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ABSTRACT
In this paper, we present a practical vision based Simultane-
ous Localization and Mapping (SLAM) system for a highly
dynamic environment. We adopt a multibody Structure
from Motion (SfM) approach, which is the generalization of
classical SfM to dynamic scenes with multiple rigidly mov-
ing objects. The proposed framework of multibody visual
SLAM allows choosing between full 3D reconstruction or
simply tracking of the moving objects, which adds flexibil-
ity to the system, for scenes containing non-rigid objects or
objects having insufficient features for reconstruction. The
solution demands a motion segmentation framework that
can segment feature points belonging to different motions
and maintain the segmentation with time. We propose a re-
altime incremental motion segmentation algorithm for this
purpose. The motion segmentation is robust and is capa-
ble of segmenting difficult degenerate motions, where the
moving objects is followed by a moving camera in the same
direction. This robustness is attributed to the use of ef-
ficient geometric constraints and a probability framework
which propagates the uncertainty in the system. The mo-
tion segmentation module is tightly coupled with feature
tracking and visual SLAM, by exploring various feed-backs
in between these modules. The integrated system can si-
multaneously perform realtime visual SLAM and tracking
of multiple moving objects using only a single monocular
camera.

1. INTRODUCTION
Both SfM from computer vision and the SLAM in mobile

robotics research does the same job of estimating sensor mo-
tion and structure of an unknown static environment. The
motivation behind vision based SLAM, is to estimate the
3D scene structure and camera motion from an image se-
quence in realtime so as to help guide robots. Vision based
SLAM [3, 11, 15, 17] and SfM systems [8] have been the
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Figure 1: An Illustration of our system. Here the
static background is being reconstructed, while the
moving persons are being detected and tracked

subject of much investigation and research. But almost all
these approaches assume a static environment, containing
only rigid, non-moving objects. Moving objects are treated
the same way as outliers and filtered out using robust statis-
tics like RANSAC [5]. Though this may be a feasible solu-
tion in less dynamic environments, but it soon fails as the
environment becomes more and more dynamic. Also ac-
counting for both the static and moving objects provides
richer information about the environment. A robust solu-
tion to the SLAM problem in dynamic environments will
expand the potential for robotic applications, especially in
applications which are in close proximity to human beings
and other robots. As put by [28], robots will be able to work
not only for people but also with people.

The solution to the moving object detection and segmen-
tation problem will act as a bridge between the static SLAM
or SfM and its counterpart for dynamic environments. But,
motion detection from a freely moving monocular camera is
an ill-posed problem and a difficult task. The moving cam-
era causes every pixel to appear moving. The apparent pixel
motion of points is a combined effect of the camera motion,
independent object motion, scene structure and camera per-
spective effects. Different views resulting from the camera
motion are connected by a number of multiview geometric
constraints. These constraints can be used for the motion
detection task. Those inconsistent with the constraints can
be labeled as moving or outliers.

The last decade saw lot of developments in the “multi-
body” extension [20, 21, 23, 27] to multi-view geometry.
These methods are the natural generalization of the clas-
sical structure from motion theory [4, 8] to the challenging



case of dynamic scenes involving multiple rigid-body mo-
tions. Thus given a set of feature trajectories belonging to
different independently moving bodies, multibody SfM esti-
mates the number of moving objects in the scene, cluster the
trajectories on basis of motion, and then estimate the model
as in relative camera pose and 3D structure with respect to
each body/object. Thus it refers to the problem of fitting
multiple motion models to the scene, given a set of image
feature trajectories.

By multibody visual SLAM, we indicate a realtime version
of the multibody SfM. The purpose of the multibody visual
SLAM is to extract as much information from the environ-
ment as possible, even those belonging to moving objects.
We have taken a more practical point of view, where we
choose not to reconstruct all the moving objects. This deci-
sion is motivated by the observation that foreground objects
are generally small and may move rapidly and non-rigidly,
which makes them very difficult for full 3D reconstruction.
Moreover certain applications may just need to know the
presence of moving objects, rather than its full 3D structure.
The proposed framework offers the flexibility of choosing the
objects that needs to be reconstructed. Objects, not chosen
for reconstruction are simply tracked. Fig. 1 illustrates such
a system, where the static background is chosen for recon-
struction, and objects moving independently are detected
and tracked over views.

The solution needs an incremental motion segmentation
framework which can segment feature points belonging to
different motions and maintain the segmentation with time.
With every new frame it needs to verify the existing seg-
mentation, and associate new features to one of the moving
objects. We propose a realtime incremental motion segmen-
tation algorithm for aiding multibody visual SLAM. The
motion segmentation is robust and is capable of segmenting
difficult degenerate motions, where the moving objects is fol-
lowed by a moving camera in the same direction. Efficient
geometric constraints are used in detecting these degener-
ate motions. We introduce a probability framework that
recursively updates feature probability and takes into con-
sideration the uncertainty in camera pose estimation. The
final system integrates feature tracking, motion segmenta-
tion and 3D reconstruction by visual SLAM. We introduce
several feedback paths among these modules, which enables
them to mutually benefit each other. The integrated system
allows simultaneous online 3D reconstruction and tracking
of multiple moving objects using only a single monocular
camera. A full perspective camera model is used, and we do
not have any restrictive assumptions on the camera motion
or environment. Unlike many of the existing works, the pro-
posed method is online and incremental in nature and scales
to arbitrarily long sequences.

In this paper, we explore in detail the motion segmenta-
tion module (Sec. 5) and its interplay with the other modules
of feature tracking (Sec. 4) and visual SLAM (Sec. 6). Re-
sults of the proposed system are shown in Sec. 7 for scenes
involving degenerate motions and varying number of mov-
ing objects on different datasets. Before that the previous
works are detailed in Sec. 2 and Sec. 3 gives a gist overview
of the whole system.

2. RELATED WORKS
The task of moving object detection and segmentation,

is much easier if a stereo sensor is available, which allows

additional constraints to be used for detecting independent
motion [1, 2]. However the problem is very much ill-posed
for monocular systems. In realtime monocular visual SLAM
systems, moving objects have not yet been dealt properly.
In our literature survey, we have only found three works on
visual SLAM in dynamic environments: a work by Sola [26]
and two other recent works of [30] and [13]. Sola [26] does an
observability analysis of detecting and tracking moving ob-
jects with monocular vision. He proposes a BiCamSLAM [26]
solution with stereo cameras to bypass the observability is-
sues with mono-vision.

In [30], a 3D object tracker runs parallel with the monoc-
ular camera SLAM [3] for tracking a predefined moving ob-
ject. This prevents the visual SLAM framework from incor-
porating moving features lying on that moving object. But
the proposed approach does not perform moving object de-
tection; so moving features apart from those lying on the
tracked moving object can still corrupt the SLAM estima-
tion. Also, they used a model based tracker, which can only
track a previously modeled object with manual initializa-
tion.

The work by Migliore et al. [13] maintains two separate
filters: a monoSLAM filter [3] with the static features and a
bearing only tracker for the moving features. As concluded
by Migliore et al. [13], the main disadvantage of their sys-
tem is the inability to obtain an accurate estimate of the
moving objects in the scene. This is due to the fact that
they maintain separate filters for tracking each individual
moving feature, without any analysis of the structure of the
scene; which for e.g., can be obtained from clustering points
belonging to same moving object or performing same mo-
tion. This is also the reason that they are not able to use
the occlusion information of the tracked moving object, for
extending the lifetime of features as in [30].

The problem of motion detection and segmentation from
a moving camera has been a very active research area in
computer vision community. The multiview geometric con-
straints used for motion detection, can be loosely divided
into four categories. The first category of methods used for
the task of motion detection, relies on estimating a global
parametric motion model of the background. These meth-
ods [10, 19, 29] compensate camera motion by 2D homog-
raphy or affine motion model and pixels consistent with the
estimated model are assumed to be background and out-
liers to the model are defined as moving regions. However,
these models are approximations which hold only for certain
restricted cases of camera motion and scene structure.

The problems with 2D homography methods led to plane-
parallax [9, 22, 31] based constraints. The “planar-parallax”
constraints represents the scene structure by a residual dis-
placement field termed parallax with respect to a 3D refer-
ence plane in the scene. The plane-parallax constraint was
designed to detect residual motion as an after-step of 2D
homography methods. They are designed to detect motion
regions when dense correspondences between small baseline
camera motions are available. Also, all the planar-parallax
methods are ineffective when the scene cannot be approxi-
mated by a plane.

Though the planar-parallax decomposition can be used for
egomotion estimation and structure, the traditional multi-
view geometry constrains like epipolar constraint in 2 views
or trillinear constraints in 3 views and their extension to
N views have proved to be much more effective in scene



understanding as in SfM or visual SLAM. This constraints
are well understood and are now textbook materials [4, 8].

Most of the multibody motion segmentation research [20,
21, 23, 24, 27] has focused on theoretical and mathemat-
ical aspects of the problem. They have only been exper-
imented on very short sequences, with either zero or very
less outliers and noise-free feature trajectories. Also the high
computation cost, frequent non-convergence of the solutions
and highly demanding assumptions; all have prevented them
from being applied to real-world sequences. Only recently
Ozden et al. [18] discussed some of the practical issues, that
comes up in multibody SfM. Though recent methods [6, 21]
are more robust to outliers and noise, we are still far from
doing multibody structure from motion in realtime.

3. OVERVIEW
The feature tracking module tracks existing feature points,

while new features are instantiated. The purpose of the mo-
tion segmentation module is to segment these feature tracks
belonging to different motion bodies, and to maintain this
segmentation as new frames arrives. In the initialization
step, an algebraic multibody motion segmentation algorithm
is used to segment the scene into multiple rigidly moving
objects. A decision is made as to which objects will be
undergoing the full 3D structure and camera motion esti-
mation. The background object is always chosen to undergo
the full 3D reconstruction and camera motion estimation
process. Other objects may either undergo full SfM estima-
tion or just simply tracked, depending on the suitability for
SfM estimation or application demand. On the objects, cho-
sen for reconstruction, the standard monocular visual SLAM
pipeline is used to obtain the 3D structure and camera pose
relative to that object. For these objects, we compute a
probabilistic likelihood that a feature is moving along or
moving independently of that object. These probabilities
are recursively updated as the features are tracked. Also
the probabilities take care of uncertainty in pose estimation
by the visual SLAM module. Features with less likelihood of
fitting one model are either mismatched features arising due
to tracking error or features belonging to either some other
reconstructed object or one of the unmodeled independently
moving objects. For the unmodeled moving objects, we use
spatial proximity and motion coherence to cluster the resid-
ual feature tracks into independently moving entities.

The individual modules of feature tracking, motion seg-
mentation and visual SLAM are tightly coupled and various
feedback paths in between them are explored, which bene-
fits each other. The motion model of a reconstructed object
estimated from the visual SLAM module helps in improving
the feature tracking. Relative camera pose estimates from
SLAM are used by motion segmentation module to com-
pute probabilistic model-fitness. The uncertainty in camera
pose estimate is also propagated into this computation, so
as to yield robust model-fitness scores. The computation
of the 3D structure also helps in setting a tighter bound in
the geometric constraints, which results in more accurate
independent motion detection. Finally the results from the
motion segmentation are fed back to the visual SLAM mod-
ule. The motion segmentation prevents independent motion
from corrupting the structure and motion estimation by the
visual SLAM module. This also ensures a less number of
outliers in the reconstruction process of a particular object.
So we need less number of RANSAC iterations [5] thus re-

sulting in improved speed in the visual SLAM module.

4. FEATURE TRACKING
Feature tracking is an important sub-module that needs to

be improved for multibody visual SLAM to take place. Con-
trary to conventional SLAM, where the features belonging
to moving objects are not important, we need to pay extra
caution to feature tracking for multibody SLAM. For multi-
body visual SLAM to take place, we should be able to get
feature tracks on the moving bodies also. This is challeng-
ing as different bodies are moving at different speeds. Also
3D reconstruction is only possible, when there are sufficient
feature tracks of a particular body.

In each image, a number of salient features (FAST cor-
ners) are detected at different image pyramidal levels. Con-
trary to conventional visual SLAM, new features are added
almost every frame. However only a subset of these, de-
tected on certain keyframes are made into 3D points. The
extra set of tracks helps in detecting independent motion. A
patch is generated on these feature locations and is matched
across images on the basis of zero-mean SSD scores to pro-
duce feature tracks. A number of constraints are used to
improve the feature matching:

a) Adaptive Search Window: Between a pair of im-
age, features are matched within a fixed distance (window)
from its location in one image. The size and shape of this
window is decided adaptively, based on the past motion of
that particular body. For 3D points, whose depth has been
computed from the vSLAM module, the 1D epipolar search
is reduced to just around the projection of the 3D point on
the image with predicted camera pose.

b) Warp matrix for patch: An affine warp is performed
on the image patches to maintain view invariance from the
patch’s first and current observation. If the depth of a patch
is unknown, only a rotation warp is made. For the image
patch of the 3D points, which have been triangulated, a full
affine warp is performed. This process is exactly same as
the patch search procedure in Klein et al. [11].

c) Occlusion Constraint: Motion segmentation gives
rough occlusion information, i.e. it says whether some fore-
ground moving object is occluding some other body. This
information helps in data association, particularly for fea-
tures belonging to a background body, which are predicted
to lie inside the convex hull created from the feature points
of a foreground moving object. These occluded features are
not associated, and are kept until they emerge out from oc-
clusion.

d) Backward Match and Unicity Constraint: When
a match is found, we try to match that feature backward
in the original image. Matches, in which each point is the
other’s strongest match is kept. Enforcing unicity constraint
amounts to keeping only the single strongest, out of several
matches for a single feature in the other image.

5. MOTION SEGMENTATION
The input to the motion segmentation framework is fea-

ture tracks from feature tracking module, the camera rela-
tive motion in reference to each reconstructed body from the
visual SLAM module, and the previous segmentation. The
task of the motion segmentation module is that of model
selection so as to assign these feature tracks to one of the
reconstructed bodies or some unmodeled independent mo-



tion. Efficient geometric constraints are used to form a prob-
abilistic fitness score for each reconstructed object. With
each new frame, existing features are tested for model-fitness
and unexplained features are assigned to one of the inde-
pendently moving object. But before all this, we should
initialize the motion segmentation, which is described next.

5.1 Initialization of Motion Segmentation
The initialization routine for motion segmentation and vi-

sual SLAM is somewhat different from rest of the algorithm.
We make use of an algebraic two-view multibody motion seg-
mentation algorithm of RAS [21] to segment the input set
of feature trajectories into multiple moving objects. The
reasons behind the choice of [21] among other algorithms is
its direct non-iterative nature and faster computation time.
This segmentation provides the system, the choice of mo-
tion bodies for reconstruction. For the segment chosen for
reconstruction, an initial 3D structure and camera motion is
computed via epipolar geometry estimation as part of static-
scene visual SLAM initialization routine.

5.2 Geometric Constraints
Between any two frames, the camera motion with respect

to the reconstructed body is obtained from the visual SLAM
module. The geometric constraints are then estimated to de-
tect independent motion with respect to the reconstructed
body. So for the static background, all moving objects
should be detected as independent motion. Epipolar con-
straint is the commonly used constraint that connects two
views. Reprojection error or its first order approximation
called Sampson error, based on the epipolar constraint is
used throughout the structure and motion estimation by the
visual SLAM module. Basically they measure how far a fea-
ture lies from the epipolar line induced by the corresponding
feature in the other view. Though these are the gold stan-
dard cost functions for 3D reconstruction, it is not good
enough for independent motion detection. If a 3D point
moves along the epipolar plane formed by the two views, its
projection in the image move along the epipolar line. Thus
in spite of moving independently, it still satisfies the epipolar
constraint. This is depicted in Fig. 2. This kind of degen-
erate motion is quite common in real world scenarios, e.g.
camera and an object are moving in same direction as in
camera mounted in car moving through a road, or camera-
mounted robot following behind a moving person. To detect
degenerate motion, we make use of the knowledge of camera
motion and 3D structure to estimate a bound in the position
of the feature along the epipolar line. We describe this as
Flow Vector Bound (FVB) constraint.

5.2.1 Flow Vector Bound (FVB) Constraint:
For a general camera motion involving both rotation and

translation R, t, the effect of rotation can be compensated by
applying a projective transformation to the first image. This
is achieved by multiplying feature points in view1 with the
infinite homography H = KRK−1 [8]. The resulting feature
flow vector connecting feature position in view2 to that of
the rotation compensated feature position in view1, should
lie along the epipolar lines. Now assume that our camera
translates by t and pn, pn+1 be the image of a static point
X. Here pn is normalized as pn = (u, v, 1)T . Attaching the
world frame to the camera center of the 1st view, the camera
matrix for the views are K[I|0] and K[I|t]. Also, if z is depth

Figure 2: Left: The world point P moves non-

degenerately to P
′

and hence x
′
, the image of P

′

does not lie on the epipolar line corresponding to
x. Right: The point P moves degenerately in the

epipolar plane to P
′
. Hence, despite moving, its im-

age point lies on the epipolar line corresponding to
the image of P.

of the scene point X, then inhomogeneous coordinates of
X is zK−1pn. Now image of X in the 2nd view, pn+1 =
K[I|t]X. Solving we get, [8]

pn+1 = pn +
Kt

z
(1)

Equation 1 describes the movement of the feature point
in the image. Starting at point pn in In it moves along
the line defined by pn and epipole, en+1 = Kt. The extent
of movement depends on translation t and inverse depth z.
From equation 1, if we know depth z of a scene point, we can
predict the position of its image along the epipolar line. In
absence of any depth information, we set a possible bound in
depth of a scene point as viewed from the camera. Let zmax
and zmin be the upper and lower bound on possible depth
of a scene point. We then find image displacements along
the epipolar line, dmin and dmax, corresponding to zmax and
zmin respectively. If the flow vector of a feature, does not
lie between dmin and dmax, it is more likely to be an image
of an independent motion.

The structure estimation from visual SLAM module helps
in reducing the possible bound in depth. Instead of setting
zmax to infinity, known depth of the background enables in
setting a more tight bound, and thus better detection of
degenerate motion. The depth bound is adjusted on the
basis of depth distribution along the particular frustum.

The probability of satisfying flow vector bound constraint
P (FV B) can be computed as

P (FV B) =
1

1 +

„
FV − dmean

drange

«2β
(2)

Here dmean =
dmin + dmax

2
and drange =

dmax − dmin
2

,

where dmin and dmax are the bound in image displacements.
The distribution function is similar to a Butterworth band-
pass filter. P (FV B) has a high value if the feature lies inside
the bound given by FVB constraint, and the probability falls
rapidly as the feature moves away from the bound. Larger
the value of β, more rapidly it falls. In our implementation,
we use β = 10.

5.3 Independent Motion Probability
In this section we describe a recursive formulation based

on Bayes filter to derive the probability of a projected im-
age point of a world point being classified as stationary
or dynamic. The relative pose estimation noise and image



pixel noise are bundled into a Gaussian probability distri-
bution of the epipolar lines as derived in [8] and denoted by
ELi = N (µl

i,
P

l
i), where ELi refers to the set of epipolar

lines corresponding to image point i, and N (µl
i,
P

l
i) refers

to the standard Gaussian probability distribution over this
set.

Let pn
i be the ith point in image In. The probability that

pn
i is classified as stationary is denoted as P (pn

i|In, In−1) =
Pn,s(p

i) or Pn,s
i in short, where the suffix s signifying static.

Then with Markov approximation, the recursive probability
update of a point being stationary given a set of images can
be derived as

P (pn
i|In+1, In, In−1) = ηs

iPn+1,s
iPn,s

i (3)

Here ηs
i is normalization constant that ensures the proba-

bilities sum to one.
The term Pn,s

i can be modeled to incorporate the dis-
tribution of the epipolar lines ELi. Given an image point
pn−1

i in In−1 and its corresponding point pn
i in In then

the epipolar line that passes through pn
i is determined as

ln
i = en × pni. The probability distribution of the feature

point being stationary or moving due to epipolar constraint
is defines as

PEP,s
i =

1p
2π|Σl|

exp(−1

2
(ln

i − µni)τΣ−1
l (ln

i − µni)) (4)

However this does not take into account the misclassification
arising due to degenerate motion explained in previous sec-
tions. To overcome this, the eventual probability is fused as
a combination of epipolar and flow vector bound constraints:

Pn,s
i = α · PEP,si + (1− α) · PFV B,si (5)

where, α balances the weight of each constraint. A χ2 test is
performed to detect if the epipolar line ln

i due to the image
point is satisfying the epipolar constraint. When Epipolar
constraint is not satisfied, α takes a value close to 1 ren-
dering the FVB probability inconsequential. As the epipo-
lar line ln

i begins indicating a strong likelihood of satisfying
epipolar constraint, the role of FVB constraint is given more
importance, which can help detect the degenerate cases.

An analogous set of equations characterize the probabil-
ity of an image point being dynamic, which are not delin-
eated here due to brevity of space. In our implementation,
the envelope of epipolar lines [8] is generated by a set of F
matrices distributed around the mean R, t transformation
between two frames as estimated by visual SLAM module.
Hence a set of epipolar lines corresponding to those ma-
trices are generated and characterized by the sample set,

ELss
i =

“
l̂1
i, l̂2

i.......l̂q
i
”

and the associated probability set,

PEL =
“
wl̂1

i, wl̂2
i.......wl̂q

i
”

where each wl̂j
i is the probabil-

ity of that line belonging to the sample set ELss
i computed

through usual Gaussian procedures. Then the probability
that an image point pn

i is static is given by:

Pn,s
i =

qX
j=1

αj ·PEP,l̂ji
S ·pni+(1−αj) ·PFV B,l̂ji

S ·pni ·wl̂ji

(6)
where, PEP,l̂ji

S and PFV B,l̂ji
S are the probabilities of the

point being stationary due to the respective constraints with
respect to the epipolar line l̂j

i.

5.4 Clustering Unmodeled Motions
Features with high probabilities of being dynamic are ei-

ther outliers or belongs to potential moving objects. Since
these objects are often small, and highly dynamic, they are
very hard to be reconstructed. So instead we adopt a sim-
ple move-in-unison model for them. Spatial proximity and
motion coherence is used to cluster these feature tracks into
independently moving entities. By motion coherence, we
use the heuristic that the variance in the distance between
features belonging to same object should change slowly in
comparison.

6. VISUAL SLAM FRAMEWORK
The monocular visual SLAM framework is that of a stan-

dard bundle adjustment visual SLAM [11, 14, 17]. On the
objects chosen for reconstruction, a 5-point algorithm [16]
with RANSAC is used to estimate the initial epipolar ge-
ometry, and subsequent pose is determined with 3-point re-
section [7]. Some of the frames are selected as keyframes,
which are used to triangulate 3D points. The set of 3D
points and the corresponding keyframes are then used by
the bundle adjustment process to iteratively minimize repro-
jection error. The bundle adjustment is initially performed
over the most recent keyframes, before attempting a global
optimization. Our implementation closely follows to that
of [11, 14]. The system is implemented as multi-threaded
processes. While one thread performs tasks like camera pose
estimation, keyframe decision and addition, another back-
end thread optimizes this estimate by bundle adjustment.

6.1 Feedback from Motion Segmentation
However the main difference with the existing SLAM meth-

ods, is its interplay with the motion segmentation module.
The motion segmentation prevents independent motion from
entering the SfM computation, which could have otherwise
resulted in incorrect initial SfM estimate and lead the bun-
dle adjustment to converge to local minima. The feedback
results in less number of outliers in the SfM process of a par-
ticular object. Thus the SfM estimate is more well condi-
tioned and less number of RANSAC iterations is needed [5].
Apart from improvement in the camera motion estimate,
the knowledge of the independent foreground objects com-
ing from motion segmentation helps in the data association
of the features, which are currently being occluded by that
object. For the foreground independent motions, we form
a convex-hull around the tracked points clustered as an in-
dependently moving entity. Existing 3D points lying inside
this region is marked as not visible and is not searched for
a match. This prevents 3D features from unnecessary dele-
tion and re-initialization, just because it was occluded by an
independent motion for some time.

7. EXPERIMENTAL RESULTS
The system has been tested on a number of real image

datasets, with various number and type of moving enti-
ties. Details of the image sequences used for experiments
are listed in Table. 1.

7.1 Moving Box Sequence
This is same sequence as used in [30]. A previously static

box is being moved in front of the camera which is also mov-
ing arbitrarily. However unlike [30], our method does not



Figure 3: Results from the Moving Box Sequence

uses any 3D model, and thus can work for any previously
unseen object. As shown in Fig. 3 our algorithm reliably
detects the moving object just on the basis of motion con-
straints. The difficulty with this sequence is that the fore-
ground moving box is nearly white and thus provides very
less features. This sequence also highlights the detection of
previously static moving objects. Upon detection, 3D map
points lying on the moving box are deleted. The convex
hull formed on the moving box is shown in red shade. This
defines the occlusion mask, and corresponding actions are
taken as described in Sec. 6.1. Left image of Fig. 5 shows
the epipolar errors for an instance from this sequence.

Figure 4: Results from the New College Sequence.

7.2 New College Sequence
We tested our results on some dynamic parts of the New

College dataset [25]. Only left of the stereo image pairs
has been used. In this sequence, the camera moves along
a roughly circular campus path, and three moving persons
passes by the scene. Left image in Fig. 6 shows the aerial
snap of the environment and the camera trajectory. Yellow
denotes the part of the trajectory, when there is no inde-
pendently moving body other than the static background.
Green, red and blue denotes the part of trajectory where
1st, 2nd and the 3rd “moving” persons were detected. Part
of the trajectory colored black denotes the time when both
2nd and 3rd moving persons are visible. Fig. 6 also shows
a snap of the online map of the static background, recon-
structed by the Visual SLAM framework. Fig. 4 depicts
the motion segmentation results for this sequence. Fig. 5
shows an example of degenerate motion detection, as the
flow vectors on the moving person almost move along epipo-
lar lines, but they are being detected due to usage the FVB
constraint. This result verifies system’s performance for ar-
bitrary camera trajectory, degenerate motion detection and
changing number of moving entities.

7.3 Indoor Lab Sequence
This is an indoor sequence taken from an inexpensive

hand-held camera. As the camera moves around, moving
persons enter and leave the scene. Fig. 7 shows the results
for this sequence. The bottom right picture in Fig. 7 shows
how two spatially close independent motions is clustered cor-
rectly by the algorithm. This sequence also involves a lot of
degenerate motion as the camera and the persons move in
same direction. The 3D structure estimation of the back-
ground helps in setting a tighter bound in the FVB con-
straint. The depth bound is adjusted on the basis of depth
distribution of the reconstructed background along the par-
ticular frustum, as explained in Sec. 5.2.1.

7.4 System Details
The system is implemented as threaded processes in C++.

The open source libraries of TooN, OpenCV and sparse bun-
dle adjustment [12] were used throughout the system. The
run-time of the algorithm depends on lot of factors. The
most significant of them are the number of bodies being
reconstructed, total number of independent motions in the
scene, image resolution and bundle adjustment rules. The
system runs in realtime at the average of 25Hz in a standard
laptop, when a single body is chosen for reconstruction. The
motion segmentation module takes around 10ms for each im-
age of 512x284 resolution and with 3 independently moving
bodies.

7.5 Discussion
The results verifies that the integrated system can simul-

taneously perform 3D reconstruction, camera pose estima-
tion, and tracking of multiple moving objects using only a
single monocular camera, while maintaining realtime per-
formance as listed in Table 1. Also the algorithm is online
(casual) in nature as opposed to batch operation prevalent
in multibody SfM literature. The proposed approach also
scales to long sequences. We have shown results for de-
generate motion (Fig. 5), arbitrary camera trajectory and
changing number of moving entities. In Fig. 6, we demon-
strated the 3D reconstruction and camera pose estimation



Figure 5: Epipolar lines in Grey, flow vectors after rotation compensation is shown in orange. Cyan lines
show the distance to epipolar line. Features detected as independently moving are shown as red dots. Note
the near-degenerate independent motion in the middle and right image. However the use of FVB constraint
enables efficient detection of degenerate motion.

Figure 6: LEFT: Aerial map and camera trajectory. Non Yellow denotes part of the trajectory where a
moving person is being detected. RIGHT: The online map being of the background, 3D structure points are
in green, while white line is the camera trajectory, and the blue dots are the key-frame positions.

in reference to the static background. 3D structure points
are in green, while white line is the camera trajectory, and
the blue dots are the keyframe positions with respect to the
background. The camera trajectory is also highlighted on
the aerial map of the test environment.

Figure 7: Results from the Indoor Lab Sequence

Table 1: Details of the datasets
Dataset Resolution Length Runtime
Moving Box 320x240 718 images 30Hz
New College 512x384 1500 images 18Hz
Indoor Lab 640x480 1720 images 22Hz

8. CONCLUSIONS
This paper presents a realtime incremental motion seg-

mentation algorithm that enables a practical multibody vi-
sual SLAM algorithm. The framework segments feature
points belonging to different motions and maintain this seg-
mentation with time. Multiview geometric constraints were
explored to successfully detect various independent motion
including degenerate motions. A probabilistic framework
in the model of a recursive Bayes filter is developed that
assigns probability to a feature being stationary or mov-
ing based on geometric constraints. Uncertainty in camera
pose estimation is also propagated into this probability es-
timation. The different modules of motion segmentation,
feature tracking and visual SLAM were integrated and we
presented, how each module helps the other one. The in-
tegrated system can simultaneously perform realtime visual
SLAM, and tracking of multiple moving objects using only
a single monocular camera. Experiments on various real im-



age sequences shows the efficacy of the method. The work
presented here can find immediate applications in various
robotics applications involving dynamic scenes.
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