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ABSTRACT
We present a novel framework for multi-view stereo that
poses the problem of recovering a 3D surface in the scene
as a regularized minimal partition problem of the visibility
function in the presence of clutter. We introduce a sim-
ple and robust method to integrate estimates from several
views that tolerates both static and time-varying clutter.
Our formulation does not rely on the visual hull, 2D silhou-
ettes, or make use of initial surface estimates. Furthermore,
we use a globally optimal framework, so that the solution
does not depend on initialization and computationally effi-
cient numerical methods can be used to find the solution.
We also strive for simplicity so that more general models
of image formation can be used without compromising the
estimation process. Experimental results on synthetic and
publicly available real data show that our method performs
on a par with state-of-the-art methods that have been used
on clutter-free data.

1. INTRODUCTION
In this paper we present a novel solution to calibrated

multi-view stereo (MVS), i.e., the problem of estimating 3D
surfaces from a collection of 2D views with known pose, in
the presence of clutter. Research in MVS is very active in
the field of computer vision and a wide variety of methods
have been proposed to address the recovery of the surface
of 3D objects in very challenging scenarios, e.g., for wide-
baseline datasets [8], with non Lambertian objects [3, 17],
dealing with illumination [9], or in the presence of clutter
[6]. We focus on the challenge posed by clutter and propose
a general solution that does not require knowledge of the
visual hull, silhouettes or approximate depth maps either
implicitly or explicitly.

As pointed out by Furukawa and Ponce [6], MVS algo-
rithms can be associated to the datasets (and their implicit
assumptions) that they can handle: Objects with clear sil-
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Figure 1: Reconstruction of two concatenated tori
from synthetic images where the foreground and
the background have the same texture (static clut-
ter) and with or without time-varying clutter (cir-
cular regions that change position in each frame).
Top row: two of the input images of the two_tori

synthetic dataset with only static clutter. Sec-
ond row: two of the input images of the two_tori

synthetic dataset with time-varying clutter. Third
row: two views of the reconstructed 3D model from
the two_tori synthetic dataset with only static clut-
ter. Bottom row:two views of the reconstructed
3D model from the two_tori synthetic dataset with
time-varying clutter.



houettes; objects in static clutter (e.g., a background similar
to the object of interest); objects with time-varying clutter
(e.g., crowded scenes with moving people).

By building on recent work in the literature, we propose a
method that can deal with all the three above scenarios in a
globally optimal fashion. More specifically, our contribution
is that we formulate MVS to simultaneously deal with the
dependency of multiple views, to be independent of initial-
ization, to easily incorporate surface regularization terms,
not to have degenerate solutions (e.g., the empty set), not
to use the visual hull or silhouettes explicitly or implicitly
at any step of the algorithm (see Figure 1), to have a unique
solution, and to be computationally and memory efficient.
Our method is a continuous formulation of MVS (section 3)
which combines a Bayesian formulation of the visibility of
each camera in a convex cost functional (section 4). In sec-
tion 5 we explicitly deal with the integration of 3D surface
estimates from different views. The convex cost functional
is then minimized by an efficient gradient-flow in section 6.
Finally, in section 7 we demonstrate the method on data
with clutter and on the (uncluttered) Middlebury data set,
where we show that it still performs similarly to current
state-of-the-art methods.

2. PRIOR WORK
There is a large body of prior work on multi-view stereo

algorithms (see [14] for an excellent recent survey). Among
the most successful methods, are those based on shape from
silhouette, which obtain an estimation of the 3D surfaces
from binary object/background segmentations of each view
[16, 18]. These methods are known to be robust and com-
putationally efficient, but cannot reconstruct all concavities.
Other popular approaches are those based on space carv-
ing, where voxels that do not correspond to pixels that are
photoconsistent are removed [11]. These methods have the
limitation that regularization is not enforced and reconstruc-
tions are often noisy. Solutions that incorporate regulariza-
tion have also been proposed. In [21, 15, 5] a deformable
model is updated in a variational minimization scheme until
a certain consistency criterion is satisfied. This approach
allows to combine a data fidelity term on the unknown sur-
face, which measures how well the solution explains the data,
with a regularization term, which constrains the solution to
be smooth. Although these methods achieve a higher ro-
bustness to image noise, they inherently define the empty
set as a global optimum and typically depend on the ini-
tialization. To compensate for such limitations, methods
that incorporate ballooning terms have been proposed [19].
Other very effective methods merge depth maps obtained
from small groups of neighboring views [7, 4]. Our method
relates to several of the above methods, and, in particular,
to work by Kolev et al. [10] and Nikolova et al. [13], as we
also pose the multi-view stereo problem as a globally opti-
mal minimization problem, and Hernandez et al. [7] as we
also formulate the problem as a probabilistic 3D segmenta-
tion and rely on the computations of the visibility via the
depth maps. Our formulation however differs in the specific
choices of the noise, the visibility models, and, more im-
portantly, how depth maps are merged, as we outline here
below.

3. A CONTINUOUS AND CONVEX FORMU-
LATION OF MULTI-VIEW STEREO

As in most recent MVS work [14], we pose the problem
of estimating the surface of Lambertian objects in the scene
from multiple calibrated views as the problem of determining
whether a point in space (a voxel) lies inside or outside any of
the objects. The estimated surface is then implicitly defined
as the interface separating the two groups of voxels.

Let us represent such solution with a function φ : V ⊂
R3 7→ [−1, 1], with V the bounded volume in 3D space where
reconstruction is performed. In our approach the function
φ defines when a voxel X ∈ V is inside or outside an object.
We call this function visibility of a voxel. The surface of
the objects is defined implicitly as the set of points {X :
φ(X) = 0}. The next step is to define an energy such that
its minimum is at the surface of the objects in the scene. To
do so we introduce the following energy minimization

φ̂ = arg min
φ
E[φ]

.
=

∫
Φ(φ̃(X)|φ(X))dX + α

∫
Ψ(φ̃(X))|∇φ(X)|dX

+β

∫
θ(φ(X))dX. (1)

The energy is composed of three terms: Φ(ε|γ), which mea-
sures the discrepancy between ε and γ, Ψ(ε)

.
= exp[−ε2/µ]

with positive constants α and µ, which penalizes large varia-
tions of φ at the surface of the object, and θ(ε)

.
= max{0, |ε|−

1} with positive constant β, which is a convex penalty term
that prevents φ from leaving the range [−1, 1]. In our nota-

tion the function φ̃ is an approximate estimate of the visi-
bility that we obtain, for instance, by combining the depth
maps from several vantage points.

In our implementation we tested two choices for Φ. One
choice is the discrepancy

Φ(φ̃(X)|φ(X)) = |φ̃(X)− φ(X)| (2)

and a second choice is

Φ(φ̃(X)|φ(X)) = (1+φ̃(X))(1−φ(X))+(1−φ̃(X))(1+φ(X))
(3)

If φ̃ is either −1 or +1 for most of the voxels and has a
quick transition through 0 at the surface of the objects, then
we have found no noticeable difference between the solution
obtained with eq. (2) and the solution obtained with eq. (3)
in our experiments.

The interpretation of the term φ̃ in eq. (2) is much more
apparent than in eq. (3): It behaves as a proxy, i.e., as an
initial estimate of the function φ obtained from the data.
Then, by minimizing eq. (1) we approximate the proxy with
a smooth function. An immediate consequence of this for-
mulation is that the accuracy of the solution depends highly
on the accuracy of the proxy. In this paper we will study
how to calculate φ̃(X) so that we can tolerate discrepancies
in the model due to sensor noise, changes in the brightness
and contrast of the camera, departure from the Lambertian
assumption, or to occlusions caused by clutter.

3.1 Relation to Kolev et al. [10]
In work by Kolev et al. [10], the energy term relative to

the measurements and the model is defined as

EKolev(u) =

∫
(ρbck(X)− ρobj(X))u(X)dX (4)



where ρbck(X) + ρobj(X) = 1 and ρbck(X) and ρobj(X)
depend on depth maps estimates (obtained from different
points of view). For instance, they can be defined as the
negative log-likelihood of X belonging to the object or the
background. One of the nice features of this energy formula-
tion is that the two terms ρobj(X) and ρbck(X) “compete” to
define whether the voxel X lies inside or outside any of the
objects. By minimizing this energy they obtain a solution u
that takes +∞ on voxels inside objects (ρobj(X) > ρbck(X)),
and −∞ outside (ρobj(X) < ρbck(X)). By adding a convex
energy term that penalizes values of u out of the range [0, 1],
u will instead become the indicator function of the inside of
the objects.

Now, define the following identities

φ(X)
.
= 2u(X)− 1 (5)

φ̃(X)
.
= ρobj(X)− ρbck(X) = 2ρobj(X)− 1 (6)

in the above energy term. The constraint on u ∈ [0, 1] be-
comes φ ∈ [−1,+1]. Since ρobj ∈ [0, 1] by definition, we also

have that φ̃ ∈ [−1,+1]. The resulting energy is identical,
up to a constant scale factor, to eq. (3). Hence, one can im-
mediately conclude that the term ρobj − ρbck also defines an
initial estimate of the surface of the objects and the accuracy
with which it is obtained determines the overall performance
of the reconstruction task.

4. BAYESIAN PHOTOCONSISTENCY
To determine the proxy φ̃ we obtain depth maps from

small groups of nearby views, so that outliers due to occlu-
sions are minimized, and then merge them into a single 3D
surface [12, 22]. In this paper we follow a similar merging
strategy, but try to delay as much as possible hard decisions
so as to maximize the amount of information used to take
them. In broad terms, the key idea is to obtain a visibil-
ity map from each depth map and then to integrate all the
visibility maps together via a robust interpolating function.
To illustrate the steps needed, here we will show the compu-
tation of a single visibility map. The integration of all the
visibility maps will be discussed in the next section.

In order to compute a depth map, we need to define how
images are generated from the scene. Let {Ii : Ω ⊂ R2 7→
R3

+}i=1,...,N be a collection of N calibrated color images,
{πi : V 7→ Ω}i=1,...,N be perspective projections of a voxel
to pixel coordinates in the i-th view, and {Ci ∈ V }i=1,...,N

be the camera centers. Under the Lambertian assumption
the intensity measured on the i-th camera sensor can be
written as

Ii(πi[X]) = r((X−Ci)λ
∗
i + Ci) where

λ∗i = arg min
λ∈[0,∞)

{λ|φ(λX + (1− λ)Ci) = 0} (7)

and r : V 7→ R3
+ is the color intensity reflected at a point in

space. The above definition formalizes two well-known no-
tions: 1) If two images capture light from the same point in
space, the same intensity is observed (photoconsistency); 2)
The intensity captured by an image at a pixel πi[X] depends
on the closest point on the surface along the ray connecting
the camera center Ci to the point in space X.

Given the i-th view Ii we are interested in computing an
estimate of the visibility of a point from this camera. In
this case we have that if a point X on the surface is visible
from both the i-th and the j-th camera then Ij(πj [X]) =

Ii(πi[X])) + ω, where ω is sensor noise, which we model
with a Laplace distribution. Then we can write

ρi,j(X) =
σ

2Ii(πi[X])
e
−σ
∣∣ Ij(πj [X])

Ii(πi[X])
−1

∣∣
(8)

where 1
σ
Ii(πi[X]) is the scale parameter. It is reasonable to

assume that sensor noise in each view is independent from
the other views. Thus the photoconsistency of M views can
be computed as the product of individual pairwise photo-
consistency terms. The quantity ρi,j(X) is the probability
of photoconsistency and is maximal at the surface when all
points are visible and distortions are well modeled by Lapla-
cian noise. Notice that the long tails of the Laplacian distri-
bution allow to compensate for occlusions and other distor-
tions. Furthermore, the degree of tolerance to outliers can
be varied by changing the scale parameter. By combining
the different views, we obtain

ρi(X) =

jM∏
j=j1

ρi,j(X). (9)

Remark 1. The above model rejects outliers similarly to
other robust functions that have been suggested in the litera-
ture (see, for instance [20, 2]). In practice, the overall behav-
ior is that the photoconsistency term should be as sensitive
as possible to small intensity deviations between the views,
which are more likely to have been generated by a genuine
point on the surface, rather than large intensity deviations,
which might have been generated by extremely different phe-
nomena (e.g., occlusions, clutter, and quantization).

The computation of the photoconsistency term eq. (9) can
be done in a reasonably efficient manner by parsing each
point in the volume V . We simply compute the photocon-
sistency probability independently at each point X in space.
We would like to point out that for the sake of simplicity
we do not integrate the visibility within windows or slanted
planes or compute normalized cross-correlations, although
such options are all possible in our framework.

Once eq. (9) has been evaluated, we map the photocon-
sistency probability ρi to the visibility of a point X from
the i-th view. Notice that the visibility φ̃i must be a non-
decreasing function as we evaluate voxels along a ray from
the camera center Ci. We enforce such constraint by consid-
ering the integral of ρi(X) along the projection ray passing
through Ci. We then shift and truncate such function so
that the visibility φ̃i is 0 at the depth map, and between −1
and 1 everywhere else. First, for each ray, we compute the
location of the depth map

λ∗
.
= arg max

λ∈[0,1]
ρi(Ci + λ(Xmax −Ci)) (10)

where Xmax is the furthest point from the camera Ci along
the chosen ray in the volume V . Then, we define the vis-
ibility from the i-th view along the ray via the cumulative
distribution function of ρi, i.e.,

φ̃i(Ci + µ(Xmax −Ci)) =

max

{
−1,min

{
1,

∫ µ

λ∗
ρi(Ci + λ(Xmax −Ci))dλ

}}
,

∀µ ∈ [0, 1]. (11)

Once we have obtained estimates of the visibility φ̃i from
each view, we need to integrate them together in a single



methods 0%accu 0%com 1%accu 1%com 2%accu 2%com 3%accu 3%com accu(clutter) com(clutter)
robust 9.01e-5 100% 1.03e-4 100% 1.58e-4 99.99% 2.75e-4 99.73% 0.0014 89.04%
geometric 4.08e-4 99.42% 5.06e-4 98.29% 6,51e-4 96.53% 7.79e-4 94.87% 0.0033 67.50%
local 1.58e-4 99.88% 1.81e-4 99.70% 5.06e-4 95.75% 0.001 89.83% 0.0048 48.81%
ideal 1.65e-4 99.62% 3.28e-4 98.37% 8.93e-4 90.27% 0.0015 78.54% 0.0047 46.92%
min 3.03e-4 98.83% 7.72e-4 93.27% 0.0017 75.59% 0.0025 56.20% 0.0046 46.99%

Table 1: Performance on the bigball synthetic dataset with 5 different interpolating functions: robust, geo-

metric, local, ideal and min (see the text for their definition). The percentages in the first row indicate the
noise levels. accu is a shorthand notation for accuracy and com for completeness. The unit of the accuracy
is meter. The last column shows the performance when time-varying clutter (a randomly placed disk) is
present.

visibility function φ̃. This will be presented in the next
section.

5. INTEGRATING MULTIPLE VIEWS IN
THE PRESENCE OF CLUTTER

The most common method to integrate depth maps, or
visibilities, is to determine which cameras share overlapping
views. This can be achieved by using an initial estimate of
the surface from the visual hull (i.e., via silhouettes) or from
the depth maps themselves. The normals to the surface are
then extracted and used to determine which cameras are
potentially imaging a given voxel. This assumption results
in a simple MVS formulation as one only needs to average
preselected sets of overlapping depth maps. This, however,
comes at a cost, as the normals from an approximate sur-
face estimate could be incorrect and a hard decision on which
cameras overlap could lead to averaging depth maps incor-
rectly.

The procedure just described can be written as a certain
interpolating function f : RN 7→ [−1, 1], so that our visibility
estimate is given by the simultaneous combination of all the
visibilities

φ̃(X) = f(φ̃1(X), ..., φ̃N (X)). (12)

In this general formulation however, it is easier to create a
consistent integration of the visibilities and to take into ac-
count clutter, occlusions and noise. The function f can be
seen as a voting heuristic, where the vote cast by each vis-
ibility results in a decision for each voxel in space. Rather
than defining f for each combination of votes, one can define
it at some key locations and then let multi-linear interpola-
tion fill the gaps. Furthermore, in defining f it is important
to make sure that some desirable properties are satisfied.
For instance, f should be invariant to permutations of the
input parameters. Notice that f could be “learned” from
training data so that one could determine the most robust
integration method for a given camera configuration. In this
paper, however, we do not investigate this direction.

In absence of a training procedure, we analyze several
choices and report their performance (see Fig. 2 for 2 ex-
amples of f with only 2 visibilities):

min: This is one of the simplest and most computationally
and memory efficient functions as its evaluation can be done
recursively as visibilities become available

f(ξ1, · · · , ξN ) = min
i
ξi. (13)

Unfortunately it is also one of the worst performing ones

Figure 2: Interpolating functions with 2 views ξ1
and ξ2. Left: the min interpolating function. Right:
the ideal interpolating function. Notice that if we
threshold f(ξ1, ξ2) at 0 both choices result in the same
decision. However, a small perturbation of the in-
puts reveals that the ideal choice is biased towards
the “no object” decision.

(see Table 1). Notice that this mapping is non linear in the
arguments.

ideal: This interpolating function is suitable only when each
visibility is perfect. If any of the input parameters is −1 then
also f maps to −1. This corresponds to any camera agreeing
that a voxel is outside any object. If all parameters are 1
then also f is 1. This corresponds to all cameras agreeing
that a voxel is inside an object. Also, if all cameras find a
voxel on a surface, i.e., the visibility is 0, then also f must be
0. More explicitly, we define f at the finite set of locations in
the N -dimensional grid {−1, 0, 1}×· · ·×{−1, 0, 1} as follows
(an example of 2-dimensional grid {−1, 0, 1} × {−1, 0, 1} is
used in Fig. 2):

f(ξ1, · · · , ξN ) =

 −1, if ∃ i : ξi = −1
1, if ξi = 1 ∀ i
0, at all other locations

(14)

and then use N-linear interpolation away from theN -dimensional
grid.

local: This interpolating function mimics the choice made
by methods that use depth information to decide which
depth maps to average. The idea is to average the visibili-
ties at voxels close to the surface and to take the minimum



Figure 3: Comparison of the reconstructed visibil-
ities φ̃ (without smoothing) of four interpolating
function choices with the temple dataset. In clock-
wise order from the top-left, they are the results
of: robust, geometric, ideal, and min interpolating
functions. The robust interpolating function is more
successful than the other functions at preserving the
correct surface of the object.

visibility value at voxels far from the surface:

f(ξ1, · · · , ξN ) =


min
i
ξi, if ∀i : |ξi| > τ

1

N ′

N′∑
i=1

ξi, if ∃i1, i2, · · · , iN′ : |ξik | ≤ τ

(15)
for a small positive constant τ .

geometric: This interpolating function integrates the visi-
bilities from each view by computing a geometric mean. The
idea is to reduce the effect of occlusion on the visibility:

f(ξ1, · · · , ξN ) =

(
N∏
i=1

(1 + ξi)

)1/N

− 1. (16)

robust: The above interpolating functions are suitable for
small errors or inconsistencies between the visibilities φ̃i(X).
When images contain static or time-varying clutter, the com-
bination of the visibilities needs to tolerate conflicting terms.
For instance, an incorrect depth estimate where one visibil-
ity is zero at the exact location would spoil the whole esti-
mate of the visibility in all above interpolating functions (see
Figure 3). This effect introduces a bias towards carving and
it becomes particularly evident when clutter is present. We
propose to use a robust interpolating function that can tol-
erate a (small) percentage M of incorrect visibilities. As
in the case of the ideal interpolating function, we define

Figure 4: Comparison between the reconstructed re-
sults of the bigball synthetic dataset without time-
varying clutter at 3% noise level. Top row: Two
of the 60 input images. Bottom row: The recon-
structed 3D model with robust interpolating func-
tion (left) and min interpolating function (right).

f at the finite set of locations in the N -dimensional grid
{−1, 0, 1} × · · · × {−1, 0, 1} as follows:

f(ξ1, · · · , ξN ) =

 0, if ∃ i1, · · · , iM : ξik = 0
1, if ∃ i1 · · · iN−M+1 : ξik = 1
−1, at all other locations

(17)
and then use multi-linear interpolation away from the N -
dimensional grid. The meaning of the above definition is
that we set a voxel to be inside the object if at leastN−M+1
visibilities agree that it is inside the object. Similarly, we set
a voxel to be on the surface of the object if at least M visi-
bilities think that it is on a surface. All other combinations
in the finite grid are set to outside the object. This is par-
ticularly effective in the presence of static or time-varying
clutter, where several visibilities may be incorrect at some
locations. In our experiments we use M = 3.

In Figure 4 we show some experiments on synthetic data
that demonstrate the effectiveness of the approach in deal-
ing with clutter while still performing well in uncluttered
data. We run several experiments where we consider im-
ages with different levels of noise and static clutter (a back-
ground with texture similar to the object of interest) and
time-varying clutter (a disk with texture similar to the ob-
ject of interest and placed randomly across the images). The
results are summarized in Table 1 where one can appreciate
the robustness of the proposed interpolating function. We
also show a direct comparison of 4 interpolation choices on
the Middlebury dataset in Figure 3. In clockwise order from
the top-left we show the reconstructed visibility (without
smoothing) at the surface voxels for: robust, geometric,
ideal, and local interpolating functions. As one can see,
the robust interpolating function is more successful than
the other functions in preserving more of the surface and at
the same time in avoiding artifacts due to incorrect visibility
estimates.

One shortcoming of the proposed approach is that the in-



terpolating function grows in complexity with the number of
views that it integrates. While this is perfectly tolerable for
medium-size reconstructions, it is unmanageable for large-
size reconstructions. Addressing this challenge is beyond the
investigation in this paper.

Figure 5: The reconstruction of dinosaur dataset and
dinosaur dataset without static or time-varying clut-
ter. The first two rows show two input images of
each dataset. The last two rows show two views of
the reconstructed 3D model of each dataset obtained
with the robust interpolating function.

6. NUMERICAL IMPLEMENTATION
Now that we have defined all the functions and param-

eters for the minimization problem (1), we can solve it by
first computing the Euler-Lagrange equations and then us-
ing a numerical scheme to solve them. In the case of the
discrepancy term (2) we have

∇E[φ(X)] =
φ(X)− φ̃(X)

|φ(X)− φ̃(X)|
− α∇ ·

(
Ψ(φ̃(X))

∇φ(X)

|∇φ(X)|

)
+βθ′(φ(X)) = 0 ∀X ∈ V

(18)
and in the case of the discrepancy term (3) we have

∇E[φ(X)] = −2φ̃(X)− α∇ ·
(

Ψ(φ̃(X))
∇φ(X)

|∇φ(X)|

)
+βθ′(φ(X)) = 0 ∀X ∈ V.

(19)
These equations could be solved via linearization and suc-

cessive over-relaxation (or other iterative solvers for linear
systems). However, we find that a gradient descent works
quite efficiently on these functionals and most of the iter-
ation time is actually spent in the pre-computation of the
estimate φ̃. Notice that we prevent any division by zero by
introducing a small positive constant. The solution of the
Euler-Lagrange equations via a gradient descent is given by

φ(X, t+ 1) = φ(X, t)− ε∇E[φ(X, t)] (20)

for a small step ε > 0. Starting from any initial condition,
this iterative scheme will converge to the global minimum
of functional (1). Notice that the smoothness term is for-
mulated as total variation and therefore it tends to yield 3D
surfaces that are piecewise smooth.

7. EXPERIMENTS
To demonstrate the effectiveness of the proposed method

we use the two multi-view stereo data sets publicly avail-
able at the Middlebury website [1]: dinosaur and temple

datasets. We test our algorithms by working on the full
collection of images. The performance results that we have
obtained in the case of uncluttered scenes with the robust
and geometric interpolating functions are shown in Table 2.
Two input images of each dateset and two views of the re-
constructed models from robust interpolating function are
shown in Figure 5. The reconstructions obtained with the
two discrepancies eq. (3) and eq. (2) are virtually identical;
so, we only display the results obtained for eq. (3). In Fig-
ure 6 and 7 we show the input images and corresponding
reconstructed results of dinosaur and temple datasets with
synthetic static and time-varying clutter. In the top two
rows we show two central views of each dataset with the
occlusions highlighted and magnified. The third row shows
two views of the reconstructed model from robust inter-
polating function and bottom row shows two views of the
reconstructions obtained by geometric interpolating func-
tion. It can be seen that in the presence of time-varying
occlusions, the reconstruction results from the robust inter-
polating function are still comparable to the ones obtained
with uncluttered images, but the results obtained from other
interpolating functions are much worse. Here we just display
the results from the geometric interpolating function be-
cause of the space limitations. We used a Mac Pro 8-core



Data set completeness accuracy #views
dinosaur(robust) 99.3% 0.60 mm 60
temple(robust) 98.6% 0.76 mm 56
dinosaur(geometric) 95.7% 1.94 mm 60
temple(geometric) 89.6% 1.45 mm 56

Table 2: Performance on the dinosaur and temple

datasets with two different interpolating functions
robust and geometric. Notice that despite the sim-
plicity of the proposed approach, the robust inter-
polation performs at the same level as the state-of-
the-art in MVS.

3.2GHz and with non-optimized Matlab code. The recon-
structions are defined on a volume of 359× 301× 307 voxels
for the dinosaur dataset and 465× 301× 219 voxels for the
temple dataset and are produced in less than 30 minutes
after the computation of the visibility φ̃. The time taken for
computing the visibility function depends on how many ref-
erence views have been used. If 12 reference views are used
in dinosaur dataset, it takes about 245 minutes for robust
and ideal interpolating functions and about 72 minutes for
geometric, local and min interpolating functions.

8. CONCLUSION
We have presented a novel framework for multi-view stereo

in the presence of time-varying clutter. We cast the problem
as that of recovering the smooth surface separating voxels in
the scene that are outside objects from voxels that are inside
objects via a robust integration of depth map estimates from
different vantage points. This framework has been designed
to avoid relying on some estimate of the reconstructed object
either via the visual hull or silhouettes. The proposed ap-
proach can also be easily modified to take into account novel
image formation models or to incorporate general regular-
ization schemes in a globally optimal and computationally
efficient numerical implementation. We have illustrated how
to robustly perform the integration of all visibilities simulta-
neously so as to tolerate both static and time-varying clutter.
Experimental results on synthetic and publicly available real
data demonstrate the effectiveness of the proposed method.
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