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ABSTRACT

Demyelination- the loss of myelin sheath that insulates axons, is
a prominent feature in many neurological disorders resulting in
spinal cord injury (SCI). The lost myelin sheath can be replaced
by remyelination, used in SCI treatment. In this paper, we pro-
pose an algorithm for efficient automated analysis of remyelination
therapy. We use a robust, shape-independent algorithm based on
iso-contour analysis of the image at progressively increasing inten-
sity levels for detecting cell boundaries. The detected boundaries of
spatially clustered cells are then separated using Delaunay triangu-
lation based contour separation method. The therapeutically impor-
tant oligodendrocyte-remyelinated axons (OR-axons) are identified
and a density map is generated for efficacy analysis of the ther-
apy. Our efficient automated remyelination analysis significantly
reduces error due to human subjectivity. We corroborate the ac-
curacy of our results by extensive cross-verification by the domain
experts.

1. INTRODUCTION
Demyelination – the loss of myelin sheath – is a prominent fea-

ture in many neurological disorders including multiple sclerosis
(MS) and spinal cord injury (SCI) [13] which results in the dis-
ruption of signals within the axons. The lost myelin sheath can
be replaced by a process called remyelination which wraps myelin
sheath around the demyelinated axons restoring the conduction of
signals within the axons. Remyelination can be achieved by two
kinds of cells, oligodendrocytes and Schwann cells [3]. One of the
many therapies being developed to improve the remyelination in-
clude transplantation of oligodendrocyte progenitor cells into the
adult spinal cord of rats following SCI which helps in remyelina-
tion of the demyelinated axons. However, to study the progress of
the therapy these oligodendrocyte-remyelinated axons (OR-axons),
created due to oligodendrocyte progenitor cell transplantation, need
to be distinguished from the already myelinated axons or axons
remylinated by the Schwann cells already existing in the body.
The OR-axons are identified by their characteristically thin myelin
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sheaths relative to the diameter of the axons. This ratio of myelin
sheath thickness to axon diameter is called the G-ratio [15]. Fol-
lowing the identification of OR-axons, their distribution has to be
analyzed by visualizing the size, location and density of its clusters
in the image. By tracking such visualizations of microscopic im-
ages periodically captured on different rat subjects before and after
the treatment, one can understand the growth rate and site of the
OR-axons and hence the effectiveness of the therapy.

1.1 Motivation
Remyelination is analyzed on microscopic images of 5×625µm2

areas aligned on a radial oriented line that originates from the cen-
tral canal of the spinal cord and extends to the outermost limit of
the spinal cord cross section. The current method for identifying re-
myelinated axons is the line sampling technique [4] that is achieved
manually. There are two kinds of error introduced in manually es-
timating and classifying the remyelinated axons. Since a manual
process is very tedious, the OR-axons are only identified in ap-
proximately 15% of the actual area of pathology. In the rest of the
area, it is only estimated. This leaves out a high percentage of area
in which a large amount of estimation error can be introduced in
the data. Further, there is classification error because of the subjec-
tivity involved in the manual classification of the OR-axons. The
G-ratio, which can be used to classify OR-axons, is not calculated
for every single axon because this would be tedious and time in-
tensive work. It is often assigned by relative measure through vi-
sual estimation. This again leads to more classification errors. It
is not known how much error is introduced to the data when there
are multiple examiners counting these axons. These errors can be
reduced by increasing the percentage of the actual area of pathol-
ogy, but the sheer size of the number of samples collected from the
pathology makes this a daunting task. For example, since a micro-
scopic slice is taken every 2mm of the spinal cord of an animal, in
experiments involving many animals, the OR-axon growth analysis
can take several weeks. An increase in percentage of counted area
would not only increase the analysis time, but might also increase
the error due to human factors such as fatigue.

An automated method to analyze and visualize the distribution
of the OR-axons can alleviate all the above problems and provide
an incredibly useful tool for research in these kinds of cutting edge
therapies. An automated system will allow analysis of a higher per-
centage of area of the pathology, at more frequent intervals, and at
higher accuracy due to less subjectivity and human factor related
errors. Thus, it is evident that automated recognition and classifi-
cation of the axons would be imminent in reducing the turn-around-
time and the subjective error in this research.

1.2 Technical Challenges
Automating the process of analysis and visualization of distribu-
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Figure 1: Different kinds of cells in the image. Left and Middle show images obtained with different staining processes and hence

the overall color difference. The right one is the zoomed in view of the middle image showing the different types of axons.

tion of the OR-axons involves taking as input a microscopic image
(Figure 1a) and creating a density map (Figure 10c,d) where blue
regions indicate high density clustering of OR-axons. The com-
plexity of this automation is compounded by the following facts.

• The microscopic image is littered with a large amount of ‘cel-
lular debris’, i.e. proteins and other cell bodies that have to
be identified and rejected, or not identified at all.

• The oligodendrocyte cells do not conform to any particular
shape. In fact, even basic shape properties like convexity
cannot be assumed. This demands a shape independent clas-
sifier to distinguish the cells.

• The average intensity level of the input images might be dif-
ferent depending on the staining process (Figure 1a and 1b).
Hence relating intensities across images for consistently iden-
tifying the cells is not possible, and this intensity threshold
for cell identification has to be learned within each image.

1.3 Main Contribution
Most existing methods for automatic cell analysis focus on large,

cellular matrices [19]. However, in cases where the topology of the
cellular structures is not uniform, as is typically the case in injury
sites, methods for identification and quantification of individual
cells must be employed. Our main contribution is in designing an
end-to-end automated process that analyzes the input microscopic
image and returns an effective high-level visualization of the distri-
bution of the OR-axons. We present a robust algorithm to handle
noise, subjectivity and under-sampling, by using efficient computa-
tional geometry and stable statistical techniques.Our method con-
sists of the following five key steps.

1. Contour Detection: First, we detect the myelin sheath sur-
rounding the axons using progressive isocontours at varying
intensity levels (Section 3). This technique is a shape inde-

pendent process that makes use of the variational property of
the intensities of the cell structures. This also allows us to
detect axon boundaries across images of different intensities
and pathologies stained by different dyes.

2. Contour Separation: Since the contour detection step does
not consider the shape of the axons, the boundaries detected
by this step may include multiple axons. We use a Delaunay
triangulation based method to separate these cells and define
a clean and unique boundary for each of them (Section 4).

3. Noise Removal: The cells detected by the above steps may
include noise (e.g. cellular debris). In this step, we identify
this noise and remove the cells that do not represent axon
structures (Section 5).

4. OR-Axon Classification: G-ratio is defined as the ratio of the
cell boundary (myelin sheath) thickness to the cell diameter.
The remyelination due to different cells can be differentiated

by the G-ratio of the cell. In this step, we design a method
based on G-ratio computation and clustering to identify the
oligodendrocyte-remyelinated (OR)-axons from other axons
(Section 6).

5. Density Map Generation: Finally, we use the distribution
of the detected OR-axons in the image to generate a den-
sity map that is effective in visualizing the size, location and
density of their clusters in the area of the pathology (Section
7).

The pipeline of the entire process, as described above, is illus-
trated in Figure 2. We corroborate our method by extensive cross-
verification by the domain experts to demonstrate its accuracy and
robustness.

We first discuss the relevant literature in Section 2. Then we
present the four steps of our automated algorithm in Sections 3 to 7.
This is followed by experiments and analysis in Section 8. Finally,
we conclude in Section 9.

2. RELATED WORK
Digital image cytometry [21], the analysis of cell attributes from

images, serves as an essential component of biological research.
Correct detection of relevant cell structure and boundaries is a chal-
lenging task in image cytometry because of the varying intensity
levels in the images occurring from different staining protocols,
varying sizes of the specimen, difference in shapes across cell struc-
tures and the presence of large numbers of cellular debris.

Cell detection algorithms using image processing and computer
vision techniques continue to be a significant area of research [21,
17, 2, 20]. Shape based analysis of cells is a common approach
used by researchers [5] and is applicable to types of cells that con-
form to specific shapes. Since the OR-axons can be of any arbitrary
shape, the shape dependent methods are not useful and shape in-
variant analysis must be used for detection, identification and clas-
sification of axons.

Watershed segmentation is a widely used shape-independent ap-
proach for cell detection [9], but this algorithm is susceptible to the
presence of noise in the image. A single outlier can impact large
groups of pixels thereby making the watershed segmentation unsta-
ble. Most cell detection algorithms usually detect some cell struc-
tures that are merged and need to be separated. Thus, segmentation
or separation of cell boundaries to detect individual cells is an ac-
tive area of research [14, 21]. The active contours method [20, 18,
21] is successfully employed for cell analysis and usually produces
robust boundaries even for noisy images. Zimmer et al. [21] use
an active contour based cell segmentation approach to detect and
track motile cells. They use an edge map computed from deviation
between local intensities to detect low contrast boundaries. While
active contours detects the cell structure by energy minimization
subject to external and internal constraints, our proposed approach
uses different contours of the same image to classify a structure
as a cell by analyzing the evolution of boundaries detected by the
isocontour algorithm progressively.
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Figure 2: The pipeline of our proposed algorithm.

In almost all applications, the nature of staining makes the nuclei
of cells more prominent compared to the outer cell boundaries. A
good cell segmentation algorithm has to correctly identify the sep-
arating region between the adjacent cell nuclei. Using a known cell
nucleus, Jones et al. [10] use non-Euclidean Voronoi diagrams on
Riemannian manifolds to detect cell boundaries and segment cells.
The cell nucleus is not known in our applications, and hence the
approach proposed in [10] is not applicable to our problem. We
use an Euclidean-space Delaunay triangulation based approach to
separate the detected axon boundary contours obtained from pro-
gressive isocontouring. Furthermore, our method directly works
on the geometry of the 2D cell structure provided by the isocon-
touring algorithm, while [10] works on higher dimensional space
derived from the image parameters.

We introduce the concept of progressive isocontouring to detect
all the cell structures followed by contour separation using De-
launay triangulation. This allows us to detect event points when
there is a morphological change in the shape of the isocontours
which can subsequenly be used in the post processing stage to de-
tect generic cell structures. Similar computational geometry-based
approaches to topology tracking include efficient implementations
of Reeb graphs [6].1 The detected cell structures, once identified
as axons, are processed to identify the subset of OR-axons using
robust geometrical and statistical methods.

3. CONTOUR DETECTION
Traditionally, axon detection algorithms use two techniques –

shape dependent analysis and edge detection. Since the OR-axons
can be of any shape, typical shape matching algorithms cannot be
used in our applications. Further, traditional edge detection meth-
ods also cannot be used due to the presence of an abnormal number
of debris in the image, and the need for correct computation of rel-
ative size of the detected boundaries in order to classify the axons.

The OR-axons sometimes can be classified by their lighter inten-
sity values in the image slices. The intensity value at which these
axons can be detected can vary over the time elapsed from the re-
myelination procedure, and also depends on the subjective manual
staining process before the microscopic images are taken. Hence
isocontouring at one specific intensity level will not be a feasible
solution for this problem.

We present the progressive isocontouring technique – isocon-
touring at progressively increasing intensity levels – as a generic
method to detect possible axon structures. For this purpose, we first
define the axon structure in this context as illustrated in Figure 3.
Let us consider two simple closed iso-contours at intensity i – the

1Note that although the analysis of evolving topology and its events
is also the basis of Morse theory [12], its application is limited in
the context of medical image processing due to the complexity of
the image content [8].
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Figure 3: (a) This schematic illustrates the axon and sheath

structures in the image. (b) This illustrates the redundant

sheath structures in red. The blue sheath is the one detected

at the lowest intensity and hence it is retained as the non-

redundant sheath structure.

Figure 4: This schematic shows all the invalid axons. Left:

Invalid axons due to self-intersecting boundary or intersecting

inner and outer boundary; Middle: Invalid axon due to axon-

within-axon structure; Right: Invalid axon due to local discon-

tinuity in sheath thickness.

inner contour I(i) and the outer contour O(i). Let these two enclose
regions AI(i) and AO(i) respectively such that AI(i) ⊂ AO(i). Then
AO(i) constitutes an axon and the region between the contours I(i)
and O(i), given by AO(i)−AI(i), constitutes the myelin sheath S(i).
The thickness T (i) of the sheath S(i) is given by the average of the
closest distances of every inner contour point to the outer contour.
This is illustrated in Figure 3.

We compute iso-contours progressively at different intensity lev-
els moving from lower to higher intensities. A sheath S(i) detected
at intensity level i signifies a valid structure if it obeys the rules de-
scribed below. These rules are framed based on our observations of
the structure of the axon and its surrounding myelin sheath in the
images.

1. Boundary Coupling: There exists a one-to-one and onto rela-
tionship between the inner and outer boundaries of a sheath
structure S(i). This maintains the invariance that every in-
ner boundary has a corresponding unique outer boundary and
vice-versa.
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Figure 5: Progressive Isoconturing on Real Data: isocontours

of the image at three different intensity levels. The top row

shows the isocontours at each intensity level, and the bottom

row shows the identification of axon structures (shown in blue).

The isocontours (d) have multiple components and as inten-

sity level increases progressively, complete axon structures are

formed (b), and valid axon structures get morphed and merged

at still higher intensity levels (c,f). When complete axon struc-

tures are detected at a particular intensity level, its geometry is

preserved (d-f) and hence it is not affected by the subsequent

morphing of the isocontours.

2. Non-Redundant Sheath Structure: Since the myelin sheath is
always darker than both the interior and exterior of the axon,
the thickness of the sheath detected at the intensity level i

will be less than that of the sheath detected for the same
axon at a higher intensity level. Let S(i) = AO(i)− AI(i)
and S( j) = AO( j)−AI( j) be the sheaths at intensity levels i

and j, i < j (Figure 3b). If AI( j) ⊂ AI(i) ⊂ AO(i) ⊂ AO( j)
then T (i) < T ( j). In this case both S(i) and S( j) represent
the sheath of the same axon in the image detected at different
intensity levels. In order to avoid double counting of axons,
only one of them is retained and the other one is rejected. We
retain the the sheath detected at the lowest intensity level in
order to have a standardized reference to compare the sheath
thickness across different axons in the same image for subse-
quent classification. We call this sheath structure S(i) at the
lowest intensity i as the non-redundant sheath structure.

3. Valid Sheath Structure: There are three rules of a valid axon
structure. First, no axon can be inside another axon. Sec-
ond, the inner and outer boundaries, I(i) and O(i), should
not be self-intersecting or intersect with each other. Finally,
the thickness T defined by the distance between I(i) and O(i)
should be locally uniform across the entire boundary. Hence,
the change in thickness, if existing, should be smooth.

We detect iso-contours using standard iso-contour algorithms. A
contour is a closed polyline connecting a sequence of vertices. Next
we perform a contour within contour test to decipher the inner and
outer boundary contours. A contour I is within another contour O

if all vertices of I are inside O. A vertex v is inside a closed con-
tour O, if a ray shot from v to an arbitrary point well outside the
bounding box of O intersects O an odd number of times. Hence the
vertex-inside-a-closed-contour test needs a line-polygon intersec-
tion test. If a contour I lies inside another contour O, we identify I

to be an inner boundary and O to be its corresponding outer bound-
ary. We perform progressive isocontouring without violating the
redundant sheath structures criterion by retaining the structure that
is detected the earliest, as shown in Figure 5 on a typical situation.
Note that there can be multiple inner boundaries associated with a

(a) (b) (c) (d)

Figure 6: (a) Contour dilation process on Real Data. (b-

d)Problems with dilation based axon-separation. (b) The outer

contour merges, even as the outer contour of one of the two

sheaths has not been detected. (c) One of the inner contours

that does not have a corresponding outer contour is dilated to

the minimum distance between itself and the merged outer con-

tour. Note the thickness is much smaller than the reasonably

correct shape given by the red contour. Such problems will

skew the G-ratio of this axon, and hence its classification. (d)

Our Delaunay based separation algorithm computes the cor-

rect sheath shape.

single outer boundary violating the boundary coupling criterion as
shown in Figure 5c. These are handled in the contour separation
step, as explained in Section 4. Further, there can also be multiple
outer boundaries associated with a single inner boundary violating
the valid sheath structure criterion. These are handled in the noise
removal step, as explained in Section 5.

The isocontours at specific intensity levels show the regions of
the axon in different topologies: the axon boundaries might have
multiple components (Figure 5a) or multiple axons might be merged
into a single axon boundary (Figure 5c). On the other hand an anal-
ysis of the change in topology of the axon boundaries over the iso-
contours of smoothly varying intensity levels provides a wealth of
information for identifying the sheath structures accurately. This is
the key observation behind the progressive isocontouring method.
We compute the curves with the same brightness (isocontours) in
the image repeatedly for progressively increasing intensity values
(Figure 5). When the topology of the isocontour changes over sub-
sequent higher intensity levels, we analyze it to detect the forma-
tion of new sheath structures (two closed curves one containing
the other). These sheaths identified at a specific intensity level
(blue curves in Figure 5d-f), would be enclosed by the isocon-
tours in the subsequent intensity level images (red curves in Fig-
ure 5). These containments are detected and only the blue isocon-
tours (with smaller sheath thickness) are retained as a non-redundant
sheath structure.

4. CONTOUR SEPARATION
After the first step of the pipeline we get non-redundant sheaths,

but they may not satisfy the boundary coupling criterion. There can
be detected outer boundary contours that enclose multiple smaller
inner boundary contours. This is due to the fact that any pathology
being imaged by the microsope, though very thin, still has a non-
zero thickness. Each cell seen in the image will have a slightly
different depth than the others. Though their mobility is restricted,
they can sometimes occlude parts of other cells merging visible
outer boundaries.

Figure 7a illustrates the typical scenario of merged contours where
the outer boundary of multiple myelin sheath structures are merged.
This step of our algorithm divides the outer boundary into required
numbers of closed curves to match with each enclosed inner bound-
ary (Figure 7d).

One simpler and obvious solution to separate the contours is by
dilating the inner contour along the normal direction by the min-
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Figure 7: Contour separation algorithm on Real Data: (a) The pink outer boundary encloses multiple blue inner boundaries violating

the boundary coupling criterion. (b) The Delaunay triangulation of the vertices on inner and outer boundary contours. (b) The edges

of the triangulation that connect any inner boundary vertex to an outer boundary vertex are retained. (d) The edges incident on each

inner boundary that are statistical outliers with respect to edge length are shortened to match the average edge length of these edges.

(e) The closed loop of vertices thus formed by the farther ends of the edges incident on each boundary forms the corresponding outer

boundary thus separating the merged outer boundary contour.

imum distance to the outer contour enclosing it (Figure 6a). Al-
though this method works reasonably well in many cases, it is not
robust and is susceptible to noise (cellular debris) in the image. It
may lead to sheath structures with inaccurate thicknesses and hence
inaccurate G-ratio value and eventual misclassification of the OR-
axons (Figure 6c).

To avoid these problems, we propose a robust Delaunay trian-
gulation based contour separation algorithm. A triangulation of a
point set is Delaunay if no point is inside the circumcircle of any
triangle of the triangulation. Hence, a point is always connected to
its closest point in Delaunay triangulation. Before detailing the al-
gorithm, let us consider a sheath whose inner and outer boundaries,
I and O are detected and coupled correctly. Let us consider a De-
launay triangulation of the vertices in the two boundaries, i.e. I∪O.
Let us retain only those edges from this triangulation that connect
a point in the inner boundary to a point in the outer boundary. This
retained set of edges corresponds to the sheath S in which all edges
have lengths close to the thickness of the sheath (Figure 7). Further,
we also notice empirically that all vertices in the outer contour are
connected to at least one inner contour vertex. We use these obser-
vations to handle situations where there are multiple inner contours
within a single outer contour (Figure 7a).

The contour separation method takes as input N, N > 1, inner
contours, denoted by Ik, 1 ≤ k ≤ N and their single outer contour
O. The output is N closed outer contours, Ok one corresponding to
each inner contour Ik, carved out of O. The basic observation is that
around each inner contour Ik, the outer contour O is well formed
except in areas of concavities in O (Figure 7a). For this we first
perform a Delaunay triangulation of all the points in Ik, 1 ≤ k ≤ N,
and O (Figure 7b). Next, we retain the edges connecting the inner
boundary vertices to the outer boundary vertices (Figure 7c). Note
that the Delaunay edges in the concavities of O connect two outer
boundary vertices and are hence removed.

As discussed earlier, in an ideal cell with coupled inner and outer
boundary contours, the retained Delaunay edges incident on the in-
ner boundary vertices are all of similar lengths. So, we find the
edges incident on each Ik that are statistical outliers in terms of
their length. These are usually the edges which couple an inner
boundary vertex to an incorrect vertex in the outer boundary or a
different inner boundary. If an outer boundary vertex po is con-
nected only by these retained Delaunay edges that are statistical
outliers then each of these edges connected to po is shortened away
from po to the average length of all the other non-outlier edges in-
cident on Ik (Figure 7d). The outer boundary Ok is now formed
by connecting the farther end points of the edges incident on Ik in
order (Figure 7e).

This Delaunay based contour separation method is extremely ro-
bust. This algorithm is also provably correct as it retains only those
Delaunay triangles whose circumcenter is close to the medial axis
[1] formed by the coupled inner-outer contour pair points, thus es-
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Figure 8: This figure illustrates the local discontinuities in edge

length in an invalid sheath when compared to a valid sheath in

real data. The left and the center images show a valid and an

invalid sheath respectively. The right image shows the plot of

the sheath thickness as we move along the contour of the valid

and invalid sheath. The valid sheath shows a locally smooth

plot while the bad cell shows severe local discontinuities.

tablishing the one-to-one and onto correspondence between the in-
ner and outer contours as prescribed by the boundary coupling cri-
teria for the definition of a sheath structure. Further the lengths
of the edges retained in this Delaunay triangulation provide a very
good estimate of sheath thickness which is later used in our G-ratio
computation and classification (Section 6).

5. NOISE REMOVAL
Following the contour separation step, we get non-redundant bound-

ary coupled sheath structures, but we still have many invalid sheath
structures detected due to cellular debris. In this step we identify
such cellular debris and remove them. After the removal of cellular
debris, the remaining cell structures satisfy all the rules of a valid
axon structure described in Section 3.

Sheath structures that have self-intersecting boundaries and in-
tersecting inner and outer boundaries can be identified using simple
line-polygon intersection algorithms and removed. The invalidity
due to axon-within-axon (Figure 4) is detected using the same con-
tour within contour test as used to differentiate inner boundaries
from outer boundaries in Section 3. Note that axon-within-axon
noise structures are different from structures that require axon sep-
aration. The former structure has multiple axons (with both inner
and outer contours) inside another axon (again with both inner and
outer contours), while the latter has multiple inner contours inside
a single outer contour.

The last case of invalid sheath structure is one with locally non-
uniform sheath thickness. This is detected using an algorithm sim-
ilar to the one proposed for contour-separation. We retain the De-
launay edges of the vertices in the inner (I) and outer (O) contours.
It can be clearly seen from a typical example in Figure 8c that the
variance in the edge lengths of the valid and invalid sheaths are
clearly different and can be used to distinguish one from the other.

6. OLIGODENDROCYTE-REMYELINATED

AXON CLASSIFICATION
The identification and classification of oligidendrocyte-remyelinated

axons are done based on a parameter called G-ratio. The G-ratio is
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Figure 10: (a) Image shows the manual count of OR-axons represented using red markers. (b) Automatic count of oligodendrocyte-

remyelinated axons on the same image, using the algorithm presented in this paper. (c) Visualization of the cluster density map

of the manual count (d) Density map of the automated count. Images (c) and (d) should be similar if the actual and the manual

counts closely match. Using image similarity measure SSIM [16], we show that the two density images are indeed very similar (SSIM

=0.982).
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Figure 9: K-means clustering algorithm for Axon Classifica-

tion: The Y-axis shows the G-ratio of the axons. The X-axis

is the intensity level at which specific axons were detected us-

ing the progressive isocontour process. The greeb points repre-

sent the OR-axons (true positives), the magenta, red and black

points represent the false positives, false negatives and true neg-

atives respectively. The data is accumulated over many micro-

scopic images spanning different staining intensities, and with

different numbers of axons.

defined as the ratio of the sheath thickness to the axon diameter. To
find the sheath thickness, we perform the Delaunay triangulation of
its inner and outer boundary vertices and retain only the edges that
connect the inner boundary vertices to the outer boundary vertices.
The mean length of these retained edges approximates the sheath
thickness. The axon diameter is computed as the largest distance
between any two points in the inner boundary I.

There are three kinds of myelinated axons: (a) normally myeli-
nated axons are those that were not affected during the spinal cord
injury, (b) the axons that were remyelinated by the Schwann cells
and (c) the axons that were remyelinated by the oligodendrocyte
cells that were injected in the course of therapy. Our goal is to
detect and count the OR-axons in order to monitor the progress
of oligodendrocyte based remyelination which is a critical step in
estimating the efficacy of the therapy. Oligodendrocyte remyeli-
nated axons are characterized by lower G-ratios than the normally
or Schwann remyelinated axons. Hence, to classify these thera-
peutically important axons we perform k-means clustering of the
G-ratios with number of clusters set to two. The axons correspond-
ing to the cluster with lower G-ratio are the OR-axons.

Since, typically during manual counting, it is prohibitively te-
dious to measure G-ratios for all the detected sheaths, the con-
ventional way to identify an OR-axon is by the lighter intensity
of its myelin sheath when compared to the darker, more compact,
Schwann cell-remyelinated axons [15, 7]. On the other hand, since
we can accurately measure G-ratios automatically, we use relative
G-ratios for clustering the OR-axons. However, we make an inter-
esting observation from this classification. While it is true that all
cells with lighter intensity sheaths are OR-axons, the converse is

not true – not all OR-axons have lighter intensity sheaths. Hence,
intensity based manual classification is prone to errors. Further, the
intensity levels at which the axons are detected change based on
the staining process before the microscopic images are taken. This
makes intensity based manual classification subjective. Our auto-
mated G-ratio based classification thus reduces classification errors
significantly.

The results of this clustering method for several images are shown
in Figure 9. In this figure we plot the G-ratio of the axons (Y-axis)
against the intensity levels (X-axis) of the progressive isocontour-
ing algorithm at which the axon was detected. The image shows
the plot of cells in over 15 images with variable staining intensities
and different numbers of recognizable cells. Aggregated statistics
from all these images are as follows: all the cells recognized at an
intensity level above 130 are oligodendrocyte remyelinated axons –
so are all the cells with G-ratio below 0.2. Further, all the cells with
G-ratio above 0.35 are non-oligodendrocyte myelinated axons. The
region of confusion is in the rectangular range of intensity less than
130 and the G-ratio between 0.2 and 0.35. The green points in
the figure denote the OR-axons and the black points mark all other
cells. The false positives and false negatives are shown in magenta
and red respectively. Further analysis of these results is given in
Section 8.

7. DENSITY MAP GENERATION
To evaluate the effectiveness of the remyelination therapy it is

important to identify the regions of the image where large clusters
of high density OR-axons occur. The size and density of these
clusters indicate the rate of progress and the location indicates the
appropriateness of the targeted cite of the therapy.

To facilitate this process we calculate a density map as follows:
the centroids of all the detected OR-axons are identified, and for
each pixel in the image, the average distance to its k nearest cen-
troids are calculated. Color coding of these values gives the den-

sity image that visually represents the relative concentration of the
detected cells. Lower values indicate higher concentration of OR-
axons and vice versa. Hence, cooler colors (blue) indicate the cites
of remyelination due to oligodendrocytes and warmer colors (yel-
low and red) indicate lack thereoff. Figure 10 shows the density
maps thus calculated for the corresponding input images shown in
the same Figure.

8. RESULTS AND ANALYSIS
We used Sprague Dawley female adult rats with 200 KiloDyne

force spinal cord contusion injury. All tissues were fixed and pro-
cessed as described in [15]. The images of these tissues were used
as input to our system. The implementation of the algorithm was
prototyped using MATLAB and the images used had different in-
tensities. The shapes and scales of the cells also varied across im-



ages. The remyelination analysis that we automated was also car-
ried on manually by experts without the knowledge of the results of
the automated process. The experts were also consulted to review
the results of the automated process.

Sample classification results with manual count and automatic
counts are demonstrated in Figure 12. The left column of Figure 12
denotes the greyscale images with manual counts marked with red
and the right column denotes the results from our automatic classi-
fication with the detected cells marked in green. Figure 11 shows
another example of our automatic classification. False negatives
are denoted by red and false positives by magenta.

Additional results of the manual and automatic counts are shown
in Table 1. Although manual counting by experts suffers from clas-
sification error due to the subjective nature of the task, all the statis-
tics and analysis has been done assuming that the expert counting
for the first time (before seeing the results of the automated pro-
cess) is the ground truth (Column 1 of Table 1). The same images
were then processed using our method and the automatic count of
OR-axons were reported in Table 1. Correctly classified OR-axons
were considered to be true positives (denoted by green in Figure 9),
and the cells that are chosen by the system but not by the experts
are false positive (denoted by magenta in Figure 9).

Actual count of
axons

Automated
count of axons

Hit rate Excess
rate

68 65 94.12 1.4

78 80 92.31 10.2

96 100 91.67 12.5

35 38 94.29 14.28

25 30 96 24

Table 1: Empirical performance evaluation using domain ex-

pert’s count as ground truth: OR-axons detected by our al-

gorithm closely match the ground truth, demonstrated by the

high hit rate.

Traditionally, the success of an automated method is defined by
the hit rate given by

hit rate =
Number of true positives

Manual count of OR axons
. (1)

This is usually accompanied by a false alarm rate given by

false alarm rate =
Number of false positives

Manual count of non-OR axons
. (2)

However, since the non-OR axons are of no importance in the con-
text of remyelination, manual count for non-OR cells are not avail-
able for us to calculate false alarm rate. Hence, we define a new
term called excess rate as

excess rate =
Number of false positives

Manual count of OR axons
. (3)

A high hit rate signifies effective classification of OR axons while
a low excess rate signifies effective rejection of non-OR axons.
Hence, the hit rate together with the excess rate provides an im-
portant indicator for the accuracy of the automated remyelination
analysis. A high hit-rate (> 90%) accompanied by a low excess
rate (< 25%) signifies a successful automated analysis.

The false positives (shown in magenta in Figure 9) either have
high intensity or have very low G-ratio values indicating that they
are indeed within the statistical range of correct OR-axons. Inter-
estingly, on showing the results of the automatic cell detection, the
experts concurred that over 95% of false positives (cells chosen
by us but not the experts) were actually true positives. These true
positives were missed due to several human factors like subjectiv-
ity and fatigue. This demonstrates the need for automated analysis

and also validates a higher accuracy for our automated analysis by
increasing the hit rates and reducing the excess rates.

On the other hand, the false negatives (shown in red) which de-
termines the miss rate (i.e. 1-hit rate), in Figure 9, is in the bound-
ary of true positives (shown in green) and true negatives (shown in
black) and hence are difficult to automatically label them correctly
using only G-ratio and intensity. A similar pattern is observed when
considering single images, as shown in Figure 11. Interestingly,
classification of the false negatives was also subjective among hu-
man experts and the misclassification by the automated system is
well within the variance experienced in human counting.

The most important validation of the success of the automated
analysis would be in comparing a density map generated from the
clusters created by the automated process with the one that is cre-
ated from the clusters marked by the manual process since this is
the visualization that is ultimately used for detecting the growth
and site of remyelination. Figure 10 shows an example of density
images for both manual counts and automatic counts for a sam-
ple image. The number of k nearest neighbors was fixed at 1/4th

of the number of cells in the manual count. Blue regions in the
density image denote areas having higher density of detected cells
(Figures 10c and 10d).

In order to quantify the image similarity between the density im-
ages from the manual and automated counts, we use a well estab-
lished image similarity measure, Structural SIMilarity (SSIM) in-
dex [16]. SSIM is an objective method for assessing perceptual im-
age quality using structural similarity between images. The mean
SSIM index value of 1.0 between two images denotes two identical
images. For the image shown in Figure 10, the mean SSIM index
value between the density images corresponding to manual and au-
tomated count is 0.982. The mean SSIM index for all the images re-
ported in Table 1 is 0.97(±0.02). Thus the method not only counts
the desired cells with high degree of accuracy, but also identifies,
classifies, and labels individual axons with very high confidence.

9. CONCLUSION
We have presented an end-to-end process for accurate analysis

and visualization of the clusters of OR-axons critical to evaluate
the progress of remyelination therapy. Our automated cell clas-
sification always correctly identifies the region populated by the
OR-axons, and closely matches the manual classification. Further-
more, the automated identification has a natural advantage of ob-
jectively classifying the axons. This automated remyelination anal-
ysis and visualization has also injected a lot of excitement among
our neurobiologist collaborators. This project will relieve them of
several weeks of a pain-staking, repetitive, and mundane task that
consumes several hours of trained manpower. By virtue of its accu-
racy in detection and classification of axons, we hope this method
will find widespread applicability [11] thus reducing the turnaround
time of the neurobiology research.

Though specific in application, there are several components of
the algorithm that are generic and can be applied in different types
of medical image analysis and visualization. The progressive iso-
contouring algorithm is a simple and generic image processing tech-
nique that can detect closed shapes in general stained microscopic
images. In addition, this method also detects event points when the
shape topology changes. Any application specific post-processing
method can process just these events to detect the required cells.
Our Delaunay triangulation based geometric processing contour
separation and noise removal methods might evoke great interest
in the newly developing bio-geometry community.
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Figure 11: (a) Manual classification (b) Automatic classification: False positives are shown in magenta, false negatives in red and

true positives with green markers as compared to image (a). (c) Shows the k-mean classification of the cells. Note that the false

negatives are in the boundary of true positives and true negatives and hence are difficult to automatically label them correctly using

only G-ratio and intensity classifiers.
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Figure 12: Classification results: Left: Stained images showing

manual classification by domain experts; Right: Gray images

showing classification using our automated method. The cap-

tion shows the number of OR-axons classified manually and au-

tomatically. Note that the domain experts nor the automated al-

gorithm were aware of each others classification results. Please

zoom in to see results.
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