these three color values, where the weights
are the dot products of each plane’s normal vector with the point’s
normal vector.

color =
cx(ni.nx) + cy(ni.ny) + cz(ni.nz)

(ni.nx) + (ni.ny) + (ni.nz)
(3)

The texture color value for the points are used to calculate the
color value at each corner of the ISO leaves. This is done as a
pre-computation during ISO construction prior to ray tracing.

3. GPU OCTREE STRUCTURE
For coherency on the GPU, the ISO is a variable height full oc-

tree where every internal node in the octree has exactly 8 children.
Note that the octree is not necessarily complete. Further, the chil-
dren of a node are ordered, as per the space filling curve (SFC) [10]
pattern allowing for systematic access of the memory in a GPU.
Note that we do not require a parent pointer as we never have to
traverse upwards in the octree.

We use the texture memory on GPU to store the ISO, the primary
reason being the fast texture cache available on CUDA-compatible
GPUs. Each texel of size 32 bits representing an internal node of
the tree stores the address of its first child, with the remaining 7
children stored contiguously in memory after the first child. Two
bits are used in distinguishing an internal node from a filled leaf,
or an empty leaf. We refer to this linear arrangement of octree
nodes as the node pool. A filled leaf will essentially refer to a
structure of arrays containing the 8 iso-surface, normal and color
values evaluated previously at its corners. We call this structure
a data pool. The data pool itself is stored as a global array but
we make sure read/write from the pool are always coalesced for
efficient GPU throughput (see Fig. 8).

To reduce the memory, we can quantize the iso-values, normals
and color values using techniques available in literature [12], Our
quantization results in each component occupying just one byte.
Thus each node will have 8 iso-values (8 bytes), 8 normals (24
bytes) and 8 color values (24 bytes), for a total of 56 bytes.

4. RAY TRAVERSAL GPU-KERNEL
The core of the computation happens when a ray is attached to

every pixel in the given viewport, and threads are fired in parallel to

Figure 8: GPU Octree Structure. The links between the node
and the data pools are shown for various ISO embellishments

perform the ray tracing. We use a Z-SFC based technique to exploit
the coherence amongst the rays and accelerate the tracing.

Ray tracing involves finding the first object that a ray hits while
traversing a scene. Our rendering is thus critically based on march-
ing along the view rays and finding the first intersecting surface.
Intersection of the camera-ray with the ISO’s root is performed us-
ing a ray-box test. A top-down traversal is used to find the relevant
leaf. If this leaf is empty or if the ray does not intersect the surface
defined within this leaf (as discussed next), a ray-box test on this
ray-leaf pair is performed to find the exit point for the ray. The
above process is then iterated for the ray and the next leaf along the
ray direction. If however, the ray intersects the surface contained in
the leaf, the necessary shading calculations are performed and new
secondary rays generated. This is similar to the technique used in
[17].

4.1 Ray Iso-surface Intersection and Shading

Figure 9: A ray hits a surface within the leaf. The surface
hit-point (in red) is found by marching along the ray within
the leaf, and evaluating the surface value at the sample points
(shown in gray).

On finding a filled leaf along the ray direction, we proceed to find
whether the ray intersects the surface defined in this leaf. The ray is
sampled at regular intervals within the leaf (Fig. 9). At each sam-
ple, we use trilinear interpolation to compute the iso-value from
the values stored at corners. If we detect a sign change between
consecutive samples (say I1 and I2), we know that the boundary
lies between I1 and I2. We now do a weighted interpolation of
positions of I1 and I2 using their respective iso-values as weights
(the sample having value closer to 0 has more weight than the other
since its closer to the surface defined by iso-value 0). The simple
interpolation routine makes ray-surface intersection light on mem-

ory and computations, thereby aiding high GPU throughput.
To perform smooth shading and generation of secondary rays

(shadows, reflection and refractions), we need correct normals at
the intersection points. We interpolate the normals from the nor-
mals stored on corners of the leaf to obtain the normal at the inter-
section point.

[18] employs a normal field over every splat and blends the nor-
mals of intersecting splats to ensure smoothness. Considering the
large data sizes of point model scenes, storing the normal field with
every splat accounts for a very high memory footprint. The foot-
print size is critical for achieving high speeds in ray tracing since
we greatly rely on texture cache hits for accessing the data. By
using only the ISO for rendering we do not require any informa-
tion of point normals at run time. As mentioned in § 3, we further
compress each co-efficient of the normal N(x, y, z) to just 1 byte,
by discretizing the directions, to bring down the memory usage per
octree leaf.

Figure 10: Regular ray tracing with secondary rays having
multiple intersections with the same surface (left) vs. results
from our system that avoids this issue for secondary rays (cen-
ter), and 4X difference image between the two results (right).

After finding the correct intersection point of the ray with the
surface, and the respective normal, we generate the required sec-
ondary and shadow rays and continue the process. Secondary rays
requires careful treatment to avoid multiple intersections with the
same surface (see Fig. 10).

5. RESULTS
We have rendered all our images on a 2.66 Ghz Intel Core 2

Quad system with 8GB DDR3 main memory. The system has an
nVIDIA GeForce GTX 275 with 896 MB memory. We consider the
ISO construction as a pre-computation phase and do not include
those timings in the table. The time taken for ISO construction
varies from 20 seconds to 3 minutes depending on the octree depth,
complexity and scale of the model.

5.1 Comparison with related work
We compare the results for the models of the David, dragon and

the XYZRGB-dragon with the techniques presented in [13, 21,
18]. The timing and memory usage results are presented in Ta-
ble 1. We clearly outperform the previous methods with respect to
the run times and rendering quality. The usage of ray coherence
(§ 4) itself gives us a speed-up of around 30%.

COMPARISON WITH [13, 18]: With respect to quality, [18] gives
a high quality output but is an offline renderer and has a very high
memory footprint. [13] is a splat based ray tracer running at inter-
active rates. Although the fps reported in [13] is better, the quality
of the results presented here is far more superior. Results from both
[13, 18] suffer from rising artefacts at the silhouettes (Fig. 3). [13,
18] also do not demonstrate the rendering of any large scale point
models.

Model Technique Frames Per second (FPS) Memory Usage
(size) Shading Shadow Reflections & Original After Memory Number of

Refractions Size (x) Replication increase ISO leaves
David (1.5M) ISO 37 24 13 1.5M No replication 0.5M

[13] 80 55 13 2.9M 2x -
[21] 10.6 4.1 - No stats specified -
[18] Not real-time 15M 10x -

Dragon (1.3M) ISO 40 25 17 1.3M No replication 0.35M
[21] 7.5 5.7 - No stats specified -
[18] Not real-time 12M 9x -

XYZRGB ISO 38 24 11 3.6M No replication 1.5M
Dragon (3.6M) [13] 53 34 14 7M 2x -

Lucy (14M) ISO 37 24 12 14M No replication 5.8M

XYZRGB ISO 46 31 20 5M No replication 2.9M
Statuette (5M)

Sibenik ISO 38 26 13 13.5M No replication 5.5M
Cathedral (13.5M)

Sponza ISO 31 19 8 14.7M No replication 5.7M
Atrium (14.7M)

Table 1: Timing and Memory Usage Comparison: The size of the rendered images is 512×512. Model sizes are in millions of points.
Shading refers to Phong shading with only local illumination. Shadows refers to 1 to 4 shadow rays per pixel in addition to Phong
shading. Reflections and refractions are multiple bounces. Our fps values are better than most of the previous methods. While all
the previous methods increase the memory footprint, our footprint is reduced significantly due to the usage of just the ISO while
rendering (and not the actual points). Note that the number of ISO leaves is quite less compared to the original point model size. The
models of Lucy, XYZRGB Statuette, Sibenik’s cathedral and the Sponza atrium have not been ray traced by previous methods and
hence can not be compared against.

Figure 11: XYZRGB Statuette (5 million points) is rendered at 512× 512 with 4× super-sampling at 5 FPS with reflections. We
zoom on a part of the model ascertaining the high quality of our renderings using ISO

Both [13, 18] increases the memory footprint to at least 2×. We,
on the other hand, reduce the memory footprint significantly and
still achieve better renderings. To illustrate the point, let us consider
a single point having some position, normal, color and a radius of
influence. To store this point one requires 3 floats for the position
vector (point position is very sensitive, and cannot be quantized),
3 bytes each for the quantized normal and color values, and 1 float
for the radius (it can not be quantized since there is no upper/lower
bound on the radii). That equates to 4 floats ×4 bytes + 6 bytes,
i.e., 22 bytes per input point. In comparison, since we store just
a function value (1 byte), quantized normal (3 bytes), and color
(3 bytes) at a single corner of an ISO leaf (Total of 7 bytes), the
data stored in an ISO leaf is 7 × 8 = 56 bytes (8 refers to 8 cor-
ners). Thus, even if an ISO leaf contains more than 2 input points,
we use lesser memory. From our empirical evidence, we construct

ISO, with leaves ranging from the depths of 8 to 13, to render huge
point models and on an average, an ISO leaf contains 10 points.

COMPARISON WITH [21]: Note that [21] does not handle reflec-
tions and refractions and hence can not be compared against for this
feature capability. The models of Lucy, XYZRGB Statuette have
not been ray traced by previous methods and hence results for these
models cannot be compared with those methods.

5.2 ISO features and properties
We demonstrate ray tracing large scale point model environments

of the Sibenik’s cathedral and the Sponza atrium, thereby present-
ing the scalability of our approach (see Figs. 1 and 16). It should
be noted that all our scene components in the Sponza atrium and
the Sibenik’s cathedral are entirely made up of points and have no

Figure 12: A 1.3 million point model Dragon at various levels of detail (Depth 7, 8, 9 and 10 of the ISO) rendered at 512× 512
with 4× super-sampling

triangular meshes.
We note that the size of our ISO can be essentially independent

of the actual number of points in the model, thereby allowing us to
render the same model at various levels of details (Fig. 12). This
can be useful while dealing with limited memory GPUs, since we
can render very large point data sets by building an ISO at lower
levels of details.

Figure 13: A refractive torus rendered against an environment
map.

ISOs can be seen as a more expressive form of voxels since they
define a smooth surface inside each voxel or octree leaf. This can
be seen in Fig. 13, where we render a torus using a 4 level deep
adaptive ISO which is equivalent to a 16×16×16 voxel grid. With
such a small ISO, we are able to render a full torus with smooth
normals, as can be seen from the refractions of the background.

Figure 14: Rendering of a 1.5 million David. Left: ISO ren-
dering, Middle: Reference image, Right: Difference image. It
shows our approximation using ISO is very close to the refer-
ence image.

We construct the local implicit surface inside the ISO leaves by

trilinear interpolation. We show that this approximation has no no-
ticeable effect on the quality of the final render. We use our imple-
mentation of [21] as a reference since this implementation uses the
entire point data set, and has no approximations. We compare its
results to the ones produced by ISO. As can be seen in Fig. 14, our
method produces results comparable to the reference render.

ISOs also provide a form of smoothness control. While comput-
ing the iso-value at a corner of an ISO leaf, the radius r in the Gaus-
sian weight function of the implicit surface definition (§ 2) acts as
the standard deviation. Multiplying the radius by a constant factor
helps us control the variance of this weight function. The vari-
ance is indicative of the number of points that will be considered in
computing the iso-value at that particular corner. This governs how
sharp or smooth the model appears. Reducing the variance makes
the model sharper, while increasing it makes it smoother, as can be
seen in Fig. 15.

Figure 15: Varying degrees of smoothing applied to the David
dataset.

The texturing computations happen as a pre-processing step af-
ter ISO construction and takes around 1-2 minutes. All scenes pre-
sented in this paper are texture mapped. Fig. 16 shows a part of
the Sponza atrium under different textures and lighting conditions.
The materials properties (not textures) as well as the lights can be
changed on the fly at run time.

A supplementary video submitted with the paper further demon-
strates the capabilities of our point model rendering system. It can
be downloaded from http://bit.ly/icvgip10 .

6. CONCLUSION
In this paper we have provided a comprehensive solution for ray

tracing point models at interactive frame rates on the GPU with
shadows, reflections and refractions. We introduced the Implicit
Surface Octree (ISO) to locally define a smooth surface over the
points that has a reduced memory footprint. The local nature of
our ISO is to be contrasted with any global approach to surface fit-

Figure 16: Scenes from the Sponza point model (14.7M points)
rendered under different lighting conditions and textures.All
images are rendered at 512× 512 with 4× super-sampling

ting such as NURBS, or a triangular mesh. The ISO is an elegant
local surface representation for GPU raytracing as the ray-data in-
tersection test is extremely simple, and a single ISO node can rep-
resent several triangles worth of data. The solution, even for large
scale input models, runs at interactive speed due to careful design
and algorithmic choices made in implementing and splitting the ray
tracer kernels on the GPU. At the same time, our GPU-based algo-
rithms are essentially simple thereby improving GPU occupancy
and increasing the overall throughput. Dynamic material and light
changes as well as texture mapping is supported.

7. ACKNOWLEDGMENTS
Our thanks to the Stanford 3D Scanning Repository, the Digital

Michelangelo project and Cyberware for freely providing geomet-
ric models to the research community. We thank Marko Dabrovic
for the Sponza Atrium and Sibenik Cathedral models, and thank
the anonymous reviewers for their constructive comments.

8. REFERENCES
[1] B. Adams, R. Keiser, M. Pauly, L. J. Guibas, M. Gross, and

P. Dutré. Efficient raytracing of deforming point-sampled
surfaces. Computer Graphics Forum, 24(3):677–684, 2005.

[2] A. Adamson and M. Alexa. Ray tracing point set surfaces. In
Proceedings of the Shape Modeling International 2003, page
272, 2003.

[3] N. A. Carr, J. D. Hall, and J. C. Hart. The ray engine. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, pages 37–46, 2002.

[4] N. A. Carr, J. Hoberock, K. Crane, and J. C. Hart. Fast GPU
ray tracing of dynamic meshes using geometry images. In
Proceedings of Graphics Interface 2006, pages 203–209,
2006.

[5] J. Chhugani, S. Vishwanath, J. Cohen, and S. Kumar.
Isoslider: a system for interactive exploration of isosurfaces.
In Proceedings of the Symposium on Data visualisation
2003, pages 259–266, 2003.

[6] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann.
Gigavoxels : Ray-guided streaming for efficient and detailed
voxel rendering. In Proceedings of the 2009 ACM
SIGGRAPH Symposium on Interactive 3D Graphics and
Games, pages 15–22, 2009.

[7] S. F. Frisken, R. N. Perry, A. P. Rockwood, and T. R. Jones.
Adaptively sampled distance fields: a general representation
of shape for computer graphics. In Proceedings of the 27th

Annual Conference on Computer Graphics and Interactive
Techniques, pages 249–254, 2000.

[8] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski.
Towards internet-scale multi-view stereo. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1434–1441, 2010.

[9] K. Garanzha and C. Loop. Fast ray sorting and breadth-first
packet traversal for GPU ray tracing. Computer Graphics
Forum, 29(2), May 2010.

[10] R. Goradia, P. Ajmera, S. Chandran, and S. Aluru. Fast,
parallel, GPU-based construction of space filling curves and
octrees. In ACM SIGGRAPH 2008 Symposium on Interactive
3D graphics and games, Poster, 2008.

[11] D. R. Horn, J. Sugerman, M. Houston, and P. Hanrahan.
Interactive k-d tree GPU raytracing. In Proceedings of the
2007 ACM SIGGRAPH Symposium on Interactive 3D
graphics and games, pages 167–174, 2007.

[12] Y. Huang, J. Peng, J. C. C. Kuo, and M. Gopi. Octree-based
progressive geometry coding of point clouds. In
EUROGRAPHICS Symposium on Point Based Graphics,
pages 103–110, July 2006.

[13] S. Kashyap, R. Goradia, P. Chaudhuri, and S. Chandran.
Realtime ray tracing of point based models. In ACM
SIGGRAPH 2010 Symposium on Interactive 3D Graphics
and Games, Poster, 2010.

[14] A. Knoll. A survey of implicit surface rendering methods,
and a proposal for a common sampling framework. In GI
Lecture Notes in Informatics, Proceedings of the 2nd IRTG
Workshop, 2007.

[15] A. Knoll, I. Wald, S. G. Parker, and C. D. Hansen. Interactive
isosurface ray tracing of large octree volumes. In
Proceedings of the 2006 IEEE Symposium on Interactive Ray
Tracing, pages 115–124, 2006.

[16] S. Laine and T. Karras. Efficient sparse voxel octrees. In
Proceedings of the ACM SIGGRAPH 2010 Symposium on
Interactive 3D Graphics and Games, pages 55–63, 2010.

[17] S. Lefebvre, S. Hornus, and F. Neyret. GPU Gems 2 -
Programming Techniques for High-Performance Graphics
and General-Purpose Computation, chapter Octree Textures
on the GPU, pages 595–613. Addison-Wesley, 2005.

[18] L. Linsen, K. Müller, and P. Rosenthal. Splat-based ray
tracing of point clouds. In Journal of WSCG, volume 15,
pages 51–58, 2007.

[19] G. Schaufler and H. W. Jensen. Ray tracing point sampled
geometry. In Proceedings of the Eurographics Workshop on
Rendering Techniques 2000, pages 319–328, 2000.

[20] J. M. Singh and P. Narayanan. Real-time ray tracing of
implicit surfaces on the GPU. IEEE Transactions on
Visualization and Computer Graphics, 99(RapidPosts
1077-2626):261–272, 2009.

[21] I. Wald and H.-P. Seidel. Interactive ray tracing of
point-based models. Proceedings of Symposium on
Point-Based Graphics, 0(1511-7813):9–16, 2005.

[22] M. Wand and W. Straßer. Multi-resolution point-sample
raytracing. In Graphics Interface, pages 139–148, 2003.

