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ABSTRACT

We present a novel segmentation method to better capture
the boundary of a non-homogeneous object such as the optic
disk(OD), defined locally by two similar characteristic re-
gions. Existing active contour models which utilise gradient
information [12] or global region intensity [2] fail to localise
aforementioned boundaries. We propose a region-based ac-
tive contour model that uses local image information around
each point of interest in multi-dimensional feature space.
This model uses a local energy functional and level-set rep-
resentation to achieve desired OD segmentation. The local
energy functional defined on each image point provides suf-
ficient information to determine a desired OD segmentation
which is robust to the variations found in and around the
OD region. This method has been evaluated against the seg-
mentation provided by three medical experts on 138 retinal
images. Both region and boundary-based assessment per-
formed against two well established active contour models
show strengths of the proposed method.

1. INTRODUCTION
The optic disk (OD) is an important structure in the hu-

man retina. It is the exit point of retinal nerve fibers from
the eye, and the entrance and exit point for retinal blood ves-
sels. Any change in the shape, depth or colour in or within
OD is used by ophthalmologists to assess various retinal
pathologies. Several attempts for automatic retinal image
analysis and assessment have been made towards assisting
ophthalmologists in several ways such as by reducing work-
load, by providing quantitative evaluation, etc,. One of the
important steps in retinal image analysis is the OD segmen-
tation. Other than being an indicator for various ophthalmic
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Figure 1: a) Original color retinal image b) High-
lighting ill-defined boundary region and image vari-
ation near OD boundary due to atrophy (a patho-
logical change).

pathologies, it acts as a reference to measure distances and
identify other anatomical parts in retinal images (e.g. the
fovea), for blood vessel tracking, etc.

A colour fundus (retinal) image (CFI) is a projection of
retinal structures on 2-D color plane where the OD appears
as a bright circular or elliptic region partially occluded by
blood vessels as shown in Fig.1(a). OD segmentation is a
challenging task mainly due to blood vessel occlusions, ill-
defined boundaries, image variations near disk boundaries
due to pathological changes and variable imaging conditions.
Specifically, occurrence of similar characteristics regions (At-
rophy) near disk boundary, irregular disk shape and bound-
ary are the most essential aspects to be addressed by a OD
segmentation method. A sample image is shown in Fig 1 to
illustrate the above conditions.

Lalonde et al. [6] propose an OD localisation scheme us-
ing Hausdorff based template matching and pyramidal de-
composition. This method assumes a circular model to ap-
proximate OD region for which radius parameter was esti-
mated from the localised region. Chrastek et al. [4] also
consider a circular model and present a method consists of
four steps: localization of the optic disc, nonlinear filter-
ing, Canny edge detector and Hough transform. A similar
method is proposed in [1] with an improved morphological-
based pre-processing step.

A method proposed in [16] uses an intensity-based tem-
plate matching to coarsely localise the OD boundary and



then smoothen by an ellipse fitting step. Recently, few active
contour based methods have been presented to better cap-
ture irregular OD shapes. Mendels et al.[12] use a greylevel
mathematical morphology and extract the OD boundary us-
ing gradient vector flow (GVF) snake similar to the approach
presented in [8]. A set of manually marked boundary points
are used to initialise the snake. The accuracy of this method
is highly dependent on the intialisation together with the
sensitivity of the snake to the local energy minima which
primarily arise due to gradient variations in and around the
OD region. Osareh et al. [15] present improvements by
automatically initialising boundary points using a template
matching scheme. Lowell et al.[11] use an elliptical shape
based deformable model to eliminate sensitivity to the local
minima. A variational level-set based approach followed by
a ellipse fitting step is presented in [21]. Li et al. [9][10]
modify an active shape model (ASM) for the OD and ob-
tain the optimal model parameters by fitting to the image
data. Novo et al. [14] showed application of topological ac-
tive net (TAN) model for the localisation and segmentation
of the OD, together with the genetic algorithm scheme for
its optimisation. Few energy terms are incorporated in the
TAN model to impose circularity in expected segmentation.
Enforcement of certain shape models helps the method to
handle gradient variations within and around OD but al-
together limits the extraction range of irregular OD shapes
which occur commonly in a clinical scenario.
Juan et al.[22] propose a model-free snake approach and

report improvements over their earlier active shape model
(ASM) [9][10]. In this method, after each deformation, con-
tour points are classified in a supervised manner into edge-
point cluster or uncertain-point cluster. The updating is
only carried out on the contour points which belong to the
edge-point cluster. Deformation of each point uses both
global and local information to overcome local gradient vari-
ations. The successful results on both normal and challeng-
ing OD examples have been reported on which their earlier
approach [9][10] was failing. This method shows promise is
capturing a range of shape and image variations, however
the accuracy in the segmentation is sensitive to the contour
initialization.
To address various challenges associated with the object

segmentation, various active models have been successfully
employed for different vision applications. More recently,
work in active contours has been focused on region-based ap-
proaches[2] inspired by the basic idea of the Mumford-Shah
model [13]. In such models, foreground and background re-
gions are modeled statistically and an energy functional is
minimised to best separate foreground and background re-
gions. Figure 2(a) shows a successful segmentation on an
image with large gradient distractions near boundaries. The
advantages in using the region-based approaches over edge-
based methods include the following: a) feasibility of seg-
mentation of color and multi-spectral images even in the
absence of gradient-defined boundaries, b) lower sensitivity
to contour initialisation and noise, and c) better ability to
capture concavities of objects.
However, in cases where the object to be segmented can-

not be easily distinguished in terms of global statistics, region-
based active contours may lead to erroneous segmentations.
Figure 2(b) shows a failure example due to smooth region
transition between object and background region. Yandong
et. al [19] proposed a Chan and Vese (C-V) model [2] based

Figure 2: Sample results of C-V active contour[2].
Green: Ground truth by an expert; White: Ob-
tained result. a) First row: successful example, b)
Second row: failure example.

OD segmentation method but imposed a circularity con-
straint on the active contour model to handle such situa-
tions.

In this paper, we propose a novel OD segmentation method
based on C-V model to improve the segmentation on the
range of OD instances. The scope of C-V model is ex-
tended by including image information at the support do-
main around each point of interest. The model is further
refined to differentiate the OD region from the similar char-
acteristic regions around it by integrating information from
the multiple image feature channels. This method does not
impose any shape constraint to the underlying model hence
makes a good choice for OD segmentation. In the next sec-
tion, we give brief detail about the original C-V model.

2. BACKGROUND
Consider a vector-valued image I : Ω → IRd where Ω ⊂

IRn in the image domain, and d ≥ 1 is the dimension of
the vector I(x). Let C(s) : [0, 1] → IR2 be a piecewise
parameterized C1 curve. For a gray valued image, the C-V
model [2] defines an energy functional as:

E(c+, c−, C) = λ
+

∫

inside(C)

|I(x)− c
+|2dx (1)

+λ
−

∫

outside(C)

|I(x)− c
−|2dx

+µ length(C)

where inside(C) and outside(C) represent the region in-
side and outside of the contour C, respectively and c− and
c+ are two constants that approximate the image intensity
inside and outside of the contour.

This model assumes that an image consists of statistically
homogeneous regions and therefore lacks the ability to deal
with objects having intensity inhomogeneity. Figure 2(b)



shows an example. Intensity inhomogeneous is very com-
mon is natural images especially in OD region its the most
occurring phenomena. Recently there have been some at-
tempts to improve C-V model for such situations [7] [20]
[17]. Here, the basic idea is to use local instead of global
image intensity into the region-based active contour model.
These methods report significant improvement in the seg-
mentation over original C-V model for segmenting objects
with heterogeneous intensity statistics. However other than
intensity heterogeneity within OD, smooth region transition
at boundary locations and occurrence of similar character-
istic regions near the OD boundaries (atrophy) make OD
segmentation a much more difficult case altogether. Figure
1 & 4 illustrate OD examples with additional challenges.
The local intensity based statistics [7] [20] is not sufficient
the discriminate atrophy regions.
Here, we present a region-based active contour model which

uses local image information at the support domain around
each point of interest (POI) inspired by localised C-V mod-
els [7] [20]. We propose to use a richer form of local image
information gathered over multi-dimensional feature space.
The intention is to represent the POI more holistically by
including descriptions of the intensity, colour, texture, etc.
This approach should yield a better discriminating represen-
tation of image regions and make the proposed model robust
to the distractions found near the OD boundaries.

3. LOCALISED AND VECTOR-VALUED C-

V ACTIVE CONTOUR MODEL
In this section, we present a region-based active contour

model which constrains the local behavior of each point of
interest x based on the image information at x and at its
neighboring points. Let x and y denote two points in an
image I. We define a local function κ for each x as:

κ(x, y) =

{

1 if ||x− y|| ≤ r

0 otherwise

where, κ which defines the local image domain around a
point x within a radius of r. This function will be 1 when
the point y is within a radius of r centered at point x and 0
otherwise. Using the above function, the energy (mentioned
in equ.(1)) for a point x is redefined as:

Ex(h
+
, h

−

, C) = λ
+

∫

Ωy

κ(x, y) |I(y)− h
+|2dy (2)

+λ
−

∫

Ωy

κ(x, y) |I(y)− h
−|2dy

where, h− and h+ are two constants that approximate
region intensities inside and outside of the contour C re-
spectively, near the point x. The local function ensures the
values of h that minimise Ex(h

+, h−, C) is only influenced
by the image information within the local domain. This
way the behavior of any individual point is constrained by
the regional information from a local domain. This helps in
capturing local boundaries which get missed by a C-V model
due to small difference in the global statistics of interior and
exterior region of the contour.
Now, we incorporate information from a multi-dimensional

feature space, in the above model. Let Ii be the i
th feature of

an image on Ω with i=1, . . . , d. The extension of the above

model to the vector case is:

Ēx(h
+
, h

−

, C) =
1

d

d
∑

i=1

λ
+
i

∫

Ωy

κ(x, y) |Ii(y)− h
+
i |2dy (3)

+
1

d

d
∑

i=1

λ
−

i

∫

Ωy

κ(x, y) |Ii(y)− h
−

i |2dy

where h+= (h+1 , . . . , h
+
d
) and h−= (h−1 , . . . , h

−

d
) are two con-

stant vectors approximating region feature values inside and
outside of the contour C respectively in each feature space.
The λ+i > 0 and λ+i > 0 are weight parameters for the error
term defined for each feature space.

The above energy Ēx defined for a point x ∈ Ω can be
minimised when this point is exactly on the object boundary
and values of h+ and h− are optimally chosen. The integral
of Ēx over all points x is minimised to obtained entire object
boundary. This is defined as:

E(h+
, h

−

, C) =

∫

Ω

Ēx(h
+
, h

−

, C)d(x) (4)

This energy is converted to an equivalent level-set formu-
lation [3] for curve evolution.

3.1 Level-set formulation of the model
In level-set formulation, a contour C ⊂ Ω is represented

by the zero level set of Lipschitz function φ : Ω → IR. In
this representation, the energy functional Ēx(h

+, h−, C) in
(3) can be rewritten as

Ēx(h
+
, h

−

, φ) =
1

d

d
∑

i=1

λ
+

i

∫

Ωy

κ(x, y) |Ii(y) − h
+

i |
2
H(φ(y))dy

+
1

d

d
∑

i=1

λ
−

i

∫

Ωy

κ(x, y) |Ii(y) − h
−

i |
2
(1 − H(φ(y)))dy (5)

where H is the heaviside function. Now, energy term in
(4) can be written as:

E(h
+
, h

−

, φ) =

∫

Ω

Ēx(h
+
, h

−

, φ) (6)

=

∫

Ω

[

1

d

d
∑

i=1

λ
+

i

∫

Ωy

κ(x, y) |Ii(y) − h
+

i |
2
H(φ(y))dy

]

dx

+

∫

Ω

[

1

d

d
∑

i=1

λ
−

i

∫

Ωy

κ(x, y) |Ii(y) − h
−

i |
2
(1 − H(φ(y)))dy

]

dx

A distance regularization term [20] is incorporated to pe-
nalise the deviation of φ from a signed distance function
characterised by the following integral:

ξ(φ) =

∫

Ω

1

2
(|∇φ(x)| − 1)2dx (7)

To regularise the zero level contour of φ, a length of zero
level curve of φ is also added which is given as:

ζ(φ) =

∫

Ω

δφ(x)|∇φ(x)| dx (8)

Now, we define the entire energy functional

F (h+
, h

−

, φ) = E(h+
, h

−

, φ) + α ξ(φ) + β ζ(φ); (9)



where α and β are non-negative constants. This energy
functional is minimised to the optic disk boundary. The min-
imisation method and performed approximations are pro-
vided in the appendix.

4. OPTIC DISK LOCALISATION AND CON-

TOUR INTIALISATION
The first step is to localise OD region and define region

of interest on which further processing shall be carried out.
The red colour plane of CFI gives good definition of OD re-
gion thus a good choice for the OD localisation task. The
contour initialisation is the next essential step to initiate ac-
tive contour evolution. In our method, we perform localisa-
tion and initialisation steps together by performing circular
Hough transform [5] on the gradient map.
The vessel points are identified and masked using stan-

dard vessel segmentation technique. The value at a vessel
point is interpolated using near-by regions such that gradi-
ent values arise due to vessel structures can be eliminated
prior to Hough transformation. Next, a canny edge detec-
tor at a very low threshold is applied on the pre-processed
(vessel-free) image to get edge points. On these points, a
circular Hough transform is applied for a range of expected
OD radius (rmin to rmax). This range is chosen based on
the retinal image resolution.
For each edge point, we draw a circle with center in the

point with a radius r. This circle is drawn in the parameter
space where x and y represent image axis and the z axis is the
radii. At the coordinates which belong to the perimeter of
the drawn circle we increment the value in the accumulator
matrix. Once edge point and every desired radius is used,
the accumulator will now contain numbers corresponding to
the number of circles passing through the individual coor-
dinates. Thus the higher numbers correspond to the center
of the potential circles in the image. Since, edge points are
mainly dominated by the OD region, we select OD center
which has maximum value in the accumulator matrix. Next,
the edges near the identified center location in the image do-
main are used to estimate the radius of the circle. The circle
points are identified using estimated radius and further used
to initialise active contour mentioned in section 3.

5. OPTIC DISK SEGMENTATION
Amulti-dimensional image representation is obtained from

different colour and texture feature space. In normal image
conditions, red colour plane gives a better contrast of OD
region. To better characterise OD in pathological situations,
two different texture representations are derived.
First, Gaussian filter responses obtained at three finer

scales σ =
√
2, 2, 2

√
2 and are integrated together. Second,

we use a special class of texture filter bank proposed in [18]
defined as:

L(r, σ, τ) = L0(σ, τ) + cos
(πτr

σ

)

e
−

(

r2

2σ2

)

where τ is the number of cycles of the harmonic function
within the Gaussian envelope of the filter, commonly used
in the context of Gabor filters. L0(σ, τ) is added to obtain
a zero DC component. These filter responses are obtained
at three pairs (σ, τ) = (4, 2), (6, 3), (8, 3) and are integrated
together to capture finer regularity in the texture profile.
These responses are computed on the red colour plane of

Figure 3: Different feature space representation for
the OD region. a) Original colour image, b) Red
colour plane, c) Texture space-1, and d) Texture
space-2.

the image. Prior to this computation, the points belong to
the vessel region are removed and interpolated as mentioned
in section 4. In general, choice of texture representation is
driven by the capability it provide to distinguish OD region
from the various atrophy regions occurring near to the OD.
Figure 3 shows three different feature space representations.

Now, a image point x is represented by a three element
vector where value of individual vector element is taken from
red colour plane texture feature space 1 & 2, respectively.
This vector-valued image is used by the active contour model
presented in section 3 to get the OD boundary.

6. EXPERIMENTS AND RESULTS

6.1 Datasets
We evaluate method‘s performance on a dataset collected

from a local eye hospital. It consists of a total of 138 im-
ages of size 2896 × 1944 and are mainly OD centric. The
markings of OD boundary have been taken from three eye
experts with varying clinical experience. To compensate
inter-observer marking variations, we derive an average OD
boundary for each image by averaging boundaries obtained
by three experts, called as gold standard. The evaluation
has been carried out against three experts individually and
also against gold standard. Different comparisons have been
made with two known active contour models: a) gradient
vector flow (GVF) [12], and b) C-V model [2]. To only as-
sess the strength of individual active contour model, curve
initialisation and performed pre-processing are kept same for
each model.

6.2 Experiments
The radius defined for the function κ is kept 40 pixels for

all the reported experiments. Figure 4 shows few sample
results obtained by three different active contour models.



Figure 4: First column: original image; Second column: initialised contour; Third column: GVF results;
Fourth column: C-V model results; Fifth column: proposed method results. Green colour indicates boundary
marked by an expert and white colour indicates obtained boundary by a method. The last two rows show
the high atrophy cases.

Second column illustrates initialised contour obtained by the
scheme mentioned in section 4.
First row presents an example of irregular shape OD with

a high gradient variations near the initialised contour. The
GVF model fails to capture entire OD region due to lo-
cal gradient minima. C-V model is able to handle local
gradient variations however low bright regions get excluded
due to a subtle difference present between average intensity
of the detected foreground and background regions. The
proposed method better captures boundary except at the
boundary regions which are occluded by thick blood vessels.
This situation mainly arise due to the pre-processing carried
out to suppress the vessel pixels. The vessel pixels at the
boundary are usually get interpolated by the background
pixels (which are outside the disk boundary) therefore con-
sidered background by the proposed method. Second row
presents an example of fuzzy OD boundary where proposed
method optimally capture the OD boundary compared to
other methods. Third and fourth row show two successful
segmentation results on two challenging atrophy cases.
Figure 5 shows an example to demonstrate inter-observer

variability (subjectivity) present in the experts’ marking.

This example has a good definition of OD boundary and it is
carefully selected to demonstrate subjectivity, a well known
aspect in medical image analysis. This subjectivity mainly
arise due to expert’s level of familiarity with the marking
tool and their clinical experience. We compute a average
OD boundary called as gold standard from three experts’
boundaries to compensate subjectivity aspect. The obtained
result by our method shows better boundary consensus with
the gold standard compared to individual expert markings.

6.2.1 Quantitative Evaluation

A quantitative analysis is performed on total 138 images
to assess overall performance of the method. This evaluation
is carried out in two ways: a) region and b) boundary-based.

In region-based evaluation, we compute pixel-wise preci-
sion and recall values which are defined as:

Precision =
tp

tp+ fp
Recall =

tp

tp+ fn

where tp= no. of true positive, fp= no. of false positive
and fn= no. of false negative pixels. Table 1 shows average
precision and recall values obtained by three methods. A



Figure 5: Evaluation against three experts and a
gold standard.

Table 1: Average precision and recall computed over
138 images.

Expert-1 Expert-2 Expert-3 Gold

Standard

GVF 0.99/0.82 0.99/0.80 0.99/0.84 0.99/ 0.83
C-V model 0.96/0.94 0.97/0.92 0.95/0.96 0.96/0.95
Ours 0.98/0.94 0.99/0.92 0.97/0.96 0.98/0.96

high precision and low recall value obtained by GVF model
indicates a under-segmentation case which is mainly due to
the local gradient minimas usually present within the OD
region. Overall, our method achieves higher precision and
recall values against four ground truths. To better appreci-
ate results, we compute a single performance measure called
traditional F-score (F) that is the harmonic mean of preci-
sion and recall. It is defined as:

F = 2
Precision . Recall

Precision+Recall

This is also known as the F1 score, because recall and
precision are evenly weighted. Table 2 shows that pro-
posed method overall gives better performance against two
other models. Since dataset contains 95.4% of the images
with normal condition, the difference in the obtained scores
are not so prominent. However on challenging images, our
method shows significant improvement in the segmentation
results (can be seen from the Fig. 4).
We measure distance between two closed boundary curves

to evaluate the accuracy of boundary localisation. Let Cg

Table 2: F-score computed over 138 images.
Expert-1 Expert-2 Expert-3 Gold

Standard
GVF 0.90 0.88 0.91 0.90
C-V model 0.95 0.94 0.96 0.96
Ours 0.96 0.95 0.97 0.97

Table 3: Average boundary distance computed in
radial direction.

Expert-1 Expert-2 Expert-3 Gold
Standard

GVF 0.332 0.353 0.301 0.312
C-V model 0.148 0.156 0.135 0.131
Ours 0.129 0.142 0.108 0.111

be the boundary curve marked by the expert and Co be the
curve obtained by a method. The distance (D) between two
curves is defined as (in pixels):

D =
1

L

θn
∑

θ=1

√

(dθg)2 + (dθo)2

where, dθg and dθo are the distance from centroid of curve
Cg to points on Cg and Co, respectively in the direction of θ.
L is a non-zero constant used for value normalisation. The
average distances computed against 4 ground truth bound-
ary curves are given in Table 3. It can be seen that the
our method achieves better boundary localisation with the
minimum distances to three experts and gold standard.

Both region and boundary-based evaluation show that the
presented model achieves better segmentation compared to
two existing active contour models.

7. CONCLUSIONS
In this work, we presented a novel, active contour model

to achieve robust OD segmentation. We have extended the
scope of C-V model by including image information at the
support domain around each point of interest. This model
has been further strengthened by the integration of informa-
tion from the multiple image feature channels.

The presented method captures OD boundary in a uni-
fied manner for both normal and challenging cases without
imposing any shape constraint on the segmentation result,
unlike the earlier methods. The method has been tested on a
dataset of size 138 images and assessed against OD boundary
marked by three medical experts. The comparison results
show that the proposed method is more robust and accurate
than other two models overall, and particularly in the cases
of atrophy. This establishes its strengths for OD segmenta-
tion. Since the proposed modification of the C-V model is
general, its scope is not limited to OD boundary detection
but is widely applicable to other segmentation applications,
especially in the medical imaging domain.

8. APPENDIX
The Heaviside function H in Eq. (5) is approximated by

a smooth function Hε defined by

Hε(x) =
1

2

[

1 +
2

π
arctan

(x

ε

)

]

(10)

The derivative of Hε is the following smooth funtion

δε(x) = H
‘
ε(x) =

1

π

ε

ε2 + x2
(11)

The approximation of H, δ by Hε, δε respectively, in Eq.
(5) and Eq. (8) gives an approximated form of energy func-
tional given in Eq. (9).



Fε(h
+
, h

−

, φ) = Eε(h
+
, h

−

, φ) + α ξ(φ) + β ζε(φ); (12)

The value for ε is chosen 1 for a good approximation [20].
This energy functional is minimised to find the OD bound-
ary.
Gradient descent flow: The gradient descent method

is used to minimise the approximated energy functional. For
a fixed level set function φ, functional Eq.(12) is minimised
w.r.t the functions h+

i and h−

i for i = 1, 2, . . . , d. We obtain

h
+
i =

κ(x, y) ∗ [Hε(φ(y)) Ii(y)]

κ(x, y) ∗ [Hε(φ(y))]
(13)

h
−

i =
κ(x, y) ∗ [(1−Hε(φ(y))) Ii(y)]

κ(x, y) ∗ [1−Hε(φ(y))]
(14)

Keeping h+
i and h−

i fixed and minimising the energy func-
tional Eq.(12) w.r.t to φ, the obtained gradient vector flow
is:

∂φ

∂t
= −δε(φ)(e

+ − e
−) + αδε(φ)div

(

∇φ

|∇φ|

)

(15)

+β

(

∇2
φ− div

(

∇φ

|∇φ|

))

where δε is the smooth Dirac function given in Eq.(11)
and e+ and e− are the functions below:

e
+(x) =

1

d

d
∑

i=1

λ
+
i

∫

Ωy

κ(x, y) |Ii(y)− h
+
i |2dy

and

e
−(x) =

1

d

d
∑

i=1

λ
−

i

∫

Ωy

κ(x, y) |Ii(y)− h
−

i |2dy

where h+i and h−i are given by Eq.(13) and Eq.(14), re-
spectively.
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