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ABSTRACT
Nearest-neighbor searching is a crucial component in many com-
puter vision applications such as face recognition, object recogni-
tion, texture classification, and activity recognition. When large
databases are involved in these applications, it is also important to
perform these searches in a fast manner. Depending on the problem
at hand, nearest neighbor strategies need to be devised over feature
and model spaces which in many cases are not Euclidean in na-
ture. Thus, metrics that are tuned to the geometry of this space
are required which are also known as geodesics. In this paper,
we address the problem of fast nearest neighbor searching in non-
Euclidean spaces, where in addition to dealing with the large size
of the dataset, the significant computational load involves geodesic
computations. We study the applicability of the various classes of
nearest neighbor algorithms toward this end. Exact nearest neigh-
bor methods that rely solely on the existence of a metric can be
extended, albeit with a huge computational cost. We derive an ap-
proximate method of searching via approximate embeddings using
the logarithmic map. We study the error incurred in such an em-
bedding and show that it performs well in real experiments.

Keywords
Nearest-neighbor, Manifold, Hashing, Shapes, Grassmann mani-
fold, Region Covariance.

1. INTRODUCTION
Large databases of images and videos are becoming more and

more common-place since the growth of personal collections and
Internet archives. To make these datasets more easily accessible to
users, it is important to develop methods that allow fast retrieval
and access to information. In many applications such as content-
based image retrieval, texture classification, biometrics, and video
mining, the problem is frequently reduced to searching for exem-
plars similar to a query in a large database. This is more formally

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICVGIP ’10, December 12-15, 2010, Chennai, India
Copyright 2010 ACM 978-1-4503-0060-5/10/12 ...$10.00.

known as the similarity search or the nearest-neighbor problem.
The problem of nearest-neighbor searching has been studied for
many years in the database and algorithms communities involving
searching in an-dimensional Euclidean space.

In the computer vision literature, over the past several years there
has been significant research about what are good features and
models for representing images and videos. Images and videos
are usually represented by a concise set of features or models –
such as shape [22], color/intensity histograms [17], SIFT [26], his-
togram of gradients [10], linear dynamic systems [33], covariance
matrices [41] etc. Many of these features and models, however do
not live in a Euclidean space. What this means is that the under-
lying distance function on the space is not the usualL2/Lp norm
but a highly non-linear function which is also in most cases com-
putationally hard to compute. As an example, shape spaces have
long been considered as Riemannian manifolds – Kendall’s shape
space is a complex spherical manifold [22], affine shape spaces are
Grassmann manifolds [6]. The space ofd× d covariance matrices
or tensors is a product manifold of the special orthogonal group and
the diagonal group, thus is not a vector space [30, 41]. The space
of linear subspaces is a quotient space of the orthogonal group re-
sulting in the Grassmann manifold [18]. Linear dynamic systems
can be identified by the column-space of the observability matrix
which is also a Grassmann manifold [39]. Even the commonly used
histograms form a simplex inRn and do not live in a vector space.
Over the years, many advances have been made to understand the
geometric properties of these varied spaces, and they have been
utilized to devise more accurate inference and classification algo-
rithms [14, 36, 40, 39]. Understanding the geometry allows one to
define distances, leading to geodesics etc on these manifolds.

In this paper, we study the problem of fast nearest neighbor
searching for data which lies in non-Euclidean manifolds. We pro-
vide a formal treatment of this problem from which various algo-
rithms can be derived. At first glance, exact methods that rely solely
on distance functions can be easily extended to address this prob-
lem - however with a huge pre-processing cost. The significant
load in indexing with exact methods arises from the complexity of
computing the distance function, and the complexity of computing
centroids. These issues are generally not a concern in Euclidean
spaces, but they become significant sources of complexity in man-
ifolds. Thus, a straightforward application of these methods is not
a feasible solution. Thus, we seek methods that mitigate the com-
plexity involved in: 1) geodesic distance computations, and 2) cen-
troid computations. In general, there is very little that can be done
to reduce the complexity of these operations, except try to find ef-
ficient computations on a case-by-case basis for each manifold.

As an alternative, in this paper we explore the use of tangent



plane unwrapping of the manifold into a vector-space and using
theL2 norm on the tangent plane for indexing. This seemingly
straightforward approach addresses both the concerns enumerated
above. However, the resulting procedure is infact only approxi-
mate even when using the ‘exact’ methods, since we are replacing
the geodesic distance with a faster approximate metric on the tan-
gent plane. Thus, if pre-processing cost is not a concern, then one
can apply a variety of exact algorithms to manifolds by treating
them simply as metric spaces with appropriate definitions of dis-
tances and centroids. But, if pre-processing cost is a significant
concern or if the application only mandates approximate solutions,
then we suggest tangent-plane projections of the data - followed
by any standard searching technique - however any technique em-
ployed in this manner will only be approximate. The methods make
use of concepts of Riemannian geometry and are applicable to any
general Riemannian manifold. We then show specific examples in
image and video analysis to illustrate the utility of these methods.

Related Work: At the time of submission to this conference,
we were not aware of other attempts at studying indexing for Rie-
mannian manifolds. However, during the review period a paper by
Chaudhry and Ivanov with the same goals as ours came to our atten-
tion, which was presented at ECCV in September 2010 [8]. Both
the papers propose the same general idea of using logarithmic em-
beddings for this problem. Chaudhry and Ivanov also present ex-
tensions to cases where logarithmic maps are not known in closed
form, which is an important case not considered in this paper. How-
ever in this paper, we also study the errors incurred under such em-
beddings which is not considered by [8]. The similarity in frame-
work with different extensions make these two papers complemen-
tary to each other. In addition to these attempts, the work on ap-
proximate nearest subspace search [5] is an example of indexing
on non-Euclidean manifolds. However, this work is limited in ap-
plicability to subspaces, moreover does not exploit the Rieman-
nian geometric interpretation of subspaces. In the relatively bet-
ter understood domain of searching in Euclidean spaces, the two
most popular methods employed are - 1) exact and 2) approxi-
mate. Exact methods usually rely on space partitioning. Examples
of this approach include quad-trees, and k-d trees. The resulting
data structure is represented as a tree with the root node being the
entire dataset, child nodes representing partitions and leaf nodes
representing individual data points. We refer the reader to [24] for
a comprehensive comparison of exact search methods applied to
patch-based image searching. All these methods rely heavily on
the assumption that points are inRn with the underlying metric be-
ing theL2 norm. The work of [12] shows how to adapt the standard
k-d tree algorithm to low-dimensional manifolds whose structure is
unknown. Approximate methods in Euclidean spaces became pop-
ular due to the introduction of Locality Sensitive Hashing (LSH)
algorithms [20, 16]. The original LSH algorithm was proposed
by Gionis et al [16] which was tuned for ‘Hamming’-spaces i.e.
spaces where the underlying distance function is the Hamming dis-
tance. This was extended to Euclidean spaces by [13]. A good
introduction and survey of these methods can be found in [11]. All
these methods can be applied if the manifold of interest can some-
how be embedded into a Euclidean space. We discuss here that it
is important to consider the Riemannian geometry of manifolds to
more systematically address this problem. This is because there
exist several analytic manifolds which cannot in any easy way be
embedded into an ambient Euclidean space e.g. the space of linear
subspaces or the Grassmann manifold is best treated as a quotient
space of the orthogonal group and there is no easy natural embed-
ding into an ambient vector space [34].

Nearest-neighbor searching in metric spaces when only an un-

derlying metric is known has also been studied in literature. A
number of nearest neighbor algorithms have been devised for in-
dexing data with arbitrary distance functions such as vantage-point
trees, metric trees and multi-vantage point trees. An excellent sur-
vey of such methods can be found in [9]. These are exact methods
of searching in metric spaces. Unfortunately tree-based indexing
methods such as these in general suffer from the curse of dimen-
sionality. For large dimensions the performance is not significantly
different than simple brute-force search. Approximate search meth-
ods in arbitrary metric spaces have also been proposed as in [3].
[20] provided algorithms for approximate searches when the un-
derlying distance function is theL∞ norm. In some cases the
underlying non-Euclidean distance measure can be replaced with
another which can be efficiently computed. Several methods have
been proposed for embedding arbitrary spaces into a Euclidean or
pseudo-Euclidean space [7, 44]. Embedding methods substitute a
fast approximate distance for the original distance hence are ap-
proximate search methods.

Contributions: We present an analysis of indexing non-Euclidean
spaces whose geometric properties are known. We do this by taking
recourse to Riemannian geometry, and studying how the traditional
ideas of indexing can be extended to these structured spaces. We
discuss that exact methods can be deployed, however the compu-
tational load is immense. Thus, for large database applications,
we present a principled method for approximate searching using
tangent-space embedding of data. We also present some results
on the error incurred in such embeddings. We also verify in ex-
periments that the proposed method works very well in large scale
searching problems.

2. EXAMPLES OF NON-LINEAR MANIFOLDS
We will discuss a few manifolds that frequently appear in vision

applications.

1. Shape Features:Shapes in images are commonly described
by a set of landmarks on the object being imaged. After ap-
propriate translation, scale and rotation normalization it can
be shown that shapes reside on a complex spherical manifold
[22]. Further, by factoring out all possible affine transfor-
mations, it can be shown that shapes reside on a Grassmann
manifold. More recently, shapes have been considered to be
continuous closed planar curves. The space of such curves
can also be characterized as a manifold [38].

2. Covariance Features:In recent years, region covariance has
proved to be a popular feature to encode local shape and tex-
ture. Covariance features as region descriptors were intro-
duced in [41] and have been successfully applied to human
detection [40], object tracking [31] and texture classification
[41]. Covariance matrices also appear in medical imaging lit-
erature where diffusion tensor MRI produces measurements
of diffusion of water molecules, where each voxel is associ-
ated with a3× 3 symmetric positive definite matrix [30].

3. Time Warps: The space of positive and monotonically in-
creasing functions mapping the unit-interval to the unit-interval
are usually referred to as time-warp functions. The deriva-
tives of warping functions can be interpreted as probability
density functions. The square-root form of pdfs can then be
described as a sphere in the space of functions. This was
exploited in [43] to recognize human activities. Variability
in sampling closed planar curves can also be modeled as a
sphere in the space of functions [36].



4. Subspaces:In image and object recognition, recent meth-
ods have focused on utilizing multiple images of the same
object, taken under varying viewpoints or varying illumina-
tion conditions, for recognition [23, 19, 2, 27]. The set of
face images of the same person under varying illumination
conditions is frequently modeled as a linear subspace of9-
dimensions [25]. The set ofk-dimensional subspaces ofRn

is called the Grassmann manifold. A related manifold ofk-
basis vectors ofRn or n × k tall-thin orthonormal matrices
is called the Stiefel manifold and has found applications in
face recognition [28]. The Stiefel manifold also finds appli-
cations in finding projections of data with desired statistical
properties such as sparsity, discriminability, etc [37].

5. Dynamic models: In video analysis, an important task is to
describe a sequence of static features using parametric mod-
els. One popular dynamical model for such time-series data
is the autoregressive and moving average (ARMA) model.
Examples include dynamic textures [33], human joint an-
gle trajectories and silhouette sequences [42]. The space
spanned by the columns of the observability matrix of the
ARMA model can be identified as a point on the Grassmann
manifold [39].

An overview of various manifolds that frequently appear in vi-
sion literature, and their associated non-linear distance functions
are described in table 1. As can be seen, the distance computa-
tions (and centroid computations) can be of significant complexity
for these manifolds. Thus, metric space indexing can be applied
in principle, but the pre-processing and query computations can be
significantly involved. The rest of the paper will be geared toward
proposing a general framework for mitigating these issues.

3. PRELIMINARIES
In this section, we briefly recapitulate the mathematical prelimi-

naries needed to study nearest-neighbor searching on non-Euclidean
manifolds. A topological spaceM is called a manifold if it islo-
cally Euclideani.e. for eachp ∈ M, there exists an open neighbor-
hoodU of p and a mappingφ : U → R

n such thatφ(U) is open
in R

n andφ : U → φ(U) is a diffeomorphism. The pair(U, φ)
is called acoordinate chartfor the points that fall inU . Let M
be ann-dimensional manifold and, for a pointp ∈ M, consider a
differentiable curveγ : (−ǫ, ǫ) → M such thatγ(0) = p. The ve-
locity γ̇(0) denotes the velocity ofγ atp. This vector has the same
dimension as the manifold and is an example of a tangent vector to
M at p. The set of all such tangent vectors is called the tangent
space toM at p. Even though the manifoldM maybe nonlinear,
the tangent spaceTp(M) is always linear.

Metrics via Geodesic Distances: The task of measuring dis-
tances on a manifold is accomplished using a Riemannian metric.
A Riemannian metric on a differentiable manifoldM is a map〈·, ·〉
that smoothly associates to each pointp ∈ M a symmetric, bi-
linear, positive definite form on the tangent spaceTp(M). Using
the Riemannian structure, it becomes possible to define lengths of
paths on a manifold. For any two pointsp, q ∈ M, one can de-
fine the distance between them as the infimum of the lengths of all
smooth paths onM which start atp and end atq:

d(p, q) = inf
{α:[0,1] 7→M|α(0)=p,α(1)=q}

L[α],where (1)

L[α] =

∫ 1

0

√

(〈

dα(t)

dt
,
dα(t)

dt

〉)

dt (2)

Tangent-plane embedding: If M is a Riemannian manifold
andp ∈ M, the exponential mapexpp : Tp(M) → M, is de-
fined byexpp(v) = αv(1) whereαv is a specific geodesic. The

inverse mappinglogp : M → Tp called the inverse exponential
map/logarthmic map at a ‘pole’, takes a point on the manifold and
returns a point on the tangent space of the pole – which is a Eu-
clidean space.

Centroids: Given a set of points on a manifold, the intrinsic
mean of the dataset or the Karcher mean [21] is a natural way of
generalizing the notion of a centroid. The intrinsic mean is defined
as the pointµ that minimizes the sum of squared-distance to all
other points:µ = argminx∈M

∑N

i=1 d(x, xi)
2. Computing the

intrinsic mean is not usually possible in a closed form. The in-
trinsic mean is unique only for points that are close together [21].
An iterative procedure is popularly used in estimation of means of
points on manifolds [29].

These concepts are illustrated graphically in figure 1.

Figure 1: (Left) Figure illustrating the notions of tangent spaces, tan-
gent vectors, and geodesics. Shown in the figure are two pointsP1 and
P2 on the manifold and the tangent planes at these points. Geodesics
paths are constant velocity curves on the manifold. Tangentvectors
correspond to velocities of curves on the manifold. (Right)Figure illus-
trating the notion of exponential maps and inverse exponential maps.
Shown are two points on the tangent plane at poleP . Both points lie
along the same tangent vector. The exponential map will map them
onto the same geodesic.

4. AN EMBEDDING APPROACH FOR SOLV-
ING NEAREST NEIGHBORS

In this section, we discuss an embedding of points from the man-
ifold into a Euclidean space which allows us to solve the nearest
neighbor problem in the embedded space. Let us denote the embed-
ding of points on a manifold to some vector space asφ : M → R

n.
One can usually come up with many such mappings, which are
atleast locally homeomorphic by the definition of a manifold. But,
in general no such mapping exists that can map the entire mani-
fold to R

n that is isometric i.e. preserves distances. We saw one
example of a mapping, namely the inverse exponential map or the
logarithmic map in section 3. In this section, we will study this spe-
cific method of embedding and show that it enjoys certain favorable
properties that make it attractive for indexing and searching. Recall
that, ifM is a Riemannian manifold andp ∈ M, theexponential
map expp : Tp(M) → M, is defined byexpp(v) = αv(1) where
αv is a specific geodesic. The inverse mappinglogp : M → Tp

is uniquely defined only around a local neighborhood of the point
p. The inverse exponential map/logarithmic map at a ‘pole’, takes
a point on the manifold and returns a point on the tangent space of
the pole – which is a Euclidean space.

Under this embedding, one can now employ the usual Euclidean
norm to solve the nearest neighbor search problem. However, one
needs to know the error incurred under this embedding. We dis-
cuss this issue in the following. Let us assume that we are given
a database of pointsX = {x|x ∈ M}, whereM is the manifold



Manifold Numerical Representa-
tion

Dimension Commonly used Distance functions Applications

Spherical manifold n-vector with unit norm n − 1 d(X1, X2) = cos−1(
∣

∣

∣
xT
1 x2

∣

∣

∣
) Kendall’s shape space

[22], probability density
functions [35]

Stiefel manifold n×k orthonormal matrix nk −
k(k+1)

2 No closed analytical form. Face recognition [28],
dimensionality reduction
[37]

Grassmann mani-
fold

n×k orthonormal matrix k(n − k) d(X1, X2) =
∑

i
‖θi‖

2, wherecos(θi) are
singular values ofXT

1 X2

Image set modeling [23,
19, 2, 27], dynamic mod-
els [33, 39]

Covariance matrices n × n symmetric pos.
def. matrix

n(n+1)
2 d(X1, X2) =

√
∑

n
i=1 ln2λi(X1, X2),

where {λi} are generalized eigenvalues of
λX1v = X2v

Region descriptors [41,
31, 40], diffusion tensor
imaging [30]

Table 1: Examples of various manifolds that appear in vision applications. The table shows the highly non-linear and sometimes computationally
intensive distance functions on the manifolds. Depending on data, the dimension of the manifold can be quite high.

of interest. We shall denote a specific pointp ∈ M as a ‘pole’
which shall be used to define the embedding. Intuitively, the pole
is the analog of the ‘origin’ inRn. However, unlikeRn there is
no point that naturally serves as the pole for manifolds. Given a
dataset of points on a manifold, the intrinsic mean of the dataset or
the Karcher mean [21] is a natural choice for the pole. We shall
later discuss how to compute it in a fast and efficient manner.

Given a polep, and two pointsx, y ∈ M we would like to
relate the geodesic distanced2(x, y) to the Euclidean norm in the
embedding space given by‖Logp(x)− Logp(y)‖

2. In general,
there is no closed form relation one can obtain between them. For
points that are close to the pole, i.e. if0 ≤ d(x, p), d(y, p) ≤ ǫ, we
have

‖Logp(x)− Logp(y)‖
2 ≤ ‖Logp(x)‖

2 + ‖Logp(y)‖
2 (3)

= d2(x, p) + d2(y, p) ≤ 2ǫ2. (4)

By triangle inequality, we also have thatd2(x, y) ≤ 2ǫ2. Thus,
for points close to the pole, we have

0 ≤ d2(x, y), ‖Logp(x)− Logp(y)‖
2 ≤ 2ǫ2. (5)

Any more general result than this is very difficult to obtain for ar-
bitrary manifolds. Thus, for close points, and an appropriate choice
of polep, d2(x, y) ≈ ‖Logp(x)− Logp(y)‖

2. We refer the reader
to [14] for an example of the exact relation between these quantities
for the special case of a sphere.

For points that are far away from the pole, in general the approx-
imation error can be large. In certain cases, as we show next, even
in the case of far away points the error in approximation can be
bounded with high probability. For two random pointsx, y ∈ M,
let e(x, y) = d2(x, y) − ‖Logp(x)− Logp(y)‖

2 be the approxi-
mation error due to the embedding. Then, by the triangle inequality
we have

d2(x, y) ≤ d2(x, p) + d2(p, y) = ‖Logp(x)‖
2 + ‖Logp(y)‖

2

(6)

Now,

E[e(x, y)] = E[d2(x, y)− ‖Logp(x)− Logp(y)‖
2] (7)

≤ E[d2(x, p) + d2(p, y)− ‖Logp(x)− Logp(y)‖
2] (8)

= E[‖Logp(x)‖
2 + ‖Logp(y)‖

2 − ‖Logp(x)− Logp(y)‖
2]

(9)

= 2E[〈Logp(x), Logp(y)〉], (10)

where,〈v1, v2〉 = vT1 v2. Since, we chose the pole as the centroid
of the dataset, in many practical situations this results in the embed-

dings being zero mean i.i.d. in the tangent plane at the pole. Thus
E[〈Logp(x), Logp(y)〉] = 0. Hence,E[e(x, y)] = 0. Further,
when the manifold is very high dimensional, we can leverage the
fact that i.i.d. Gaussian vectors in high dimensions are nearly or-
thogonal, also known as concentration inequalities for projections
in high dimensions [4]. Hence, in most practical applications it
can be argued that statisticallyd2(x, y) ≈ ‖Logp(x)− Logp(y)‖

2

with high probability even for points that are not necessarily close
to the pole. We found that this approximation works well in our
experiments.

Pole and Centroid Computation: Selecting the pole as the
centroid entails high computational cost as well because comput-
ing the centroid is: 1) an iterative procedure, 2) requires several
passes over the dataset till convergence, 3) a batch procedure re-
quiring loading and processing all the available data at once. In our
case it is sufficient to find a reasonable approximation to the intrin-
sic mean. Here, we propose a single-pass, non-iterative, recursive
approximation to the intrinsic mean which we call the ‘cumulative
intrinsic mean’. In Euclidean space, given a set of points{Xi}, the

cumulative/running mean is given byµi+1
run =

Xi+1+iµi
run

i+1
, with

µ
(1)
run = X1. For the case of manifolds, this can be generalized as

µ(i+1) = Expµ(i)

[

1

i+ 1
Logµ(i)Xi+1

]

(11)

This is a non-iterative procedure, and requires only a single pass
over the dataset. Further it is a recursive procedure and does not
require storing all the data in memory.

4.1 An Algorithm for Nearest-neighbors
Using the result derived in the previous section, we can now em-

ploy any of the variety of nearest-neighbor searching algorithms
developed for Euclidean spaces. We note that since the embedding
provides approximate distances, any search algorithm using this
embedding will necessarily be approximate. Thus, it is not mean-
ingful to employ exact search algorithms on the embedded space.
Hence, we discuss just one example of approximate search – Hash-
ing. Any other algorithm can be similarly deployed. Hashing was
originally studied in the field of cryptography and text databases
which involved entities such as passwords, names, addresses etc
where exact matches was the key requirement. Hashing image and
video data brought additional challenges since no two semantically
related images or videos are exactly the same. This brought about a
new class of techniques - LSH [16] - that could answer approximate
nearest neighbor queries in a fast manner.

A good introduction and survey of LSH can be found in [11].
Here, we briefly review the basic concepts of Euclidean LSH. LSH



attempts to solve a problem called the(r, ǫ)-NN problem. The
problem is described as follows: Given a database of pointsX =
{xi} in R

n, and a queryq, if there exists a pointx ∈ X such
thatd(x, q) ≤ r, then with high-probability, a pointx′ ∈ X is re-
trieved such thatd(x′, q) ≤ (1 + ǫ)r. LSH solves this problem by
constructing a family of hash-functionsH overX called locality-
sensitive, if for anyu, v ∈ X

d(u, v) ≤ r ⇒ Pr(h(u) = h(v)) ≥ p1 (12)

d(u, v) ≥ (1 + ǫ)r ⇒ Pr(h(u) = h(v)) ≤ p2 (13)

Popular choices ofh include random projections i.e.h(v) = sgn(v.r)
wherer is a randomly chosen unit-vector, andsgn is the signum
function. In this case,h is binary valued taking values in{+1,−1}.
A generalization of this is termed random projections using ‘p-
stable’ distributions [13], whereh(v) = ⌊ v.r+b

w
⌋ where r is a

randomly chosen direction whose entries are chosen independently
from a stable distribution, andb is a random number chosen be-
tween[0, w]. In this case, the hash function takes on integer val-
ues. Ak−bit hash is constructed by appendingk randomly cho-
sen hash-functionsH(x) = [h1(x), h2(x), . . . hk(x)]. Thus,H ∈
Hk. Then,L hash tables are constructed by randomly choosing
H1, H2 . . . HL ∈ Hk. All the training examples are hashed into
theL hash tables. For a query pointq, an exhaustive search is car-
ried out among the examples in the union of theL hash-buckets
indexed byq. Appropriate choices ofK andL ensure that the al-
gorithm succeeds in finding a(r, ǫ)-NN of the queryq with a high
probability. To extend this to manifolds, the basic idea is to first
pick a polep such that the approximation in equation (10) is valid.
Once this pole is chosen, we embed all points in the tangent space
atp. Then we randomly sample a directionv ∈ TpM. Using this,
one can obtain a family of hash functions such as:

hp(x) = sgn(Logp(x).v), wherev ∈ TpM, (14)

hp(x) =

⌊

ΠHp(x) + b

w

⌋

≈

⌊

Logp(x).v + b

w

⌋

, wherev ∈ TpM.

(15)

A K-bit hash function can now be computed by appendingK-
random hash functions which are obtained by choosingK-different
random choices ofv. For a query pointq, an exhaustive geodesic
distance based search is carried out among the examples in the
union of theL hash-buckets indexed byq. This is illustrated in
figure 2.

5. APPLICATIONS AND EXPERIMENTS
In this section we demonstrate the utility of the proposed frame-

work to enable fast nearest neighbor searches in non-Euclidean
manifolds.

5.1 Region Covariances
In recent years, the region covariance has proved to be a popu-

lar feature to encode local shape and texture. Covariance features
as region descriptors were introduced in [41] and have been suc-
cessfully applied to human detection [40], object tracking [31] and
texture classification [41]. The space ofd × d covariance matri-
ces is denoted asSym+(d). The distance between two covariance
matrices is given asd(C1, C2) =

√
∑n

i=1 ln
2λi(C1, C2), where

{λi} are the solutions of the generalized eigenvalue problem given
by λC1x = C2x [30]. To perform hashing, we need the exponen-
tial and logarithmic maps. The exponential and logarithmic map of
a pointy ∈ TX atX are given by [30]

ExpX(y) = X
1
2 expm(X− 1

2 yX− 1
2 )X

1
2 , (16)

LogX(Y ) = X
1
2 logm(X− 1

2 Y X− 1
2 )X

1
2 , (17)

whereexpm and logm denote the usual matrix exponential and
matrix logarithms. In this experiment, we consider the texture
classification problem as detailed in [41]. We use the Brodatz
texture database which contains111 textures1 (with D-14 miss-
ing). Each of the640 × 640 image was divided in4 parts each
of size320 × 320. Two of these were used in training and two
were used in testing. Given an image, we select a rectangular
region of random size between16 × 16 and128 × 128. Within
each such window, at each pixel location we computeF (x, y) =
[

I(x, y),
∣

∣

∂I
∂x

∣

∣ ,
∣

∣

∣

∂I
∂y

∣

∣

∣
,
∣

∣

∣

∂2I
∂x2

∣

∣

∣
,
∣

∣

∣

∂2I
∂y2

∣

∣

∣

]T

.

Then, we compute the5 × 5 covariance of these feature as the
overall descriptor for the window. We randomly sample100 such
windows, giving rise to a collection of100 covariance matrices
as the representation of each image. In testing, we compute100
covariance matrices in the same manner for each test-image. For
each of these matrices, we find the nearest neighbor in the train-
ing dataset and assign the image-class of the corresponding nearest
neighbor. Then, from the100 such labels obtained, we use a major-
ity voting rule to assign the texture class to the image. Now, there
are111 × 2 = 222 images in the training set. Each image is rep-
resented as a set of100 covariance matrices. This gives rise to a
total of22, 200 covariance matrices in the training set. The testing
scheme as described above would require us to find nearest neigh-
bors in this large set. We show in table 2 how the proposed hashing
framework improves the search efficiency without significant loss
of accuracy.

Method Geodesic Computa-
tions per test image
(×102)

Accuracy

Median Mean Max
Exhaustive 1-NN 22,200 22,200 22,200 95.49%
HashK = 30, L = 10 298.5 1180.4 4894 95.49%
HashK = 30, L = 2 109 935 4012 94.14%
HashK = 50, L = 10 95 746.04 3810 95.04%
HashK = 50, L = 2 14 320.69 2379 93.24%

Table 2: Comparison of geodesic computations and accuracy for co-
variance based texture classification on Brodatz database.

For comparison, we show in table 3 the state-of-the art recog-
nition accuracies on the Brodatz database using several methods
taken from [41]. Note that even though we use the same covari-
ance features and testing methodology of [41], we obtained an ac-
curacy of95.49% even with exhaustive nearest-neighbors when
compared to97.77% as reported in [41]. This can be attributed
to the variation due to the random choice ofs windows in the im-
ages over which covariance is computed. However, the goal is not
to beat their performance or even replicate it exactly, but to show
that the same performance can be achieved with significantly fewer
geodesic computations.

Method Performance

Oriented Filters 85.71%
Oriented Filters 94.64%
Symmetric Filters 93.30 %
LM 97.32%
Covariance 97.77%
Covariance + Hash 95.49 %

Table 3: Comparison of accuracies for different methods on the Bro-
datz database taken from [41].

1Obtained from http://www.ux.uis.no/∼tranden/brodatz.html



Figure 2: Overall Hashing Framework. Given a set of points on a manifold,we first compute a suitable pole as discussed in section 4. Then, we shoot
K random geodesics from the pole. Projections onto these geodesics are computed as described in section 4. From the projections, a hash function
is computed such as in equation (14) or (15) which are then appended to form aK-bit hash function. Then,L hash-tables are created by choosingL
different K-bit hash functions

5.2 Affine Shape Space: Grassmann manifold
In this experiment, we consider the problem of face recognition

using facial geometry. By facial geometry we refer to the location
of 2D facial landmarks on images. In several face recognition tasks,
the locations of the landmarks have been shown to be extremely
informative [45, 32]. A shape is represented by a set of landmark
points, given by an×2matrixL = [(x1, y1); (x2, y2); . . . ; (xn, yn)],
of the set ofn landmarks of the centered shape. Small changes in
camera location or change in the pose of the subject can be approx-
imated well as affine transformations on the original base shape.
The affine transforms of the shape can be derived from the base
shape simply by multiplying the shape matrixL by a 2 × 2 full
rank matrix on the right. For example, letA be a2×2 affine trans-

formation matrix i.e.A =

[

a11 a12
a21 a22

]

. Then, all affine trans-

forms of the base shapeLbase can be expressed asLaffine(A) =
Lbase ∗ A

T . Note that, multiplication by a full-rank matrix on the
right preserves the column-space of the matrixLbase. Thus, the
2D subspace ofRn spanned by the columns of the matrixLbase is
an affine-invariantrepresentation of the shape. i.e.span(Lbase)
is invariant to affine transforms of the shape. Subspaces such as
these can be identified as points on a Grassmann manifold. The
Grassmann manifoldGn,d is the space whose points ared-planes
or d-dimensional hyperplanes (containing the origin) inR

n.
A natural way to interpret the Grassmann manifold is as a quo-

tient of the special orthogonal groupSO(n). For anyO ∈ SO(n),
a geodesic flow in a tangent direction, say,OTA, is given byψO(A, t) =
OT exp(tA) whereexp is the matrix exponential. Using this it
can be deduced that, in the case ofGn,d a geodesic flow starting
from a pointU = OTJ is of the type:t 7→ OT exp(tA)J . On

Gn,d, the exponential map is given by:OT

[

C
BT

]

≡ OTAJ 7→

OT exp(A)J , whereA takes the form

[

0 −B
BT 0

]

. The ex-

pression for inverse exponential map is not available analytically
for these manifolds and is computed numerically. The details of
these computations can be found in [15].

We use the publicly available FG-Net dataset [1], which con-
tains82 subjects in the age ranges of0 − 69. For this dataset,68
fiducial points are available with each face. We show some sample
landmarks from the dataset in figure 3. There are a total of1002
images. We perform a leave-one-out test to quantity the face recog-
nition performance. This is a challenging dataset as there are many
sources of appearance variations for each person such as age, fa-
cial hair, expression, pose and illumination. We show the results
of leave-one-out nearest neighbor classification on this dataset in

table 4. We see that we can get comparable accuracy to exhaustive
nearest neighbors with significantly fewer geodesic computations.

Method Geodesic Computa-
tions per test face

Accuracy

Median Mean Max
Exhaustive 1-NN 1001 1001 1001 22.45%
HashK = 11, L = 5 88 92.07 262 21.35%
HashK = 20, L = 50 33 36.9 122 21.05%
HashK = 20, L = 40 25 28.20 86 19.16%

Table 4: Face Recognition across aging: Comparison of lookups and
accuracy for face recognition using landmarks on FG-Net aging data.

6. CONCLUSION
We first discussed the importance of solving nearest-neighbor

searching problem on non-Euclidean manifolds for various vision
applications. We discussed that the complexity of computing dis-
tance functions and centroids sets this problem apart from usual
metric space indexing. Then, we provided a formal framework
for addressing the problem. From the geometric framework, we
derived an approximate method of searching via approximate em-
beddings using the logarithmic map. We studied the error incurred
in such an embedding and showed that this performs well in real
experiments. Experiments demonstrate that it is possible to signif-
icantly reduce the number of geodesic computations, thereby im-
proving speed, while obtaining comparable performance to exhaus-
tive nearest-neighbors.
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