
Local Manipulation of Image Layers Using Standard Image
Processing Primitives

Niranjan Mujumdar
Don Bosco Institute of

Technology
niranjanpm@gmail.com

Sanju Maliakal
Don Bosco Institute of

Technology
sanjumaliakal@gmail.com

Sweta Malankar
Don Bosco Institute of

Technology
sweneera@gmail.com

Satish Kumar Chavan
Don Bosco Institute of

Technology
satyachavan@yahoo.co.in

Parag Chaudhuri
∗

Indian Institute of Technology
Bombay

paragc@cse.iitb.ac.in

ABSTRACT
In any modern, standard image manipulation program, im-
ages are made up of multiple layers ordered on top of each
other in a user defined sequence. A layer is a collection
of graphical objects (like masks and image patches). Each
layer can be edited separately and then all the layers are
composited together to get the final image. In some images,
however, we need to change the order of stacking at multiple
areas of overlap for the same set of layers without creation
and manipulation of individual layers at each position of
overlap. This problem is solved by the concept of Local
Layering as given by McCann and Pollard [10]. Their tech-
nique was, however, presented as a standalone idea, making
its use difficult in standard image processing pipelines.

In this paper, we present a novel implementation of local
layering using a combination of standard image processing
primitives. We show that it is possible to locally align layers
while simultaneously continuing to also use the global align-
ment of layers via an efficient use of image masks. All our
ideas are implemented as a plug-in addition to the GIMP,
however, the algorithms we present are general and imple-
mentable in any standard image processing pipeline.

Categories and Subject Descriptors
I.3.3 [Computer Graphics]: Picture/Image Generation

Keywords
Local layering, Image Masks, Image Matting

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICVGIP ’10, December 12-15, 2010, Chennai, India
Copyright 2010 ACM 978-1-4503-0060-5/10/12 ...$10.00.

1. INTRODUCTION
In a conventional image manipulation program, images

can be made of a stack of layers. Each layer is independently
editable. The final image is obtained by compositing and
blending this stack of layers. The layer stacking and ordering
has a global scope over the image, i.e., if layer M is stacked
above layer N in one part of a image, then the ordering is
true for all parts of the image. Any modern image editor like
the GNU Image Manipulation Program or GIMP [8] allows
the global reordering and manipulation of these layers.

In order to create complex images like that of a weave
pattern (see Figure 2), where many threads overlap each
other in many different places in different orders, duplicate
layers have to made for each thread for each point of overlap
and the global ordering has to be rearranged to get the weave
pattern. It is also impossible to create for example, a cyclic
ordering of layers using global ordering (see Figure 1). An
elegant solution to this problem was presented in the work on
local layering [10] that for the first time allowed the ordering
of the layers to be done at a local level rather than at a
global level. The idea was demonstrated via a standalone
implementation that was not integrated into any standard
image processing pipeline. This makes its use cumbersome
and limited.

Figure 1: A standard global ordering of layers makes
a cyclic ordering of layers impossible without dupli-
cation and splitting of layers.

Contributions: We present novel techniques and algorithms

that allow the use of image masks to efficiently implement
local layering of images in any image processing pipeline. It
also maintains the global ordering of images as defined by
the user while simultaneously allowing local layer manipu-
lation wherever needed. Our ideas have been implemented
as a plug-in to the GIMP, a widely used open source image
manipulation tool. This not only eases the learning curve
of using local layering significantly, it also makes it easily
available to users of standard image editors as a part of
their toolkits. Our algorithms are able to handle large im-
ages efficiently providing interactive feedback as the layer
ordering is changed locally. Our methods also allow the lo-
cal layering information to be saved using standard image
processing primitives that are saved as a part of the image,
so that the editing can be resumed at a later time. Even
though we have implemented our methods as a plug-in to
the GIMP, all our algorithms are general and independent
of the GIMP.

It should be noted that the basic algorithm we follow for
maintaining and updating the local layering information at
each local overlap region is the same as presented in the orig-
inal version. Also, we do not claim that we are more efficient
that the standalone prototype implementation provided as
a part of the same work. Our implementation of local lay-
ering using standard image-processing primitives like image
masks is novel and we demonstrate that it is efficient and
correct using a variety of examples.

Figure 2 shows a complex weave pattern with alphabets
woven in-between the threads. Notice that all the horizontal
threads form one layer, the vertical threads form the second
layer while the letters are in a third layer. We are able to
locally edit their stacking order to create the pattern shown
in the image. Our methods are also validated by the fact
that we can reproduce all the results produced by [10] using
our techniques. Figure 3 shows one such example.

Figure 2: A complex weave pattern involving cloth
strands and letters created with our plug-in.

The rest of the paper is organized as follows. We start
with a brief overview of previous work in Section 2. We con-
tinue with a brief explanation of the original local layering
technique in Section 3. Section 4 gives the details about our
implementation of local layering. In Section 5 we present our
algorithm for reconstructing local layer ordering from layer
masks when the image is reloaded after saving and closing
the image. Section 6 presents a discussion of the results we

Figure 3: Intertwined threads result recreated with
our plug-in. (Original layers are courtesy [10])

have produced using our method. Finally, we conclude in
section 7.

2. BACKGROUND
The idea of compositing partially transparent cels on which

objects are drawn or painted is a well known technique in
traditional hand-drawn animation. The use of alpha values
in compositing whereby transparency is viewed as part of
each RGBA pixel was introduced to graphics by [12]. Pixels
thus, can be thought of as representative of separate objects
on raster images instead of belonging to global image-sized
layers. This and other ideas behind compositing of images
and videos have matured over the years and are used in many
standard image processing programs (for e.g., [8], [3], [2]).

On the other hand, vision researchers have tried to deci-
pher the ordering of layers that make up a scene, given an
image of the scene [11]. Scenes depicting the real world have
layers that can be segmented using different features depend-
ing on relevance and the purpose of performing the segmen-
tation. Adelson and Wang [1], for e.g., describe how to
decompose an image into layer using motion analysis. Sep-
aration of image regions into foreground-background layers
forms the starting point for of many tracking and surveil-
lance algorithms [9]. Given all object contours, a stack of
layers corresponding to front and back-facing regions of the
object can be constructed and used for modeling [7].

Layers corresponding to separate objects in a 3D scene
may give rise to occlusion cycles. This makes global ordering
of these layers impossible unless additional depth informa-
tion is used to provide a local stacking [5]. Alternatively,
layers can be modified by editing out occluded pieces, as
presented by Snyder and Lengyel [13]. Their approach is
to compile an occlusion graph into a series of compositing
operations, may be useful to accelerate display of our list-
graphs. However, since they rely on operations that effect
the entire image, their technique cannot handle the situa-
tion where two layers M and N must be composited, with
M over N in one place and N over M in another.

Local layering [10] presents a way to address this problem
by maintaining the layer stack ordering in a list-graph that
stores the adjacency graph of regions of overlap of graphical
objects. Building on this structure, they define a consistent
stacking, and prove that the local order-adjustment opera-
tors are both correct and sufficient to navigate the space of
consistent stackings. This is similar, in spirit, to a planar
map as used in [4]. Wiley [14] presents a vector-graphics
drawing system, Druid, that represents regions and their
stacking as valid over/under labellings of the intersections
of a set of boundary curves. However, the Druid program
uses a worst case exponential-time search whereas the local
layering approach of [10] is polynomial-time. IN more recent
work, Igarashi and Mitani [6] layer operations for single-view
3D deformable object manipulation, in which the user can

control the depth order of layered 3D objects resting on a
flat ground with simple clicks and drags, as in 2D drawing
systems.

Our implementation of the list-graph data structure is
based on an efficient manipulation of layer mask pixel val-
ues associated with every image layer. Since layer masks
are commonly available in all common image editors like
Adobe Photoshop [2] and the GIMP [8], our algorithms are
generic and implementable in any standard image processing
pipeline. We further show that image masks can be used to
store and retrieve local layer ordering if the image is saved in
the native format of the editor (for e.g., PSD for Adobe Pho-
toshop, XCF for the GIMP). For this purpose, we present a
novel algorithm to reconstruct a consistent list-graph from
saved image mask data.

3. LOCAL LAYERING
With local layering, layers can be ordered just as one

would order paper cut-outs, weaving and overlapping but
never passing through one-another. Local stacking is rep-
resented using a list-graph and the layer flipping operators
used to change the layer ordering in local regions, as pre-
sented in [10]. We present a brief explanation of this pro-
cess. For further details the reader is encouraged to refer
to [10].

Figure 4: Illustration showing the list graph: 6 over-
lapping regions are shown. 4 are adjacent and con-
nected, while 2 regions are separate.

In order to construct the list-graph G, the image is first
partitioned into regions where the layers overlap each other.
Each of these regions of the image has the same stacking
of objects. Now, for each such region, a list-graph vertex
is created which contains the ordering of the layers in that
region, in a list L. The vertices between two neighbouring
regions of overlap (i.e., regions which share an edge in the
image) are linked together by an edge in the graph. The
list L at each vertex of the list-graph G may be initialized

to a predefined global order. Consistency of list-graphs is
maintained to ensure that the objects do not pass through
each other in the resulting image. An example of a list graph
is shown in Figure 4 with 6 overlapping regions marked.
The stacking of layers in each region is shown below. 4 of
these regions are adjacent and hence, connected. This data
structure is created and maintained in memory in order to
allow the local layer manipulations to be done efficiently.

Editing of layer stacking order is done via a pair of oper-
ators, flip-up and flip-down. These operators are similar to
the move-up and move-down operators of a global layering
environment.

At any region of overlap and its corresponding list, L, a
call to the flip-down operator (for e.g., Flip−Down(L,R,B))
for a selected pair of layers R and B, moves the layer R be-
low the layer B while maintaining the consistency of the list
for the region in question and all adjacent regions where the
same layers may overlap. The flip-up and flip-down opera-
tors run in polynomial time and their termination, sound-
ness, invertability and sufficiency properties are proven in
[10]. Figure 5 illustrates the working of the flip-up and flip
down operators. Note that a single flip-up or flip-down call
may result in multiple layer swaps, as shown in the figure.

4. LOCAL LAYERING USING MASKS
In this section we present our method of implementing

local layering using masks. We represent objects as inde-
pendent variable sized layers. A layer is said to exist at
pixel locations where it has non-zero alpha values. Regions
of overlap are calculated by first creating an image sized
Boolean bit-field array. A pixel position which has layers
2, 5 and 7 present will have the 2nd, 5th and 7th Boolean
array location set. Based on that, a layer code is calcu-
lated for each pixel. Connected pixels having the same layer
code are grouped to form a region of overlap by using a
region-growing algorithm. For region growing, we consider
4-connectivity of pixels. Each region of overlap is also given
a different numerical tag and is stored in an image sized
tag array. This is similar to what is done in the prototype
implementation given by [10].

A list is created to store the layers present for a particular
region and also their order with respect to other layers. Each
region is associated with such a list. The lists are connected
using adjacency of regions to form a list-graph.

The flip-up and flip-down operations are used to change
the local stacking order of layers. For each flip operation
on a region, corresponding flip operations are carried out on
adjacent regions to maintain consistency. The list-graph is
updated with each flip operation.

We also provide an Undo operator which is used to undo
the last flip operation. The action of the flip-Up operator
may be inverted by a sufficient number of calls to flip-Down,
and vice-versa.

Efficiency considerations include the effective use of the
GIMP Tile structure that caches local image pixel regions
in the memory and allows them to be processed faster.

4.1 Masks
The local order composition is done by using masks. A

layer mask is added for each layer present. The layer mask
has the same size and same pixel number as the layer to
which it is attached. The mask is a set of pixels in grayscale
on a value scale from 0 to 255. Here 0 implies complete

(a) Flip− Up(L,B,R) (b) Flip−Down(L,R,B)

Figure 5: Illustration showing the flip operation. (a) Flip-Up(L,B,R) : B is flipped with G first, and then
with R to get the flipped output. (b) Flip-Down(L,R,B) : R is flipped with G first, and then with B to get
the flipped output.

transparency and a value of 255 implies complete opacity.
We consider that at any given pixel position only one layer
has its mask painted white and the rest of the layers have
its masks painted black. Thus, only the local top-most layer
is made visible in a region and the rest are hidden. An ex-
ample of the masks that get created when the local-layering
is initialized can be seen in Figure 6.

On calls to flip-up and flip-down the changes with respect
to the ordering of layers for the regions are represented in
the list graph. The changes are reflected back in the layer
masks by repainting them based on the above condition and
list graph contents.

5. RECONSTRUCTING THE LIST-GRAPH
FROM MASKS

If the image editing process is interrupted for some reason,
the editing has to be saved and resumed from the saved state
at a later time. The original local-layering implementation
given by [10] provides easy way of doing this that can be
integrated into existing image processing pipelines. In this
section, we present a novel algorithm which reconstructs the
list-graph from the masks and layer data, thus, allowing us
to save and retrieve the local layering edits at a later time.

We assume that the layers are not moved between sessions.
Thus, we can calculate the layers present in a list and the
edges of the list-graph as explained in the previous section.
This data, therefore, does not change and hence is ‘known’.
The local layer stacking for a list is not known since it can
change across sessions.

5.1 Additional Data Structures
We use additional data structures in the forms of pair-lists

to keep track of layer stacking information for each region
for reconstructing the list-graph. A global pair queue is used
to queue pairs that are to be processed. These are explained
below.

Definition 1. Pair-list - All known layer stacking infor-
mation is stored in the form of pairs (a, b) indicating that
layer a is above layer b. For each region with corresponding
list L, we have a list of known pairs, which is called as a
pair-list. The maximum number of pairs in a pair-list for a
region is

(
n
2

)
, where n is the number of layers in that region.

A pair-list P is said to be adjacent to another pair-list
P ′ if their corresponding lists, L and L′ are adjacent in the
list-graph G.

5.2 Algorithm

1. Initialize List-Graph: List-graph edges are known.
The layers present at each region (layers of a list) are
also known. The list is initially empty (i.e., the or-
dering is not known). Global ordering of layers is also
known.

2. Find Topmost Layer: We know the topmost layer
for each region. The topmost layer will have its mask
value set as opaque (or 255), while all other layers will
have the mask value transparent (or 0). This is ensured
by our image mask based implementation of the list
graph (see Section 4.1). For each region, we find out
the top most layer and put it in the corresponding list,
at the top.

3. Find Next Layer: For all regions, find the first layer
with a transparent mask value and put the pair formed
by the first and second layer in the pair-list. We put
all such pairs into the pair queue and the pair-list cor-
responding to the region.

4. Build Pair Queue: For all other regions, we find
the next subsequent layers after the first and second
layers, in any order. Since we know the top most layer
for each region, we have pairs (a, b1), (a, b2)...(a, bn),
where a is the top layer for that region and b1, b2...bn,
are all the layers below a. We put these pairs into the
global pair queue and the pair-list for the region. At
the end of this step, we have some pairs in the pair
queue and we know to which pair-list (and region) do
these pairs belong.

5. Process the Pair Queue: We take one pair from the
queue at a time and inspect the region, R, to which
it belongs. If the two layers forming the pair exist in
region neighbouring R, then we check the pair-lists of
the neighbouring regions. If the pair is not present in
these pair-lists, we add the pair to the pair-lists of the
neighbouring regions as well as to the pair queue. The
algorithm for the procedure is given below.

Figure 6: The left image shows the original image loaded with three global layers. The right image shows
the mask created for the layer with the green U stroke. Other masks can be seen in the Layers dialogue box
on the right of each image.

Algorithm 1 Process− pair(L,P, x, y)

1: for (P ′, L′ adjacent to P,L) do
2: if (x ∈ L′ and y ∈ L′) then
3: if ((x, y) /∈ P ′) then
4: Put (x, y) in P ′

5: Push (x, y) into Pair-Queue
6: end if
7: end if
8: end for

6. Get a near-complete pair-list - Once the pair queue
is processed completely, we get either a near-complete
pair-list or a complete pair-list for each region. This is
illustrated in Figure 7

Definition 2. Near-complete pair-list - A pair-list gen-
erated from the masks or layers which are not suffi-
cient to generate the complete layer stacking order for
that list is called a near-complete pair-list. Conversely,
when the pairs generated are sufficient to build the
list-graph, it is called a complete pair-list. A complete
pair-list has

(
n
2

)
pairs, where n is the number of layers

in that list.

All near-complete lists need to be made complete be-
fore ordering can be finalized. We complete the near-
complete lists by using the global layer stacking avail-
able. The pairs which are not part of the pair-list are
found and the order of the two layers is decided on
the basis of the global layer stacking. Since the global
order applies to the whole image, consistency is main-
tained when completing the pair-lists.

7. Build the list-graph A complete pair-list is neces-
sary and sufficient to build the list-graph. For a pair-
list P corresponding to list L, the position of any
layer x in the stacking is decided by the number of
pairs (x, y) ∈ P . The position of layer x is equal to
Total number of layers in L − No. of pairs (x, y) ∈
P . For example, a layer placed 3rd in a region hav-
ing 7 layers will have 4 pairs associated with it in the
pair-list.

This completes our algorithm for reconstructing the list-
graphs from the mask/layer data. We now prove that a
complete pair-list is necessary and sufficient to reconstruct
the list-graph and that the reconstructed list-graph is always
consistent, given the notion of consistency is the same as
defined in [10].

Theorem 1.
(
n
2

)
pairs for each list L are necessary and

sufficient to give stacking of all layers in that region with
respect to each other, i.e., list-graph.

Proof. First, we show that for any list-graph G,
(
n
2

)
pairs will be generated for each list L ∈ G. Consider list
L ∈ G, where G is the list-graph. Let layer x ∈ L be in the
pth position in the list L. Let the total number of layers in
L be n. Then ∀x ∈ L, the number of pairs generated are
(n− p). Thus the total number of pairs for list L is

n∑
p=1

(n− p) =
n(n− 1)

2
=

(
n

2

)

Conversely, we show that
(
n
2

)
pairs for each list L ∈ G

gives the relative stacking order of all layers in a region with
respect to each other. Let us consider we have

(
n
2

)
pairs for

each pair-list P corresponding to a list L ∈ G. ∀x, y ∈ L,
(x, y) ∈ P gives the layers y below x in the layer stacking.
Let the number of such pairs be p. p indicates the number
of layers y below x. Then,

xn∑
x=x1

p = (n− 1) + (n− 2) + ... + 0 =
n(n− 1)

2
=

(
n

2

)

Thus,
(
n
2

)
pairs gives us the relative stacking of all layers

with respect to each other for all lists L ∈ G.

Theorem 2. A List-graph re-constructed using the algo-
rithm will always be consistent.

Proof. From definitions 1 and 2, a list-graph G is con-
sistent if pair (x, y) ∈ P ⇔ (x, y) ∈ P ′ and P, P ′ are ad-
jacent. Proceed by contradiction. Let us assume a pair
(x, y) ∈ P and pair (y, x) ∈ P ′ and P, P ′ are adjacent.
When Process − pair(P,L, x, y) is called, it checks in all

Figure 8: Our intuitive graphical user interface for
local-layering.

neighbouring pair-lists if the pair is present. If not, (x, y) is
added to P ′. In this case, (x, y) /∈ P ′, i.e., it is added to P ′.
Thus, (x, y) ∈ P ′ and (y, x) ∈ P ′, which is not possible from
the definition of a pair.

Now, consider a near-complete pair-list which is completed
using the global layer ordering. Since the global ordering ap-
plies to all regions in the image, (x, y) ∈ P ⇔ (x, y) ∈ P ′,
where P ′ is any other pair-list and (x, y) is a pair decided
using the global ordering.

Thus, a re-constructed list-graph G will always be consis-
tent.

It should be noted that even after the reconstruction there
is no visible change in the appearance of the image - it is
only that the layers below the top layer may have a different
order than what was saved. This does not change the look of
the image as the topmost layer in every overlapping region
is known and reconstructed correctly. This also does not
hinder editing of the image in any way, and the user can
continue his/her editing right from where they left.

For example, Figure 7 shows an image with 5 layers and
its corresponding list graph. In list C, the order originally
is {Red, Orange, Blue, Green, Yellow}. The global layer
order is {Blue, Green, Red, Orange, Yellow}. When the
list-graph is re-constructed using our algorithm, the order is
{Red, Blue, Green, Orange, Yellow} in list C, which is not
the original order but has no effect on the visible image.

This is only possible, however, when the image is stored
in the native format of the image editor being used. In case
of GIMP it is the XCF format, while in case of Photoshop,
it would be the PSD format. This is so because standard
image formats like JPEG, PNG, GIF, etc. do not support
image masks and layers. Our methods and algorithms are,
however, independent of the internal details of the actual file
format used and hence can be implemented on any image
processing pipeline that supports layer masks.

6. RESULTS
Our local layering implementation can be used as a general

purpose tool to create images which contain object which are
inter-twined around each other. Figure 3 shows an example
involving a rectangular frame, a straight twine and a curved

twine. We provide a convenient interface that allows the
user to obtain the intertwining effect with just a few mouse
clicks.

In particular the plug-in to the GIMP we have imple-
mented, can handle up to 32 (global) layers (maximum num-
ber of layers allowed for a GIMP plug-in) through the GIMP
procedural database consistently and efficiently. The flips
are done at interactive rates even for images with a number
of substantially sized layers. Figure 9 shows an image with
32 layers, each of size 1 megapixel. The entire direction of
overlap is changed very conveniently to give a pattern which
points in the opposite direction with respect to the original
image. Also the circular interleaved stacking in the output
forms an impossible figure. This cannot be obtained through
global layering but is generated easily using Local Layering.

Figure 10: Top: The image prior to manipulation of
local image layers. Bottom: Image after the layers
have been edited locally.

Figure 10 shows another example of an image created eas-

(a) Global Order (b) Originally (c) After Reconstruction

Figure 7: Illustration showing reconstructed list-graph of image with a near-complete pair-list. The local
stacking order for region C is different after reconstruction.

ily by local manipulation of layers. The image on the left
shows the original global layers in the image, while the image
after editing is shown on the right. Notice how the human
figures intertwine through the letters.

A supplementary video submitted with the paper shows
the working of our plug-in inside the GIMP through vari-
ous examples. An example of saving an editing session and
resuming the session later from local layer stacking recon-
structed from layer masks is also shown.

The source code for our plug-in can be downloaded from
http://llgimp.sourceforge.net/.

7. CONCLUSION
We have presented a novel implementation of local lay-

ering that is based entirely on standard image processing
primitives. This makes local layering immediately available
to every popular image processing pipeline that work with
image masks. To illustrate our ideas, we have also presented
a working open-source plug-in for the GNU Image manipu-
lation Program (GIMP). Our algorithms are able to handle
large images efficiently providing interactive feedback as the
layer ordering is changed locally. Our methods also allow
the local layering information to be saved using standard
image processing primitives that are saved as a part of the
image, so that the editing can be resumed at a later time.

Future work would focus on allowing the layers to move
and use local matting to facilitate animation, as shown in [10]
and extending the local layering concept to video.

8. ACKNOWLEDGMENTS
We would like to thank Jim McCann and Nancy Pollard

for making the original source layers for all the images used
in their work available. This greatly helped in the testing of
our implementation. We would also like to thank the anony-
mous reviewers for their helpful and encouraging comments.

9. REFERENCES
[1] E. H. Adelson and J. Y. A. Wang. Representing

moving images with layers. IEEE Transactions on
Image Processing, 3:625–638, 1994.

[2] Adobe. Photoshop CS 5.
http://www.adobe.com/products/photoshop/, 2010.

[3] Apple. Final Cut Pro.
http://www.apple.com/finalcutstudio/finalcutpro/,
1999-2010.

[4] P. Baudelaire and M. Gangnet. Planar maps: an
interaction paradigm for graphic design. In
Proceedings of CHI ’89, pages 313–318. ACM, 1989.

[5] T. Duff. Compositing 3-d rendered images. In
Proceedings of SIGGRAPH ’85, pages 41–44. ACM,
1985.

[6] T. Igarashi and J. Mitani. Apparent layer operations
for the manipulation of deformable objects. ACM
Transactions on Graphics, 29(3), 2010.

[7] O. A. Karpenko and J. F. Hughes. Smoothsketch: 3d
free-form shapes from complex sketches. ACM
Transactions on Graphics, 25(3):589–598, 2006.

[8] S. Kimball and P. Mattis. GIMP - the GNU image
manipulation tool. http://www.gimp.org/, 1995-2010.

[9] S.-N. Lim, A. Mittal, L. S. Davis, and N. Paragios.
Fast illumination-invariant background subtraction
using two views: Error analysis, sensor placement and
applications. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), volume 1, pages
1071–1078, 2005.

[10] J. McCann and N. Pollard. Local layering. ACM
Transactions on Graphics, 28(3):1–7, 2009.

[11] M. Nitzberg and D. Mumford. The 2.1-d sketch. In
International Conference on Computer Vision
(ICCV), pages 138–144, 1990.

[12] T. Porter and T. Duff. Compositing digital images.
SIGGRAPH Computer Graphics, 18(3):253–259, 1984.

[13] J. Snyder and J. Lengyel. Visibility sorting and
compositing without splitting for image layer
decompositions. In Proceedings of SIGGRAPH ’98,
pages 219–230. ACM, 1998.

[14] K. Wiley. Druid: Representation of interwoven
surfaces in 2 1/2 d drawing. PhD Thesis, University of
New Mexico, 2006.

Figure 9: Left: An image with 32 layers. Right: The layers have been locally reordered to form a impossible
stacking of layers.

