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ABSTRACT
With an increase in the percentage of people over the age of
65 years or older, there is a growing interest in finding ways
to slow or reverse some of the effects of aging on the human
body. One of these effects is the loss in the ability of the
human eye to visually focus on near objects. Understanding
the properties of the natural lens and the associated mecha-
nisms of accommodation will greatly increase our knowledge
to identify alternate solutions to reverse this phenomenon.
Towards that end, a technique called photorefraction is cur-
rently being used in laboratory studies involving monkeys.
To quantitate the lens properties, there is a need to accu-
rately measure monkey lenses in images produced by this
technique. In this paper, we present two probabilistic meth-
ods for segmenting the lens from photorefraction video se-
quences. Results of the developed methods are compared
and evaluated against ground-truth segmentations. In ad-
dition, the results obtained are also compared to those ob-
tained by a level set segmentation method.
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1. INTRODUCTION
In 2003, 12% of the U.S. population was 65 years of age

or older. That percentage is projected to increase to 20% by
2030 [6]. As the population ages, interest increases to find
ways to slow or reverse some of the effects of aging on the
human body. One of these effects is the loss of the ability
to visually focus on a near object. Changing focus from far
to near is called ‘accommodation’. ‘Presbyopia’ is the age-
related loss of the ability to accommodate. This process is
complete by the time people reach their early fifties.

Research regarding treatments for presbyopia will bene-
fit from an increased understanding of the mechanisms in-
volved. Toward that end, a technique called photorefraction
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Figure 1: Diagram of a photorefraction experiment.

is currently being used in laboratory studies using monkeys.
Monkeys have provided a useful model in the study of ac-
commodation because of their ocular similarity to humans.
Video sequences of the monkey eye are produced in pho-
torefraction and calculations are made from frames of the
video.

To acquire these sequences, each experiment is recorded
to videotape at 30 Hz on a black and white CCD video cam-
era. An opaque occluding device covers the lower half of the
lens on the video camera (Figure 1A). An array of infrared
light emitting diodes (IR-LED) is located on this occlud-
ing device. The system of video camera, occluding device,
and LED array is placed in front the eye at a distance, d.
Since the lower half of the camera lens is occluded, only the
upper part of the light returning from the lens enters the
camera. The originating location of that light on the lens is
determined by the optics of the eye. If the eye is focused at
distances greater than d, then the light entering the camera
will originate from the upper portion of the lens (Figure 1B).
If the eye is focused at a distance less than d, then the light
entering the camera will be inverted such that it will come
from the lower portion of the lens (Figure 1C). In images
of the eye, the upper portion of the lens is brighter in the
unaccommodated lens (Figure 2A) than in the accommo-
dated lens (Figure 2B). This change in vertical brightness
can be measured as a change in slope of the intensity profile
(Figure 2C&D). Analysis of each video frame in a photore-



Figure 2: Images of a monkey lens in (A) the unac-
commodated and (B) accommodated states produce
pixel intensity profiles with (C) a negative slope and
(D) a flatter slope, respectively.

fraction session returns a single slope value that is calculated
from the intensity profile (Figure 3). This slope value has a
strong inverse relationship with the actual refractive ability
of the eye as measured in inverse meters (m−1), also known
as diopters (D).

In typical photorefraction studies with monkeys, the iris is
surgically removed to provide a better view of the structures
in the eye. Fully exposed lenses in video images of iridec-
tomized monkey eyes provide a number of challenges to seg-
mentation; occlusions from tears, eyelashes, and other struc-
tures are common; the defining features of the lens boundary
vary from image to image and at different positions within
the same image; and the lens illuminates differently at dif-
ferent angles. In addition, certain conditions can cause the
appearance of false lens edges that strongly mimic true ones.

The main goal in these experiments is to record the ac-
commodative state of the eye in each frame in order to make
conclusions about changes in accommodation over time. Be-
cause dynamic changes in accommodation are being sought,
it is necessary to make precise measurements with low noise.
Typical experiments run at 30 frames per second for 48 sec-
onds on the low end to more than an hour on the high end.
The large volume of data coming from these experiments,
combined with the need for consistent measurements, cre-
ates the need for these calculations to be performed auto-
matically.

In this paper, we present an algorithm that is designed
to segment lenses in individual photorefraction images. It
is further extended such that the segmented boundary is re-
fined by exploiting the temporal dimension of the video. The
results of the developed algorithms are compared to results
obtained using a Level Set method of segmentation. All
three of these algorithms address the ‘Lens Segmentation’
module of the overall processing pipeline shown in Figure 3.
The initial step of detecting the Purkinje image is related to
detection of the lens center that forms the initialization for
all segmentation algorithms discussed here. The lens center
is detected by finding the projection of the LED array on
the lens and is accomplished by template matching [14].

The rest of the paper is organized as follows: In Section 2,
relevant previous work is discussed which lays the ground-

Figure 3: Diagram of photorefraction calculations.

work for the segmentation algorithms described here. Sec-
tion 3 describes in detail the probabilistic edges (PE), and
iterative probability (IP) methods as well as the level set
method used for comparison. Methods of validating these
algorithms are discussed in Section 4.1 and 4.2. Section 4.3
presents results from the individual methods as well as com-
parative results. Section 5 concludes with discussion of these
methods and their significance.

2. PREVIOUS WORK
Many methods have been developed which are designed

to follow or delineate the boundaries between regions based
on image intensity or gradient. Active contours, or ‘Snakes’,
as originally proposed by Kass, et al [8], make use of a para-
metric curve, v(s) = (x(s), y(s)), which minimizes an energy
functional:

Esnake =

1∫

0

Eint(v(s)) + Eext(v(s)) + Econ(v(s)) ds (1)

The snake is designed such that the functional is minimized
as the curve molds around the object of interest. In this
functional, an external energy component is responsive to
image features such as the gradient, an internal energy com-
ponent defines the motion of the snake, and a constraint
component incorporates an anchoring point or a repulsive
force. As originally proposed, snakes have the disadvantages
that they must be placed in close proximity to the object of
interest and that they do not conform to concavities. Cohen
and Cohen [1] addressed this by adding an inflating force
to the active contour. Another adaptation to address these
issues is to replace the external force with a gradient vector
field [18]. In this method, a field of vectors point to the gra-
dient and this field extends to all parts of the image, thus
guiding the snake to the desired end point. Others have
added an inertial force in a system that adds velocity and
mass to the spline points [2]. The addition of mass and ve-
locity to the spline points to other systems where particles
have been used in an active contour like manner. In these
systems, the particles behave like real world particles that
have mass and follow Newtonian laws of motion. Szeliski et
al. [15] used oriented particles which had not only a position,



but an orientation in 3D space. Jalba et al. [7] represented
their particles as charged particles in an electric field.

Level set formulations have been proposed for segmenta-
tion of curves by incorporating a means of following fronts
which propagate with a velocity which is dependent on their
curvature [13]. To do this, the object of interest is seen as
the intersection of the plane (or volume) with a higher di-
mensional surface [11]. This method provides the advan-
tage that it can deal with discontinuous regions and holes
by representing them as branches of the higher dimensional
surface. It also allows for initialization to occur far from the
object of interest. A general problem with these techniques
is the tendency to ‘leak’ when the magnitude of the stopping
criterion, e.g. the gradient, decreases in certain regions. As
an alternative, flux has been used to direct the level sets
toward low contrast edges such as elongated blood vessels
[17]. Instead of propagating level sets, flux has also been in-
corporated into graph cuts in combination with length/area
[9].

The above methods are useful when a reliable edge type
exists such as a gradient or a zero-crossing. However, many
of the images in this study have competing edges with similar
characteristics. For this, a method is desired which distin-
guishes between competing edges and assigns probabilities
to each. Probabilistic methods have been applied to numer-
ous problems in computer vision. Maximum a posteriori
(MAP) was used for higher-level inference of 1-D structures
to find roads in satellite images [5]. An analysis of this data
indicated that MAP was effective only to the level that the
images provided good visual cues [20]. Lower level segmen-
tation was achieved by supervised learning of a large num-
ber of general image cues in regions centered at each point
in training images [3]. Others have used a limited number
of specifically chosen edge characteristics such as color and
gradient to aid the classification of edge points [10, 12]. As
opposed to edge points, Elder et al. [4] used supervised
learning of contours where final boundaries were obtained
by probabilistic methods such that a true probability could
be assigned to the final contour.

Numerous papers report a multi-step approach using a
variety of methods to segment or track objects in highly
specific contexts. As one example, Yan et al. [19] described
an approach for segmenting objects in medical images which
could be described as a closed curve. In this approach, a
region of the image which was centered on the object of
interest was transformed into the polar domain. Then a
pre-computing algorithm was used to locate the pixels on
the boundary of the object. The image with selected pixels
was transformed back into image coordinates and the pixels
were fitted with a Fourier equation.

3. METHODS
This section presents the segmentation methods developed

for detecting the lens boundary in all frames of the acquired
photorefraction video. The probabilistic edge method (sec-
tion 3.1) uses a multi-step approach reminiscent of Yan et
al. [19] in that the image is pre-processed into a polar trans-
form, edges are found on the polar image, and then a curve
is fit to the edges. However, in this case, supervised learning
of edge probabilities was used to find the edge. The results
of the probabilistic edge method are further refined by an
iterative probability method (section 3.2). Finally, these re-
sults are compared with a level set method (section 3.3).

3.1 Probabilistic Edge Method
As a first step, the image, I(x, y), was transformed into a

polar image, Ip(ψ, r), using the following transform:

Ip(ψ, r) = I(a, b) (2)

where

a = x0 + cos ψ ∗ (r + R0)

and

b = y0 + sin ψ ∗ (r + R0).

This is done to simplify edge calculations, which are ex-
pected to exhibit radial continuity due to the inherent lens
shape. The point (x0, y0) is a selected point near the center
of the image. The constant, R0, is the distance from the im-
age center at which the transform begins. The initial point
in the polar transform (x0, y0) was chosen such that it was
close to the center of the lens, (xc, yc). Assuming that the
lens is circular and that (xc, yc) does lie within the circle,
then the lens edge in the resulting polar transform will nec-
essarily be a sinusoid with a single period, 2π. The equation
for the sinusoid is given by:

r = r0 + A ∗ sin(ψ + φ). (3)

The distance from the true center of the circle to the initial
center is equal to the amplitude of the sinusoid:

A =
√

(xc − x0)2 + (yc − y0)2 (4)

and the the angular direction of (xc, yc) in relation to (x0, y0)
corresponds to the phase, φ, in the sinusoid. The actual
radius of the lens is given by r0.

All subsequent operations were performed on the polar
image. The set of all edge points, T , in the polar image
were calculated using zero-crossings of first and second order
derivatives:

T = T1 ∪ T2 (5)

where

T1 = {t1,...,tn},dIpt

dr
= 0

and

T2 = {t1,...,tn},dI2
pt

dr2
= 0.

The subset of all edges which lie on the boundary of the
lens are denoted as T 0. It was observed that first order lens
edges, T 0

1 , tended to appear as dark intensity minima in
regions where the lens and the sclera came together, while
second order edges, T 0

2 , were high contrast gradients in re-
gions where the retina could be seen between the lens and
the sclera. Two first order texture values were also calcu-
lated from the polar image. Energy and entropy were cal-
culated from histograms of pixel intensities in a 7x7 window
centered at each pixel in Ip.

A set of characteristics, D, was collected at the positions of
all edges, T , in each image. The set of characteristics can be
enumerated as D = {d1,..., dn}. This set included (d1) first
derivative; (d2) second derivative; (d3) energy; (d4) entropy;

(d5) the probability of an edge, t ∈ T 0
2 , where

dIp

dr
< 0; (d6)

distance from the previous edge, t ∈ T2, where
dIp

dr
> 0; (d7)

distance from the previous edge, t ∈ T2, where
dIp

dr
< 0; (d8)



distance from the previous edge, t ∈ T1; and (d9) distance

to the following edge, t ∈ T2, where
dIp

dr
> 0. Also an

iterative probability factor, d10, was set to a constant value
for individual frames or calculated as described later for the
Iterative Probability method.

Probability data was collected from thirty images in an
image database. To account for the two types of lens edges,
T 0

1 and T 0
2 , points were manually selected separately for

each. Two different sinusoids, S1 and S2 respectively, were
then fit to each type of edge using least squares. Inclusion in
T 0

1 or T 0
2 was determined by the distance to the correspond-

ing set of calculated sinusoidal points, S1(ψ, r) or S2(ψ, r),
in the polar image:

ti ∈ T 0
1 if |ti − si| ≤ 1, si ∈ S1 (6)

and

ti ∈ T 0
2 if |ti − si| ≤ 1, si ∈ S2. (7)

In thirty images, a total of 745,635 edge points were found
such that ti /∈ T 0 while 6388 edge points were found such
that ti ∈ T 0.

During supervised learning, data was collected for each
characteristic, di ∈ D at each edge point, t ∈ T . The prob-
abilities, p(D|t /∈ T 0) and p(D

∣∣t ∈ T 0) were estimated by
fitting a Gaussian to the data. As a result, two parameters,
σ and µ were obtained at each edge point where t ∈ T . In
addition, two parameters were obtained in the case where
edge points were on the edge of the lens, t ∈ T 0. Once
the probabilities were learned, the probability that any edge
point, t ∈ T , would be on the edge of the lens could be
calculated according to Bayes rule:

p(t ∈ T 0
∣∣D) =

p(D
∣∣t ∈ T 0) ∗ p(t ∈ T 0)

p(D)
(8)

For simplicity, the maximum a posteriori (MAP) method
was used whereby the probability, p(t ∈ T 0

∣∣D), was esti-

mated by the posterior probability, p(D
∣∣t ∈ T 0). The pos-

terior probabilities were estimated with likelihood ratios for
each edge trait, di, as follows:

p(t ∈ T 0
∣∣di) =

1(
1 + p(di|t/∈T0)

p(di|t∈T0)

) . (9)

In addition, two specific posterior probabilities were es-
timated in response to situations where true second order
edges, t ∈ T 0

2 , were preceded by a paired high probability
first order edge, tprevious ∈ T1. The first estimate modulates
the probability of the distance from the previous edge by the
probability of the previous edge:

p(t ∈ T 0
2

∣∣d8) =
1(

1 + 1
p(d8|t∈T0

2 )∗p(tprevious∈T0
1 |D)

) . (10)

Conversely, first order edges are multiplied by an inverse
equation that reduces their probability if they are closely
followed by a high probability second order edge, tnext ∈ T2:

p(t ∈ T 0
1

∣∣d9) =
1

p(d9

∣∣t ∈ T 0
1 ) ∗ p(tnext ∈ T 0

2

∣∣D)
. (11)

Final posterior probabilities were combined differently for
T1 and T2:

p(t ∈ T 0
1

∣∣D) =
∏

p(t ∈ T 0
1

∣∣di) (12)

p(t ∈ T 0
2

∣∣D) =
∏

p(t ∈ T 0
2

∣∣dj). (13)

These probabilities are calculated for all edge points, t ∈ T ,
in Ip and stored as an image which is the same size as Ip.

The best fit to the probabilistic data is determined by an
energy minimizing method. The total energy for each sinu-
soidal fit to the data is calculated by the following equation:

Etotal = Cdist ∗Edist + Cconn ∗Econn + Cprob ∗Eprob (14)

where

Edist =

n=ψmax∑
0

∣∣rp − tn

∣∣ ∗ w , (15)

Econn =

n=ψmax∑
0

{
1, (|rp − tn| ∗ w) > 1
o, (|rp − tn| ∗ w) ≤ 1

, (16)

Eprob =

n=ψmax∑
0

(w ∗ p(tn ∈ T 0
∣∣D))−1 , (17)

w =
max(p(Tψ

∣∣D))

max(p(T
∣∣D))

(18)

where Cdist, Cconn, and Cprob are constants; rp is the po-
sition of r that is predicted by the given sinusoid at the
given position, ψ; and Tψ is the maximum probability of
all edges at any given value of ψ. The weight factor, w, is
used to account for the low probabilities of certain regions of
the probability image. Sinusoids are generated and the one
which minimizes Etotal is chosen as the best fit to the data.
Rather than generate every possible sinusoid, initial ranges
of parameters r0, A, ψ, and φ were pre-selected using a pri-
ori knowledge of the system. The total energy, Etotal, was
calculated for three evenly spaced values of each parameter
and then the parameters were narrowed in a binary search
like manner.

3.2 Iterative Probability Method
The algorithm described so far segments the lens in images

or frames. However, the size and position of the lens from
frame to frame is strongly related. To take advantage of this,
the iterative probability algorithm is used to characterize the
data over the time domain.

Initial lens data is calculated using the probabilistic edge
(PE) algorithm described previously. Individual frames along
with the results of these calculations were stored in an array,
M , of odd length l. A weighted mean and a weighted stan-
dard deviation are calculated for the lens data in the array.
To weight these calculations, the lens results were multiplied
by a Gaussian where σ = l/4, µ = l/2, and x is the position
of the data within the array. The PE algorithm is then per-
formed on m frames beginning with the middle position in
the array. In this case, the height, r, of the polar image, Ip,
is set to r0±2∗sd, where sd is the standard deviation which
was previously calculated. In addition, an iterative proba-
bility factor, d10, is set to a Gaussian centered at r0 with
σ = sd, thus increasing the probability of the previously ob-
tained lens parameters. As before, the PE algorithm returns
the lens parameters, (xc, yc) and r0 which are then used to
calculate a new mean and standard deviation. Additionally,
the total probability, Etotal, is also returned. The iterative
probability (IP) algorithm minimizes Etotal using gradient
descent.



In addition to the information from the previous frame,
the lead image can also use information from the previous IP
calculation. The new IP factor, d10, uses the average radii
from the previous image and expands the sigma value based
on the change in center position of the circle, according to:

µ =
rprevious + rIP

2
(19)

and

σ = σinit +
√

dx2
c + dy2

c . (20)

3.3 Level Set Method
For comparison, a level set method was applied to the

same images and video segments as the proposed methods.
The method used was the ShapeDetectionLevelSetImage-
Filter in the Insight Toolkit (ITK) [16] which is based on
the paper by Malladi et al. [11]. Initially, the purkinje image
was located as previously described. Then, the image was
convolved with a GradientMagnitudeRecursiveGaussianIm-
ageFilter which acted as a Laplacian of Gaussian (LoG) filter
that found the gradient magnitude of the Gaussian blurred
image. Additionally, a sigmoidal filter was applied to the
image intensity values using the equation:

I ′ =
Max−Min

1 + e

(
1−β

α

) + Min. (21)

The user controlled the values of α and β in the sigmoidal
filter as well as the value of σ in the LoG filter. Additionally,
the user was able to start the level set boundary at a selected
distance from the purkinje image.

The application of this filter typically stopped short of
the actual lens edge at a position of high luminance. The
actual lens edge is typically a dark boundary which can be
described as a first order minimum in the image. For this
reason, the boundary resulting of the level set method was
used as the starting point of a second level set which op-
erated on the original image to find an image minimum.
Both applications of the level set method had components
for propagation and curvature which were set by the user.

4. EVALUATION AND RESULTS

4.1 Data
An image database was created which had 126 photore-

fraction images. These were selected from videotapes of 29
different experimental sessions involving one of six different
monkeys. Images from within a single experiment were se-
lected to show a variety of accommodative states as well as
different eye positions. Thirty of these images were used for
supervised learning of the edge probabilities. Therefore, the
remaining 96 images were used for ground truth comparisons
with the different methods.

Comparisons of performance on video sequences were per-
formed on a collection of 10 video sequences which ranged
in length from 1300 to 1700 frames. Two of these sequences
came from experiments in which rapid accommodative changes
were stimulated while the remaining 8 sequences came from
experiments with slower accommodative changes.

4.2 Experiments
To validate the developed algorithms in their ability to

properly segment a lens in a still image, an expert estab-
lished ground truth for the 96 test images in the image

database. To do this, lens edge estimates were drawn on
each image using a short program which draws a circle based
on three selected points. Three acceptable estimates were
averaged for each image returning an average radius, rGT ,
and an average circle center (xGT , yGT ).

Good segmentations of the lens do not exist as single val-
ues of radius and center, but rather as a range of these val-
ues. However, poor segmentations do not vary smoothly
from good ones and tend to separate from the good ones
when graphed. Therefore graphs were created which plot-
ted positive segmentations against the percentage deviation
from ground truth for both radius and circle center. An ac-
ceptable range, rlimit and dlimit, was defined for the radius
and circle center, respectively .

Each algorithm was run on the same 96 test photorefrac-
tion images. The results were then evaluated such that if the
distance of either the radius or the center point from ground
truth exceeded the acceptable range, then the algorithm re-
sult was considered to be a false segmentation. Hence, each
segmentation was assigned a score S according to:

S =





T, rlimit ≥ |r − rGT | and

dlimit ≥
√

(x− xGT )2 + (y − yGT )2

F, rlimit < |r − rGT | or

dlimit <
√

(x− xGT )2 + (y − yGT )2





Results are reported as percentages obtained from the num-
ber of true segmentations divided by the total number of
images.

The algorithms were also run on 10 of the video sequences
described earlier. In this case, the probabilistic edge algo-
rithm was used both with and without the IP algorithm.
Additionally, IP parameters were evaluated such that there
were three different focus frames and 2 different window
lengths (both defined on Figure 7) for a total of six com-
binations of parameters.

The radius from each frame was measured with a running
average of 21 frames calculated from the same data. Then
the differences of all of the radii from the running average
were computed as a single root-mean-square (RMS) value for
each video sequence. RMS values from all 10 video sequences
were reported as a single average for each algorithm being
tested.

In the Level Set method, the user controls the contribu-
tions of the various components of the level set equation
and the associated preprocessing steps by setting the values
of eight constants. No group of settings were found which
worked best for all images tested. These settings were ad-
justed with varying results from image to image (Figure 4).

4.3 Results
The probability densities and associated training parame-

ters for the proposed PE and IP algorithms were estimated
from the 30 training images. Probabilities were obtained
for each edge in the polar image based on the prior prob-
abilities described in sections 3.1 and 3.2. Figure 5 shows
an example polar image overlaid with edge probability es-
timates. Edges with higher probabilities are shown to be
brighter (Figure 5C). Visual inspection of the probabilities
overlaid on the original polar image (Figure 5B) shows that
the higher probability edges correspond well with the actual
lens edge. Additionally, some regions in the horizontal (ψ)



Figure 4: Two randomly chosen images of final level
set positions on monkey lens image. Panel A shows
a good fit to the monkey lens and panel B shows
a boundary that stopped interior to the actual lens
edge.

axis show higher probabilities than others indicating that
various portions of a lens edge will contribute more than
others to the edge calculation.

Quantitative evaluation was performed by comparing lens
segmentation results to ground truth. Following manual seg-
mentation of the 96 test images, each image was segmented
using both algorithms, PE and Level Set. Two plots were
created to find the range within which a result would be
considered positive in relation to ground truth for the ra-
dius and for the center of the lens. In Figure 6A, the ac-
ceptable range from ground truth radius is held constant
at a high value of 20% and increasing ranges from ground
truth center position are tested. Conversely, the acceptable
range from the ground truth center position is held at 20%
and increasing ranges from ground truth radius are tested in

Figure 5: Edge probabilities from a sample polar
image (A) are shown overlaid on the same image
(B) and on a blank image (C).

Figure 6B. Based on these graphs, the acceptable limit was
defined as being within 6% of the ground truth radius. Seg-
mentations that deviated less than this amount from both
the ground truth radius and the ground truth center were
counted as positive matches for ground truth segmentation.
Using these limits, it was found that the probabilistic algo-
rithm correctly identified the lens in 89.6% of the images
compared to 82.3% in the Level Set method.

Figure 6: The percentage of images accepted as cor-
rect segmentations was plotted over the size of the
range of deviation from ground truth for (A) vari-
able distance to the lens center and (B) variable dis-
tance to the lens radius.

The iterative probability algorithm was analyzed with six
combinations of parameters as described earlier. RMS val-
ues from 10 video sequences are shown in Figure 7A. There
was essentially no difference in the variance whether the IP
algorithm was run with one, two, or three focus frames.
The larger window with 59 frames appeared to produce
higher RMS values, but this was not a significant differ-
ence. However, the RMS values themselves had a higher
standard deviation in video sequences of rapidly changing
accommodation. Inspection of results from rapidly chang-
ing video sequences indicates that a large IP window size
causes erroneous results in the vicinity of rapid accommoda-
tive changes. When data from these video sequences was re-
moved (Figure 7B), there was a slight, non-significant trend



toward lower RMS values with more focus frames.
The IP algorithm appears to aid the PE algorithm on dis-

joint video sequences where the lens position changes dra-
matically from one frame to the next. The RMS value from
the Level Set method was large and variable at 1.9 ± 1.3
pixels, while those of the PE method (0.44 ± 0.12) and the
PE method guided by the IP algorithm (0.43 ± 0.13) were
lower, more consistent, and nearly identical to each other.

Figure 7: Two parameters were varied as the IP
algorithm was used to test the variance of measured
radius from either (A) all 10 video sequences or (B) 8
video sequences of eyes with slower accommodative
responses.

Figure 8A shows results from a video sequence where the
eye had moved during a time interval when the video camera
had been turned off and on again. When the probabilistic
algorithm was run on this sequence without guidance from
the IP algorithm (red), it lost the lens location and wandered
from that point on. The probabilistic algorithm was able to
find the lens again when the IP algorithm was guiding the
lead frame. The IP algorithm minimizes the sine fitting
energy functional of the PE algorithm. Figure 8B shows
how the final sine fitting energy increases as the probability
of a good fit decrease. Figure 9 shows a comparison of RMS
results from radius measurements of the level set method,
the PE method, and the IP method used in combination
with the PE method. The combination of IP parameters
used for this comparison had an IP window of 19 frames
and 3 focus frames. The level set algorithm parameters were
adjusted at the start of each run.

5. DISCUSSION AND CONCLUSION
In comparison to the probabilistic edge method, the level

set method had a lower percentage of correct segmentations
on single frame ground truth images and a much higher
variance as measured by RMS of radius measurements on
video sequences. The level set method as used here applies
the same criteria to the whole lens regardless of the edge
conditions at any part of the lens. As such, it was vul-
nerable to varying conditions in different radial directions.
As indicated by its reasonably good performance on single
ground truth images, it segmented initial video frames cor-
rectly when the user was able to find the correct parameters.
However, image conditions change during video sequences
and there was no guarantee that the conditions in future
frames would be sufficiently similar to those of the first such
that the algorithm would continue to find the edge.

The probabilistic method could find multiple potential
edges in any radial direction instead of just one. Each poten-
tial edge was assigned a probability and these probabilities
were taken into account in the sine fitting functional. As a

Figure 8: (A) The PE algorithm was used either
alone (red) or in conjunction with the IP algorithm
(blue) on a video segment in which the camera had
been turned off in the vicinity of frame 1500. (B)
The values of the sine fitting energy functional that
is minimized in the IP algorithm are plotted over
time.

Figure 9: Shows the RMS variance in radius ob-
tained on 10 video sequences.



result, this method was robust in the presence of random
noise, although still vulnerable to competing structures in
the image. A second advantage of the probabilistic algo-
rithm was that probabilities could be learned for multiple
edge types. In the current implementation, first order edges
were one type of edge while second order edges were catego-
rized as two types depending on the value of the first deriva-
tive. Second order edges with a first derivative below zero
were never sought as a possible lens boundary, but rather
they provided information which was used to calculate the
probabilities of the other two types. Other edge types could
be added if this method is to be extended or applied else-
where. For example, the contact lens on the eye often had
a detectable edge which could have been used to influence
the probabilities of true edges. Boundaries can also include
changes in other features such as texture.

Measurements of variance from the IP method showed
no significant improvement over single, lead-edge measure-
ments of the probabilistic method. The reasons for this are
not clear and call for further investigation. However, the IP
method did demonstrate the ability to steer the probability
algorithm back to the lens when it was lost on a disjoint
video segment. This is an important addition to the overall
probabilistic method for reasons of both speed and accuracy.
The probabilistic method is typically initialized with a full
algorithm and then quickly shifted to a faster version which
essentially means a smaller search window. This smaller
search window is inherently faster because of the reduced
calculations involved. It is also less vulnerable to other false
segmentations because it is already focused on the region
passed from the previous frame. The IP method now pro-
vides a mechanism to deal with situations where the lens is
outside of the search window.
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